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Abstract

We present a pion photoproduction model on the free nucleon based on an Effective Lagrangian
Approach (ELA) which includes the nucleon resonances (D(1232), N(1440), N(1520), N(1535),
D(1620), N(1650), and D(1700)), in addition to Born and vector meson exchange terms. The model
incorporates a new theoretical treatment of spin-3/2 resonances, first introduced by Pascalutsa,
avoiding pathologies present in previous models. Other main features of the model are chiral sym-
metry, gauge invariance, and crossing symmetry. We use the model combined with modern optimi-
zation techniques to assess the parameters of the nucleon resonances on the basis of world data on
electromagnetic multipoles. We present results for electromagnetic multipoles, differential cross-sec-
tions, asymmetries, and total cross-sections for all one pion photoproduction processes on free
nucleons. We find overall agreement with data from threshold up to 1 GeV in laboratory frame.
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1. Introduction

In spite of the fact that Quantum Chromodynamics (QCD) is regarded as the theory
of the strong interaction, in the energy regime of the mass of the nucleon and its reso-
nances a perturbative approach is not suitable. Thus, we have to rely on an effective
approach if we are interested on the properties of nucleon resonances and processes
where they are involved—mainly meson production which is the dominant decay chan-
nel. This paper is devoted to pion photoproduction from the nucleon, a classical topic
within nuclear and particle physics, which has been proved as one of the best mecha-
nisms to study the nucleon and its resonances as well as to study the role of the pion
and resonances in nuclei [1].

The experimental database [2–4] has been enormously increased thanks to the experi-
ments carried out at LEGS (Brookhaven) [5,6] and MAMI (Mainz) [7] where photons
are produced through laser backscattering and bremsstrahlung, respectively. Because of
this experimental effort, our knowledge of the D(1232) resonance region has been largely
increased, though several discrepancies between Mainz and Brookhaven analyses still
remain [6]. Polarization observables, differential cross-sections, and electromagnetic mul-
tipoles have been measured with a precision not possible a few years ago and a full descrip-
tion of the amplitudes in the D(1232) region is now available. The database is expected to
grow significantly once data from current experiments have been analyzed and when data
from new laser backscattering facilities as GRAAL (Grenoble) and LEPS (Harima)
become available. The last two facilities have started to run recently and operate at higher
energies than LEGS. This situation opens a lot of possibilities for research on nucleon
resonances.

In the last decades, pion photoproduction has been studied through many models and
using various approaches to the description of the nucleon resonances. Among them there
are, Breit–Wigner models [8,9], K-matrix [10,11], Effective Lagrangian Approach (ELA)
[12–15], dynamical models [16–19], Breit–Wigner plus a Regge-pole type background to
take into account the exchange of heavier mesons [20], as well as quark models with pion
treated as an elementary particle [21]. Although in one way or another all models are phe-
nomenological, in this paper we adopt ELA method because we consider it appealing in
many respects and it is the most suitable approach in the energy range from threshold
up to 1 GeV in laboratory frame, where the main low-lying resonances live. This approach
has proved to be a quite successful tool to study pion photoproduction at low/threshold
energy [22–24] and provides the most natural framework to extend the model to pion elec-
troproduction [12], electromagnetic pion production in composite nuclei [25] and halo
nuclei [26], two pion photoproduction [27], meson exchange currents [28], and exclusive
X(c,Np)Y processes.

In the last years, the Lagrangian description of spin-3/2 resonances has been greatly
improved and many pathologies related to the pion–nucleon–resonance and c–nucleon–
resonance interactions have been overcome [29]. This fact, combined with the substantial
enlargement of the pion photoproduction database, demands to revisit the topic and to
make the most of these advances to improve our knowledge on nucleon resonances and
c–nucleon–resonance vertices as well as on the pion photoproduction process itself.

We focus on the analysis of pion photoproduction process on free nucleons with the
aim of establishing a reliable set of coupling constants and achieving an accurate knowl-
edge on nucleon resonances. The latter are needed for further studies of resonances in



1410 C. Fernández-Ramı́rez et al. / Annals of Physics 321 (2006) 1408–1456
nuclear medium as well as to study the structure of the nucleon through its excitations.
This requires to develop a pion photoproduction model and to study the parameters of
the nucleon resonances within the model for further implementation in the calculations
previously mentioned. In this regard, we consider this paper as a first step towards a deep-
er understanding of the role of the pion and the resonances in more complicated processes.
Our model is an improvement of the one in [12] where we have changed the spin-3/2
Lagrangians and explored other variations which allow us to achieve crossing symmetry
and a better description of the resonance widths. The elements included in this model
are nucleons, pions, photons, q and x mesons, as well as all four star status spin 1/2
and 3/2 nucleon resonances up to 1.7 GeV in Particle Data Group (PDG, in what follows)
[30]. Spin-5/2 resonances are not expected to play an important role in the data analysis
carried out in this paper and are left to future exploration.

The paper is organized as follows: in Section 2, we provide the basic features such as
conventions and normalizations for cross-sections and amplitudes which will be used
throughout the article. In Section 3, we describe the full model and its features in detail,
stressing crossing symmetry and the spin-3/2 treatment which avoids well-known pathol-
ogies of previous models. In Section 4, we show results for multipoles, differential cross-
sections, and remaining physical observables. We also provide the reader with all the
parameters of the model explaining how they have been determined. In Section 5, we sum-
marize the main conclusions and results.

