
  
Abstract— We present an optimal and robust technique for the 
restoration of positron emission tomography (PET) data. It is 
based on an iterative deconvolution of Fourier Rebinned (FORE) 
sinograms employing the EM-ML algorithm regularized with 
MAP. The deconvolution kernel is related to the System 
Response Matrix (SRM) and the axial point spread function 
(PSF) caused by FORE. This method is able to deblur the 
acquired data whitout the introduction of additional noise and 
enhancing the quality (resolution, contrast) of the images 
reconstructed using FBP. 

 
Index Terms— Positron emission tomography, Sinogram 

Restoration, Image reconstruction, Resolution, Noise. 

I. INTRODUCTION 
he quality of PET images is often limited by the presence 
of noise and blurring. The image reconstruction methods 

that seek to reduce these effects can be divided in two classes:  
 
 I) Methods that make use of the SRM during the image 
reconstruction. These methods employ a model of the system 
to relate the unknown image intensities to the measured-
degraded PET data. Based on these models, iterative 
techniques like EM-ML can be employed to achieve accurate 
image reconstructions. 
 
 II) Methods that filter sinograms removing blur and/or  
suppressing noise. These techniques are generally referred as 
sinogram restoration (SR) methods. Restored sinograms can 
be reconstructed by means of the filtered back projection 
(FBP) algorithm.  
 
 The second class of methods are computationally efficient 
and thus are often preferred in practical applications, 
particularly when dealing with large PET data sets. However, 
traditional sinogram filtering [1] is usually based on simplified 
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models and its application to single radial profiles only may 
not be optimal.  
 

Recently, analytical deconvolution of the distortion 
produced by Fourier rebinning (FORE) [2] in PET sinograms 
has been attempted [3]. The restoration of the axial resolution 
obtained is promising, although iterative statistical techniques 
should probably outperform these results in noisy situations. 
 
 In this work, advanced sinogram restoration strategies are 
obtained following a regularized iterative method in ρ,z 
planes. The deconvolution kernel used is based both on the 
SRM and on the axial PSF of FORE. This way, we can make 
use of our knowledge of the blurring effects involved in the 
emission and detection of the radiation in the PET scanner and 
FORE technique, prior to FBP reconstruction. The result is a 
sinogram with enhanced resolution and reduced noise that 
yields improved images.  

II. METHODS 
  First, fully 3D PET data are rebinned into 2D data sets. 

This way, the number of oblique sinograms are reduced in 
general by a factor of N, being N the total number of axial 
slices of the reconstructed. Therefore, reconstruction times are 
extremely reduced by the same factor. An example of a 
Fourier rebinned sinogram can be seen in figure 1. 

 

 
Fig.1.  Fourier rebinned sinogram and ρ,θ,z coordinates  
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At this point, FBP can be applied to obtain images from 

these rebinned data [4]. However, this approach is not optimal 
because, FBP being based on an idealized mathematical model 
of the system, it cannot account for the blur and noise in the 
data. Therefore, we have developed a sinogram restoration 
method to take into account these effects before the FBP 
reconstruction. 

 
  In a realistic model, the volume of space from which an 

emitted positron produces a coincidence count in a pair of 
crystals, is distributed on a wide tube of response (TOR) along 
the line of response (LOR) which connects them [5, 6] .  

 
Fig. 2. Schematic representation of LOR and a TOR 
 
In this work, we assume that the probability distribution of 

a TOR h(ρ,z,t) can be factorized as: 
 
    ( )( , , ) ( ) ,h t z f t g zρ ρ⋅ ,       [ 1 ] 
 

f(t) represents the longitudinal profile of the TORs and 
<g(ρ,z)> is the average value of the transversal and transaxial 
profiles g(ρ,z) of the TORs. 

 
In a rotating machine like rPET, the longitudinal profile f(t) 

of the TORs is quite flat and it is reasonably to neglect its 
impact on the acquired data. Consequently, we can 
approximate (1) as: 

 
    ( )( , , ) ,h t z g zρ ρ∝          [ 2 ] 

 
The transversal and transaxial profiles g(ρ,z) (Fig. 3) of the 

TORs cause the blurring in the data in the ρ,z coordinates 
respectively. The 2-Dimensional distribution is equally 
distributed on each axis.   

 
 Fig. 3. Deconvolution kernel g(ρ,z) and PET data in a ρ,z plane 
 

In addition to this, FORE is also known to cause blurring 
[3], specially in the axial (z) direction. This effect can be also 
included in the deconvolution kernel. 

 
To obtain the axial PSF of FORE (PSF(Z)), a point source 

placed at different locations inside the field-of-view (FOV) of the 
scanner was projected using realistic and accurate probabilities. A 
new Monte Carlo code (PeneloPET) [7] that includes the main 
relevant physical effects was used for these projections. After 
that, the profiles of the data along the axial direction before using 
FORE (only with direct sinograms) and after applying FORE 
were compared. The increasing size of the profile in the z 
direction when FORE is employed is what we have called the 
PSF(Z) of FORE. 