2. Kinematics, cross-section, and amplitude decomposition

Notation for kinematics is set to k ¼ ðEp;~kÞ for the outgoing pion, q ¼ ðEc;~qÞ for the
incoming photon, p ¼ ðE;~pÞ for the incoming nucleon, and p0 ¼ ðE0; ~p0Þ for the outgoing
nucleon. Mandelstam variables are defined as usual [31]

s ¼ ðp þ qÞ2 ¼ ðp0 þ kÞ2; ð1Þ

u ¼ ðp0 � qÞ2 ¼ ðp � kÞ2; ð2Þ

t ¼ ðk � qÞ2 ¼ ðp � p0Þ2. ð3Þ
The photon polarization vectors in spherical basis are

Al
kc¼�1 ¼ �

1ffiffiffi
2
p ð0; 1;�i; 0Þ. ð4Þ

Following conventions and normalization of [31], the differential cross-section can be
written in the center of mass (c.m.) reference system as

rðhÞ � dr
dX�p
¼ 1

64p2

1

s�
k�

E�c
jMj2. ð5Þ

Whenever a kinematical quantity appears starred it is defined in the c.m. reference frame.
In particular, the c.m. absolute values of the photon and the pion momenta are denoted by
q* and k*, which stand for j~q�j and j~k�j, respectively. The transition probability is

jMj2 ¼ 1

4

X
k1k2kc

jAk1k2kc j
2
; ð6Þ
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where Ak1k2kc is the invariant amplitude, with photon polarization kc, initial nucleon
helicity k1, and final nucleon helicity k2. We use the following isospin decomposition

A ¼ vy2ðA0sj þ A�1
2
½sj; s3� þ Aþdj3Þpjv1; ð7Þ

where for simplicity we have dropped helicity subindices (another two isospin decomposi-
tions are used and are introduced in appendices).

The isospin decomposition can be related to the physical amplitudes

Aðcp ! pp0Þ ¼ Aþ þ A0; ð8Þ
Aðcn! np0Þ ¼ Aþ � A0; ð9Þ

Aðcn! pp�Þ ¼
ffiffiffi
2
p
ðA0 � A�Þ; ð10Þ

Aðcp ! npþÞ ¼
ffiffiffi
2
p
ðA0 þ A�Þ. ð11Þ

For completeness, we specify the conventions adopted throughout this article. Metric
tensor: glm ” diag(1,�1,�1,�1); Levi-Civitá tensor: �0123 = 1, �123 = 1; Pauli matrices: [sj,sk] =
2�jklsl; Dirac–Pauli matrices: {cl,cm} = 2glm, clm ¼ 1

2
½cl; cm�, clma ¼ 1

2
ðclcmca �cacmclÞ,

c5 = ic0c1c2c3; Electromagnetic field: F lm ¼ o
l Âm � o

m Âl, ~F lm ¼ 1
2
�lmabF ab, where Âl is the

photon field.

3. The model

In this section, we present a complete description of the model and its features. Using as
starting point Weinberg’s theorem [32], we construct a fully relativistic, chiral symmetric,
gauge invariant, and crossing symmetric model based on suitable effective Lagrangians for
particle couplings. From these Lagrangians we obtain the invariant amplitudes and phys-
ical observables. This procedure has been adopted in many papers, i.e. [12–15], and has
been proved to be a successful way to treat the pion photoproduction process. However,
previous works had pathologies in the description of the spin-3/2 particles which are not
present in our model. The basic idea is to build consistently the most general Lagrangians
for vertices, taking into account all possible symmetries (crossing symmetry, gauge invari-
ance, and chiral symmetry), and to use Feynman rules to obtain invariant amplitudes
which can be related to physical observables. The model can be split into three different
types of contributions: Born terms (Fig. 1), vector mesons exchange (Fig. 2E), and spin-
1/2 and spin-3/2 nucleon resonance excitations (Fig. 2F and G). There is no contribution
from r meson exchange because of charge conjugation violation of the rpc coupling [11].
Fig. 1. Feynman diagrams for Born terms: (A) direct or s-channel, (B) crossed or u-channel, (C) pion in flight or
t-channel, and (D) Kroll–Rudermann (contact).

Fig. 2. Feynman diagrams for vector meson exchange (E) and resonance excitations: (F) direct or s-channel and
(G) crossed or u-channel.
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We consider that all the relevant degrees of freedom are taken into account except perhaps
spin-5/2 resonances. Our choice of Lagrangians is explained and justified in the forthcom-
ing subsections. All the invariant amplitudes can be found in Appendix A.

3.1. Born terms

Born terms are the Feynman diagrams shown in Fig. 1 in which only pions, photons, and
nucleons are involved. We start from the free Lagrangians for pions (Klein–Gordon) and
nucleons (Dirac) and a phenomenological pion–nucleon interaction. This last interaction
is chosen as a pseudovector (PV) coupling to the pion because it is the lowest order in deriv-
atives compatible with the low-energy behavior of the pion and chiral symmetry [22,33]

LpNN ¼
fpN

mp

�Nclc5sj olpj

� �
N ; ð12Þ

where mp is the mass of the pion, fpN is the pseudovector coupling constant, and the sign is
fixed by phenomenology. According to [34], fpN is set to f 2

pN=4p ¼ 0:0749. The use of the
PV coupling for the pion in our effective Lagrangian grants that low-energy theorems of
current algebra and partially conserved axial-vector current (PCAC) hypothesis are incor-
porated in the model.

The electromagnetic field is included in the usual way by minimal coupling to the
photon field (oa ! oa þ ieQ̂Âl; where Q̂ is the charge operator) and taking into account
phenomenologically the anomalous magnetic moment of the nucleon

L ¼ � ie
4M

F V
2

�N
1

2
F S=V

2 þ s3

� �
cabNF ab. ð13Þ

F S=V
2 is defined as the ratio between isospin-scalar and isospin-vector form factors
ðF S=V

2 � F S
2=F V

2 Þ.
The interacting Lagrangian for Born terms is

LBorn ¼� ieF p Âa�jk3pjðoapkÞ � eÂaF V
1

�Nca

1

2
F S=V

1 þ s3

� �
N

� ieF V
1

fpN

mp
Âa �Ncac5

1

2
½sj; s3�pjN

� ie
4M

F V
2

�N
1

2
F S=V

2 þ s3

� �
cabNF ab þ fpN

mp

�Ncac5sjNðoapjÞ; ð14Þ

where e is the absolute value of the electron charge, Fp is the pion form factor and
F V

j ¼ F p
j � F n

j , F S
j ¼ F p

j þ F n
j are the isovector and isoscalar nucleon form factors which

at the photon point (q2 = 0) take the values F S
1 ¼ F V

1 ¼ 1, F S
2 ¼ jp þ jn ¼ �0:12,

F V
2 ¼ jp � jn ¼ 3:70. We set F p ¼ F V

1 to ensure gauge invariance. It is straightforward
to check gauge invariance of the amplitudes in Appendix A performing the replacement
Al fi ql.

3.2. Vector mesons

The main contribution of mesons to pion photoproduction is given by q (isospin-1
spin-1) and x (isospin-0 spin-1) exchange. The phenomenological Lagrangians which
describe vector mesons are [9,12]
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Lx ¼ �F xNN
�N ca � i

Kx

2M
cabo

b

� �
xaN þ eGxpc

mp

~F lmðolpjÞdj3x
m; ð15Þ

Lq ¼ �F qNN
�N ca � i

Kq

2M
cabo

b

� �
sjq

a
j N þ eGqpc

mp

~F lmðolpjÞqm
j . ð16Þ

Often the pcV coupling is written as L ¼ eGV pc

2mp
~F lmV lmp where Vlm ” olVm � omVl and

Vl ” ql,xl [9]. Both couplings yield the same amplitude.

3.3. Spin-1/2 nucleon resonances

In the model we deal with three different kinds of resonances with spin-1/2: S11, S31,
and P11; and we need Lagrangians and amplitudes to describe their behavior. The most
simple isobar is isospin-1/2 spin-1/2 (S11) which can be described by the following
Lagrangian

LS11
¼ � h

fp

�NcasjN �o
apj �

ie
4M

�Ncabc5ðgS þ gVs3ÞN �F ab þHC; ð17Þ

where HC stands for hermitian conjugate, h is the strong coupling constant which can
be related to the width of the resonance decay into a nucleon and a pion, and
fp = 92.3 MeV is the leptonic decay constant of the pion. gV and gS stand for the res-
onance isovector and isoscalar form factors, respectively. They are defined as
gV = gp � gn and gS = gp + gn, where subscripts p and n stand for the resonances orig-
inating from the proton and the neutron, and can be related to experimental helicity
amplitudes at the photon point as will be seen in the next sections. The pion coupling
has been chosen pseudovector in order to obtain the right low-energy behavior
and consistency with Born terms. The coupling to the photon used preserves gauge
invariance.

The next isobar is isospin-3/2 spin-1/2 (S31). Because of isospin we need to define
isospinors as in [35]

N �1 ¼
ffiffiffi
1

2

r N �þþ �
ffiffi
1
3

q
N �0ffiffi

1
3

q
N �þ � N ��

0
B@

1
CA; ð18Þ

N �2 ¼ i

ffiffiffi
1

2

r N �þþ þ
ffiffi
1
3

q
ffiffi
1
3

q
N �þ þ N ��

0
B@

1
CA; ð19Þ

N �3 ¼ �
ffiffiffi
2

3

r
N �þ

N �0

	 

. ð20Þ

In this basis, and under the same conditions as those for previous isobar, the S31 Lagrang-
ian is

LS31
¼ � h

fp

�NcaN �j o
apj �

ieg
2M

�Ncabc5N �3F ab þHC. ð21Þ

Just one electromagnetic coupling constant is needed here because only the isovector part
of the photon couples to the nucleon to produce an isospin-3/2 field.
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The P11 Lagrangian is closely related to S11 being parity the main change. This change is
due to the angular momentum of the resonance, which implies a change in the parity of the
coupling

LP11
¼ � h

fp

�Ncac5sjN �o
apj þ

ie
4M

�NcabðgS þ gVs3ÞN �F ab þHC. ð22Þ
3.4. Spin-3/2 nucleon resonances

The choice of spin-3/2 nucleon–resonance couplings is one of the main improvements
of the present model compared to former ones. The choice that we use here is motivated
by previous studies that identified pathologies in former spin-3/2 couplings. In what fol-
lows we provide a detailed comparison of both traditional (off-shell extension) and gauge
invariant (GI) couplings, which exhibits the virtues of the choice adopted here. With
regards to the traditional coupling, we restrict the discussion to the P33 (D) resonance
and its coupling to the pion and the nucleon, although it affects similarly to other spin-
3/2 resonances.

3.4.1. Traditional D–nucleon–pion coupling

The basis of the traditional point of view is the seminal paper by Nath et al. [36], based
on the articles by Peccei [35] in the late sixties which dealt with this coupling. Peccei worked
out a chiral Lagrangian with a pseudovector coupling to the pion, to ensure the low-energy
behavior, based upon the invariance of the D free field under the point transformation
Dl ! Dl � 1

4
clcbD

b and the ansatz clOlm = 0. Given the most general Lagrangian
L ¼ h�Dl

j OlmNompj we obtain the well-known Peccei Lagrangian [35]

LPeccei ¼ ih�Da
j ð4gab � cacbÞNo

bpj þHC. ð23Þ

Restrictions such as Peccei’s ansatz are needed in order to reduce the number of degrees of
freedom (DOF) of the spin-3/2 field. When a massive spin-3/2 particle is described within
the Bargmann and Wigner equations [37], a problem of extra DOF arises because a vector-
spinor has 16 components whilst only four are needed. These constraints naturally emerge
in the free theory thanks to the Euler–Lagrange [36] or the Hamiltonian formalism [29],
but for interacting particles the picture is not so straightforward and additional restric-
tions have to be imposed.