 
To take this PSF(Z) into account in our restoration of the 

sinogram, the kernel g(ρ,z) was convolved ( ⊗ ) with this PSF: 
 

g’(ρ,z) = g(ρ,z)⊗PSF(Z) 
 
Deblur and denoise of each ρ,z plane is performed via the 

EM-ML + MAP OSL algorithm. EM-ML can be regarded as a 
general tool for deconvolving images subject to non-negativity 
constraints [8]. MAP OSL [9] regularizes the method, making 
it more robust. A general formulation of the problem is: 
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In this equation, Xj

n is the estimation of the activity of LOR 
j at the iteration n in the restored sinogram, Yi represents the 
value of the acquired data at LOR i, and Cij in our case 
corresponds to the deconvolution kernel g’(ρ,z). MAP was 
implemented using the median root prior, being mj the median 
of the pixels in the 3x3 neightborhood of Xj and β the weight 
of the prior.  

 
One of the main advantages of this method compared with 

fully 3d reconstruction is that convergence is reached in only a 
few iterations and with a very low computational cost. This is 
so because in this case, the kernel is much smaller and the 
problem is less ill-posed. Note that no accelerated version of 
the EM-ML algorithm, like OS-EM, is employed here.  

 
We have called this method, Optimal Sinogram Restoration 

(OSR) because it allows to incorporate the relevant 
information of the SRM as well as the blurring impact of 
FORE in the data along the z-axis during the process of 
sinogram restoration in a very efficient way. Having chosen a 
regularized version of the EM-ML algorithm, the method is 
robust and suitable for its application in real studies.  

III. RESULTS  

The method has been validated against real data acquired 
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with rPET [10], a dedicated small animal PET scanner based 
on two pair of rotating planar detectors. 

 
Acquisitions were reconstructed with FORE+FBP and 

compared with the proposed method, which includes sinogram 
restoration techniques before FBP (FORE+OSR+FBP). For 
the FBP reconstruction, the projections were filtered using a 
ramp filter multiplied by a Hanning one rolled off at the 
Nyquist frequency. The back-projection was pixel driven with 
linear interpolation performed on the projection values. 

 
We present results from an acquisition of 200 minutes 

corresponding to a Hot Derenzo Phantom filled with 400µCi 
of FDG. Fourier rebinned sinograms are shown in Fig. 5 (top). 
If we deconvolve these sinograms with the proposed method, 
we can yield sinograms with enhanced resolution (Fig. 5 
bottom). After that, both sinograms were reconstructed using 
FBP with the same parameters. A transversal view of the 
resulting images and a profile across the line shown is 
depicted in Fig. 6. 

 
The method was also applied to an acquisition of a 300g rat. 

It was acquired during 60 minutes after being injected 2mCi of 
FDG. Figures 7 and 8 show that OSR can also be incorporated 
with success between FORE and FBP reconstructions in 
preclinical studies. 

 
Table 1 shows a comparative study of the resolution 

achieved and time required for the reconstruction of an 
acquisition in 1CPU (Pentium IV, 2.8 GHz) for different 
methods. The use of OSR improves significantly the quality of 
the images with almost no additional time. 

 

 
Fig 5. Results from an acquisition (200 minutes) of a Hot Derenzo 

Phantom filled with 400µ Ci of FDG. 

 

 
Fig 6. Reconstructed images with FBP from the data in fig. 5 and profile 

along the images. The diameter of each capilar is shown in mm. 
 

 RESOLUTION RECONSTRUCTION 
TIME 

FORE + 
FBP 1.8 mm 15’’ 

FORE + 
OSEM2D 1.2 mm 90’’ 

FORE  +   
OSR + FBP 1.3 mm 20’’ 

 
TABLE 1 – Resolution and CPU time required for different reconstruction 

methods. 

 

 
Fig 7. Results from a study of a 300g rat acquired during 60 minutes after 

being injected 2mCi of FDG. Top: Sinograms before restoration. Bottom: 
Restored sinograms. 
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Fig 8. Reconstructed images with FBP from the data in fig. 7. Below: 

Profile along the images. 

IV. CONCLUSIONS 
 
Deconvolution and denoising of the acquired PET data 

using iterative plus analytical methods prior to FBP         
reconstruction of the image can increase the resolution by 
more than a 30%.  

 
This sinogram restoration method is based on a realistic 

model of positron emission and radiation detection in the PET 
scanner (the System Response Matrix) and it is applied in 2-
dimensional planes. In this way, we can employ the 
information contained in the SRM while performing analytical 
FBP-like reconstructions and combine the benefits of fast 
processing of FBP with the high deblurring capabilities of 
iterative, SRM-based, image reconstructions.  

 
The improvement on the quality of the reconstructed images 

without a significant increasing of the computational time is 
very promising.   
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