Nath et al. [36] proved that Peccei’s ansatz was too restrictive, developing a generaliza-
tion which—despite its many pathologies [29,36,38,39]—has become the traditional and
most popular approach to interacting spin-3/2 particles for the last 30 years.

The starting point of Nath et al. is the massive spin-3/2 free theory, which can be found
in [35,36,38]. The following Lagrangian is defined

LD ¼�Da ðiolc
l �M�Þgab þ ixðcaob þ cboaÞ þ

i

2
ð3x2 þ 2xþ 1Þcao

lclcb

�

þM�ð3x2 þ 3xþ 1Þcacb

�
Db; ð24Þ

where x 6¼ � 1
2

and the Lagrangian is invariant under the point transformation

Dl ! Dl þ aclcmDm; ð25Þ
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x! x� 2a
1þ 4a

; ð26Þ

with a 6¼ � 1
4
. Subsidiary constraints clD

l = 0 and olD
l = 0 appear to reduce the number

of DOF to four, as expected for a spin-3/2 particle. A detailed description of the DOF
counting technique is given in [40]. The parameter x does not affect physical quantities,
so that one is free to set it to the most convenient value, usually x = �1 which recovers
the Rarita–Schwinger theory [41].

The point transformation of Eq. (25) does not affect the spin-3/2 content of the free
field because of the constraint clD

l = 0, but for interacting D particles this constraint does
not apply, and the excess of DOF shows up as a contribution to the spin-1/2 sector.

The most general interacting Lagrangian containing only first-order derivatives of the
pion field and consistent with (24)–(26) is given by

Lint ¼ ,�Daðgab þ acacbÞNo
bpþHC; ð27Þ

where , is a coupling constant and a is called the off-shell parameter, which can be set to
different values. This is named off-shell extension framework. If a ¼ � 1

4
we recover Peccei

theory. This family of Lagrangians has been widely used in pion–nucleon scattering
[15,42], pion photoproduction [12–17,35], and compton scattering [15,43] in the D-region,
as well as for the description of meson exchange currents [28]. The off-shell parameter can
be set to a fixed value, a = �1 [36], a ¼ � 1

4
[12,35] or just let it run freely [13,43] to get the

best possible fit.
However, it is not possible to remove the spin-1/2 sector from the amplitude for any

value of a [38]. The physical meaning of the off-shell parameter is unclear and could be
considered just as a free parameter with a fuzzy physical meaning set only for fitting
improvement. The disadvantage is that there is a heavy dependence of the coupling con-
stants on the off-shell parameter, as was proved by Feuster and Mosel [13]. Other pathol-
ogies related to Eq. (27) coupling are: quantization anomalies (except for a = �1), so that
the naive Feynman rules we read from the Lagrangian are no longer valid [29,36];
Johnson–Sudarshan (JS) problem (nonpositive definite commutators) [44,45] and
Velo–Zwanziger (VZ) problem (acausal propagations) [45,46].

A consistent theory for interacting spin-3/2 particles is expected to be free of such prob-
lems. This theory has been developed in recent years and will be detailed in the next
paragraphs.

3.4.2. Gauge invariant couplings

A different approach to massless fields of arbitrary spin k was developed in the seven-
ties. It was proved that the massless theory obtained from the massive one has a simple
structure for both integer [47] and half-integer [48] spin fields, even if the massive theory
is rather complicated. The free massless Lagrangians for half-integer spin fields can be
obtained just from first principles requiring the action to be invariant under the gauge
transformation w fi w + dw, where dw = og [49,50], w is a tensor-spinor with rank ‘ which
stands for the particle and g a complex tensor-spinor field with rank ‘ � 1. For a spin-3/2
field dwl = olg, with wl a vector spinor and g a spinor field. This gauge condition reduces
the number of DOF of the spin-k field to 2—helicity states �k and +k—as it is required for
a massless particle. In this framework, it is quite simple to build consistent interactions for
half-integer spin fields as suggested by Weinberg and Witten [51] just enforcing them to
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fulfill this gauge invariance condition. For example, the spin-3/2 wl field should appear in
the interaction as olwm � omwl, the spin-5/2 wlm as olomwqr � olorwqr � oqomwlr

+ oqorwlm, and, more generally, an arbitrary spin-k tensor-spinor field as the antisymmet-
rization of oa1

oa2
� � � oaðk�1=2Þwb1b2���bðk�1=2Þ

. Thus, the vertices Ol... of the Feynman diagrams
for massless spin-3/2 particles will fulfill the condition plO

l... ¼ 0 where p is the four
momentum of the spin-3/2 particle, l the vertex index which couples to the spin-3/2 field,
and the dots stand for other possible indices. This is what is called GI coupling scheme.

We apply this procedure to the D case. We start from Lagrangian (24) for a free
massless spin-3/2 particle. For x = �1 it can be written as

L3=2;massless ¼ �wlc
lmaoawm. ð28Þ

The inclusion of the mass term

L3=2;massive ¼ L3=2;massless �M��wlc
lmwm; ð29Þ

breaks gauge symmetry, raising the number of DOF from 2 to 4 as it should be.
Let us now consider the interaction. For an interacting massless spin-3/2 particle we

write the Lagrangian

L ¼ L3=2;massive þ Lint. ð30Þ

The interaction has been built within the GI coupling scheme and can be written as [29]

Lint ¼ wylJl þHC; ð31Þ

where Jl has no dependence on wl and gauge invariance imposes olJl = 0. The inclusion
of the mass term—if it is properly done as in (29)—breaks gauge symmetry increasing the
number of DOF of the spin-3/2 field from 2 to 4 and does not affect Lint [29,50]. Hence, the
number of DOF in the interacting massive field is the right one and no unphysical com-
ponents are present. Focusing on our photoproduction model, we are interested in two
couplings: the D to the pion and the nucleon, and the D to the photon and the nucleon.
The simplest consistent DNp-coupling is [29]

Lint ¼ �
h

fpM�
�N�lmkbc

bc5 olN �mj

� �
ðokpjÞ þHC. ð32Þ

We have to clarify that the vector coupling to the pion is a consequence of GI prescription.
Within this prescription, the scalar coupling to the pion gives no contribution to the
amplitude [29].

Concerning the DNc coupling, Jones and Scadron’s [52] suggestion has been widely
used in the (G1,G2) decomposition with [11–14,43] or without [16,17] off-shell exten-
sion. Another decomposition (GE,GM), based upon the same idea as the Sachs form
factors for the nucleon [53], is also possible. This decomposition is directly connected
to physical quantities, as electric and magnetic multipoles, in particular to the E2/M1
ratio which is of great interest from both experimental and theoretical points of view
[6,19,24]. This second decomposition is consistent with the GI approach and can be
written as [54]

L ¼ 3e
2MðM þM�Þ

�N ig1
~F lm þ g2c

5F lm

� �
olN �m3

� �
þHC; ð33Þ

where g1 and g2 can be easily related to GE and GM [40] by
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GE ¼ �
1

2

M� �M
M� þM

g2; ð34Þ

GM ¼ g1 þ
1

2

M� �M
M� þM

g2. ð35Þ

Other possible consistent choices can be found in [40,55].
GI couplings have been proved to be free of the pathologies which are inherent to the

traditional scheme. No anomalies are found in the quantization; neither JS nor VZ prob-
lems appear; and no spin-1/2 sector arises when the invariant amplitudes are calculated
[29]. Moreover, Pascalutsa and Timmermans [40] claim that DOF counting is the reason
why GI couplings are consistent while the off-shell extension couplings of Nath et al. are
not. They blame the unphysical extra components for the appearance of pathologies.
Both, GI (32) and traditional (27) couplings, provide the same result on-shell (if we
set properly the coupling constants). However, their off-shell behavior is completely
different.

Based on the previous discussion, the P33 Lagrangian that will be used in this
work is

LP33
¼ � h

fpM�
�N�lmkbc

bc5 o
lN �mj

� �
ðokpjÞ

þ 3e
2MðM þM�Þ

�N ig1
~F lm þ g2c

5F lm

� �
o

lN �m3

� �
þHC. ð36Þ

From this Lagrangian it is straightforward to obtain phenomenological Lagrangians for
other spin-3/2 resonances. To obtain the P13 resonance Lagrangian from (36) only an
isospin change is needed

N �aj ! sjN �a; j ¼ 1; 2; 3; ð37Þ

for the strong vertex, and

N �a3 ! N �a; gj ! 1
2

gS
j þ gV

j s3

h i
; j ¼ 1; 2; ð38Þ

for the photon vertex.
Thus, the Lagrangian is

LP13
¼ � h

fpM�
�N�lmkbc

bc5sjðolN �mÞðokpjÞ

þ 3e
4M M þM�ð Þ

�N i gS
1 þ gV

1 s3

� �
~F lm þ gS

2 þ gV
2 s3

� �
c5F lm

� �
olN �mð Þ þHC. ð39Þ

Lagrangians for D33 and D13 resonances are obtained easily from P33 and P13. We only
need to change the parity of the coupling placing an overall c5

LD33
¼ � h

fpM�
�N�lmkbc

b olN �mj

� �
okpj

� �
þ 3e

2MðM þM�Þ
�N ig1

~F lmc5 þ g2F lm

� �
olN �m3

� �
þHC; ð40Þ
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LD13
¼ � h

fpM�
�N�lmkbc

bsjðolN �mÞ o
kpj

� �
þ 3e

4MðM þM�Þ
�N i gS

1 þ gV
1 s3

� �
~F lmc5 þ gS

2 þ gV
2 s3

� �
F lm

� �
ðolN �mÞ þHC. ð41Þ

Although we restrict ourselves to spin-3/2, it is clear that higher spin interactions can be
built within the same theoretical framework. This is left to future works.

3.5. Propagators and widths

With regards to the propagators of the resonances, for a spin-1/2 resonance we use

iGðvÞ ¼ i
þM�

v2 �M�2 þ iM�Cðs; uÞ
; ð42Þ

and for the spin-3/2 propagator we use the Rarita–Schwinger propagator

iGabðvÞ ¼ i
þM�

v2 �M�2 þ iM�Cðs; uÞ
�gab þ

1

3
cacb þ

2

3M�2 vavb �
1

3M� vacb � cavb

� �� �
;

ð43Þ
where v is the resonance four momentum. A phenomenological width C (s,u) is included in
the propagator denominator consistently with what is obtained if we dress it with pions
[54,56].

The energy dependence of the width is chosen phenomenologically as

Cðs; uÞ ¼
X

j

CjX jðs; uÞ; ð44Þ

where j = p,pp,g stands for the different decay channels and

X jðs; uÞ � X jðsÞ þ X jðuÞ � X jðsÞX jðuÞ; ð45Þ

with Xj (l) given by

X jðlÞ ¼ 2
j~kjj
.
j~kj0j

� �2Lþ1

1þ j~kjj
.
j~kj0j

� �2Lþ3
H l� ðM þ mjÞ2
� �

; ð46Þ

where L is the angular momentum of the resonance, H is the Heaviside step function,
and

j~kjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l�M2 � m2

j

� �2 � 4m2
j M2

q 
2
ffiffi
l
p� �

; ð47Þ

with mpp ” 2mp and j~kj0j ¼ j~kjj when l = M*2.
This parametrization has been built in order to fulfill the following conditions:

(i) C = C0 at
ffiffi
s
p ¼ M�,

(ii) C fi 0 when j~kjj ! 0,
(iii) a correct angular momentum barrier at threshold j~kjj2Lþ1,
(iv) crossing symmetry.
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This parametrization of the width is an improvement over the one used in [12] and
includes decays to g and 2p which take into account inelastic channels [9] and condi-
tion (iv). The width contributes to both s and u-channels, so that crossing symmetry is
preserved due to Eq. (45). In [13], the authors made an analysis of the energy depen-
dence of the width. It was concluded that, as long as it provides a decrease of the
width beyond the resonance position, the specific way in which Xj is parametrized is
not so important.

3.6. Form factors

For the numerical calculations we include form factors for Born terms and vector
mesons, to regularize the high-energy behavior of these terms. We choose form factors
as suggested by Davidson and Workman [57] that allow to fulfill gauge invariance and
crossing symmetry. Actually, Xj (s,u) in Eq. (45) also follows this choice. Thus, for
Born terms

F̂ Bðs; u; tÞ ¼ F 1ðsÞ þ F 2ðuÞ þ F 3ðtÞ � F 1ðsÞF 2ðuÞ � F 1ðsÞF 3ðtÞ � F 2ðuÞF 3ðtÞ
þ F 1ðsÞF 2ðuÞF 3ðtÞ; ð48Þ

where

F 1ðsÞ ¼ 1þ s�M2
� �2

=K4
B

h i�1

; ð49Þ

F 2ðuÞ ¼ 1þ u�M2
� �2

=K4
B

h i�1

; ð50Þ

F 3ðtÞ ¼ 1þ t � m2
p

� �2
=K4

B

h i�1

. ð51Þ

For vector mesons we adopt F̂ VðtÞ ¼ F 3ðtÞ with the changes mp fi mV and KB fi KV. In
order to have as few free parameters as possible in the numerical calculations we use
the same K ” KB = KV for both vector mesons and Born terms. For the resonance–
pion–nucleon vertex, the form factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X pðs; uÞ

p
has to be used for consistency with the

width used in the propagator discussed previously.
Models like the ones by Garcilazo and Moya de Guerra [12] and Feuster and

Mosel [13] needed a cutoff in the u-channels of spin-3/2 resonances to obtain a good
description of observables. This cutoff was needed because the high-energy contribu-
tions of these diagrams are not reduced by the denominator of the propagator. In
[12], it was argued that the need of this cutoff could be justified by the two possible
interpretations of the resonance excitation. From an effective field theory point of
view, u-channels should be introduced with their full strength. On the other hand,
if we consider resonances as pure pN rescattering states (Chew–Low description),
the u-channel contributions should be dropped. Hence, the cutoff was interpreted in
[12] as a way to have an interplay between both descriptions. However, in this
way crossing symmetry was broken. Our present model relies entirely on effective field
theory, and we preserve crossing symmetry and there is no need for that cutoff in the
u-channel amplitudes. Ought to the vector coupling to the resonance the u-channel
amplitudes are suppressed by themselves which is a strong point in favor of the
GI coupling.



1420 C. Fernández-Ramı́rez et al. / Annals of Physics 321 (2006) 1408–1456
4. Results

4.1. Study of the parameters of the model

The first choice that has to be made is the nucleon resonances to be taken into account.
We have included seven resonances: D(1232), N(1440), N(1520), N(1535), D(1620),
N(1650), and D(1700) which are all the four star nucleon resonances in PDG up to
1.7 GeV and up to spin-3/2. Among four star resonances only spin-5/2 N(1675) and
N(1680) resonances are left aside for future work.

In a Lagrangian model, the determination of the parameters of a single resonance
is affected by the determination of the parameters of the other resonances. Thus, we
have decided not to include three star resonances because their contribution would be
very small and would introduce a sort of noise in the determination of the
parameters.

There are quite a number of parameters to be set in the model. Some of them are well
known and established independently of the photoproduction data, such as nucleon and
pion masses (M = 938.9175 MeV, mp0 ¼ 134:9766 MeV, mp� ¼ 139:5673 MeV), but some
others have to be established from fits to the pion photoproduction data, namely electro-
magnetic coupling constants. In the forthcoming paragraphs, we give the values of every
parameter of the model as well as the procedures employed to establish them.

4.1.1. Vector meson coupling constants

Vector meson contributions are characterized by 11 parameters: mx, FxNN, Kx, Gxpc,
mq0 , mq� , FqNN, Kq, Gq0pc, Gq�pc, and cutoff K. Masses are given by PDG and the pcV cou-
plings are related to the decay widths CpcV of PDG [30] through the equation

CV!pc ¼
e2G2

V pc

96p
m3

V

m2
p

1� m2
p

m2
V

	 
3

. ð52Þ

We take from PDG the following values: mx = 782.57 MeV, mq0 ¼ 768:5 MeV, mq� ¼
766:5 MeV, Cq0pc ¼ 0:121 MeV ðGq0pc ¼ 0:1161Þ, Cq�pc ¼ 0:068 MeV ðGq�pc ¼ 0:0906Þ,
and Cxpc = 0.70476 MeV (Gxpc = 0.2804). Thus, only five constants remain unknown.
One of them is the cutoff K which will be discussed later. The four remaining constants
are taken from the analysis of nucleon electromagnetic form factors by Mergell et al.
[58]: FqNN = 2.6, Kq = 6.1 ± 0.2, FxNN = 20.86 ± 0.25, and Kx = �0.16 ± 0.01, which
compare well to the data, including the latest experiments at Jefferson Lab [59].

4.1.2. Masses and widths of the nucleon resonances

We have used three different sets of masses and widths of the nucleon resonances
(Table 1): First, the PDG values [30]; second, the multichannel analysis of Vrana et al.
[60]; and third, the speed plot (SP) calculation that we explain below. For the partial decay
widths we have two different sets, one from PDG and one from Vrana et al. which lies
within the PDG error bars. The Vrana et al. set of partial decay widths has been chosen
for the SP calculation.

Masses and widths of nucleon resonances can be obtained from pN partial wave anal-
ysis using the speed plot technique [61]. First, we define the speed by

SP ðW Þ ¼ jdT ðW Þ=dW j; ð53Þ



Table 1
Masses, widths, and branching ratios from [30,60] and from the speed plot calculation (see text)

D(1232) N(1440) N(1520) N(1535) D(1620) N(1650) D(1700)

M�P 1210 1365 1510 1505 1607 1660 1660
M�V 1217 1383 1504 1525 1607 1663 1726
M�SP 1211 1372 1516 1540 1608 1664 1641
CP 100 210 115 170 115 160 200
CV 96 316 112 102 148 240 118
CSP 98 290 48 107 141 159 955
Cp
CP

1.00 0.65 0.55 0.45 0.25 0.72 0.15
Cg

CP
— 0.00 0.00 0.51 — 0.06 —

Cpp
CP

0.00 0.35 0.45 0.04 0.75 0.22 0.85
Cp
CV

1.00 0.72 0.63 0.35 0.45 0.74 0.05
Cg

CV
— 0.00 0.00 0.51 — 0.06 —

Cpp
CV

0.00 0.28 0.37 0.14 0.55 0.20 0.95

Masses and widths in MeV. We have taken Cpp/C = 1 � Cp/C � Cg/C. Subscripts P, V, and SP stand for PDG
[30], Vrana [60], and Speed Plot, respectively. PDG masses and widths are mean values.
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with W ¼ ffiffi
s
p

and

T ðW Þ ¼ 1

2i
½expð2idðW ÞÞ � 1�; ð54Þ

where T (W) is the dimensionless resonance partial wave amplitude and d (W) its phase.
To calculate masses and widths we have taken phases from the current solution of the

SAID pN partial wave analysis [4]. In Fig. 3 we show SP (W) for P33—in the D(1232)
region—and S11 multipoles. The position of the peak provides the pole mass, and the
height provides the width: H = 2/C.

The baryon resonances show up clearly and the calculation is straightforward. The only
problem is related to the existence of a background which induces a phase shift in the pN

phases. In the region of the peak this phase shift can be considered approximately constant
and its effect in SP(W) is negligible.

Our fits to photoproduction data shown in the next subsections are classified according
to six sets of parameters which are given in Table 2. Sets #1 and #4 are based on PDG
values for masses and widths; set #2 and set #4 are based on Vrana et al. [60]; and sets
#3 and #6 are based on the SP calculation.

The strong coupling constants (h’s) of the resonances are obtained from equations in
Appendix B, using the partial decay widths into one pion of the resonances. We choose
all the strong coupling constants to be positive, thus the overall sign of the amplitude
of each resonance depends on the sign of the electromagnetic coupling constants.

4.1.3. Electromagnetic coupling constants of the nucleon resonances

At this point, only the electromagnetic coupling constants and the cutoff K remain
undetermined. The best way to establish them is by fitting to pion photoproduction exper-
imental data. Among all the observables (cross-section, asymmetries, etc.) for pion photo-
production, the set of data we have chosen is the one given by the current SAID multipole
energy-independent solution [2–4]. There are two main reasons for this choice. First, elec-
tromagnetic multipoles are directly related to the amplitudes and are more sensitive to
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Fig. 3. Speed plot examples. Left figure shows the D(1232) speed plot. Right figure shows the speed plot for the
S11 region. Data have been taken from SAID database for pN scattering [4].
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coupling properties than are other observables. Deficiencies in the model show up much
more clearly in multipoles than in any other observable. Second, all the observables can
be expressed in terms of the multipoles, thus, if the multipoles are properly fitted by the
model, so should be the other observables. The explicit expressions for the multipoles in
terms of the amplitudes can be found in Appendix C.

Another issue to take into account is unitarity. Models below the two pion production
threshold fulfill Watson’s theorem [62] to achieve unitarity using either pN scattering phas-
es [9], dynamical models [16–19] or K-matrix [11]. Beyond the two pion production limit,
implementation of unitarity is unclear and usually relies on experimental data and/or
extensions of the methods applied below the two pion threshold.

We would like to note that, although our calculation seems to be at tree-level, it is not
quite so due to the inclusion of the width and the form factors, which take into account
higher-order diagrams and structure effects. If we perform a truly tree-level calcula-
tion—straightforwardly from amplitudes of Appendix A—we would find out that all
the amplitudes are real and that it would be impossible to fulfill the unitarity condition
SS� = 1, where S is the scattering matrix. In an effective Lagrangian perturbative model,
unitarity should be restored by the inclusion of higher-order diagrams. To avoid this
tedious and difficult task, we adopt a phenomenological point of view. The main high-
er-order effects can be taken into account including a width in the propagator, as we do
in Section 3.5 (which amounts to dress the propagator), and including also effective final
state interactions (FSI). Once the width is included, unitarity restoration may be achieved



Table 2
Specifications of the parameter sets

Set #1 #2 #3 #4 #5 #6

Masses and widths PDG Vrana SP PDG Vrana SP
dFSI Yes Yes Yes No No No
v2=v2

PDG 1 0.53 0.60 9.30 5.57 4.56

K 1.121 1.050 1.040 1.494 0.951 0.962

Kq 6.30 6.30 6.30 6.30 5.90 5.90
FxNN 21.11 21.11 21.11 20.61 21.11 21.11
Kx �0.17 �0.17 �0.17 �0.15 �0.17 �0.17

M*[D(1232)] 1.209 1.215 1.209 1.210 1.215 1.209
C[D(1232)] 0.102 0.098 0.100 0.102 0.094 0.099

M*[N(1440)] 1.385 1.381 1.370 1.385 1.381 1.370
C[N(1440)] 0.160 0.318 0.292 0.260 0.314 0.288

M*[N(1520)] 1.505 1.502 1.514 1.505 1.502 1.514
C[N(1520)] 0.110 0.110 0.050 0.110 0.110 0.050

M*[N(1535)] 1.495 1.527 1.542 1.495 1.523 1.538
C[N(1535)] 0.250 0.104 0.109 0.099 0.100 0.109

M*[D(1620)] 1.590 1.605 1.606 1.620 1.605 1.606
C[D(1620)] 0.100 0.150 0.143 0.100 0.150 0.143

M*[N(1650)] 1.680 1.665 1.666 1.640 1.665 1.666
C[N(1650)] 0.150 0.238 0.157 0.150 0.242 0.157

M*[D(1700)] 1.620 1.728 1.639 1.620 1.728 1.639
C[D(1700)] 0.250 0.120 0.957 0.250 0.120 0.957

Masses, widths, and K are in GeV. The coupling constants for the vector mesons are dimensionless. We provide
also the v2=v2

PDG to compare fits.
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through FSI. We can assume that it is possible to isolate the FSI effects factorizing the
multipoles M in the following way:

MI ;‘;P ¼ MI;‘;P
�� �� exp½dwidth�F I ;‘;P; ð55Þ

where FI, ‘,P is a phase factor that takes into account FSI, and ‘ stands for orbital angular
momentum, P for parity, and I for isospin:

F I;‘;P ¼ exp idI;‘;P
FSI

� �
. ð56Þ

Then, the absolute value of the multipoles must be well reproduced by the model and only
the phases of the multipoles remain unknown. We are interested in the bare values of the
coupling constants, so the best choice is to use directly the experimental phases. Hence, the
multipole phase can be written as

dI;‘;P ¼ dwidth þ dI;‘;P
FSI ; ð57Þ

where we call dwidth to the phase given by the calculated amplitudes and comparison with
experimental phase shifts (dI,‘,P) provides us with the unknown final state interaction
phase shifts dI;‘;P

FSI . Phases dI,‘,P are taken from the current energy-dependent multipole
solution of SAID analysis [2–4]. For each set of masses and widths we obtain two types
of fits, one with and one without SAID phases.
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To fit the data and determine the best parameters of the resonances we have written a
genetic algorithm combined with the E04FCF routine from NAG libraries [63]. Although
genetic algorithms are computationally more expensive than other algorithms, in a mini-
mization problem it is much less likely for them to get stuck at local minima than for other
methods, namely gradient-based minimization methods. Thus, in a multiparameter mini-
mization like the one we face here it is probably the best possibility to search for the min-
imum. It is out of the scope of this paper to go through an explanation on genetic
algorithms and details on them can be found elsewhere [64].

The function to minimize the v2 is defined as

v2 ¼
X

j

Mexp
j �Mth

j

� �2

DMexp
j

� �2
; ð58Þ

where Mexp stands for the current energy-independent extraction of the multipole analysis
of SAID up to 1 GeV for E0+, M1�, E1+, M1+, E2�, and M2� multipoles in the three iso-
spin channels I ¼ 3

2
; p; n for the cp fi p0p process. DMexp is the error and Mth is the mul-

tipole given by the model which depends on the parameters. These parameters are the
cutoff K and the electromagnetic coupling constants in Table 3, which are related to the
helicity amplitudes AI

k in Table 4 through equations given in Appendix D.
The minimization procedure applied is as follows: First, the genetic algorithm has been

run and when the convergence conditions were accomplished the E04FCF routine was
used for fine tuning. The program has been run many times with different seeds to ensure
that the minimum was not local. We have taken into account 763 data for the real part of
the multipoles and the same amount for the imaginary part. Thus, 1526 data points have
been used in the fits.

In Tables 2–4 we show results for the six different sets and provide the reader with all
the parameters of the model. Table 2 shows masses and widths, the cutoff K, as well as the
vector meson parameters Kq, FxNN, and Kx, for each set. Table 3 provides all the coupling
constants of the resonances as well as the the E2/M1 Ratio (EMR) of the D(1232) reso-
nance. Table 4 contains the helicity amplitudes of the resonances which can be compared
to those in other references such as [11–13,30].

4.2. Multipole analysis

As has been previously explained, in order to determine the parameters of the resonanc-
es and the cutoff we have used the data for electromagnetic multipoles. In this section, we
discuss the results obtained for multipoles as well as the quality of the different fits.

Lagrangian models like the one presented here are more complicated than Breit–Wigner
models such as MAID [9]. The latter are simple and describe accurately experimental
observables but do not provide much information about properties of the resonances such
as the strength of the couplings. Breit–Wigner treatment of resonances can be considered
naive because each resonance contributes only to the multipole with its same angular
momentum quantum number. In this way, there is no background from resonances, which
is very different from Lagrangian models where, for a given resonance, the direct term con-
tributes only to a single spin–isospin channel, while the crossed term contributes to different
spin–isospin channels as background, and then one resonance does indeed affect the



Table 3
Coupling constants of the resonances

#1 #2 #3 #4 #5 #6

D(1232) P33 h 0.764 0.721 0.757 0.759 0.706 0.753
g1 6.061 5.574 5.630 6.254 5.382 4.984
g2 2.414 1.187 1.123 4.032 7.253 7.696
GE �0.152 �0.076 �0.071 �0.255 �0.466 �0.485
GM 6.213 5.650 5.701 6.509 5.848 5.469
EMR �2.45% �1.35% �1.24% �3.92% �7.97% �8.87%

N(1440) P11 h 0.213 0.304 0.303 0.272 0.302 0.300
gp 0.255 �0.269 �0.247 0.255 �0.164 0.017
gn �0.125 0.273 0.234 �0.125 0.096 �0.128

N(1520) D13 h 0.560 0.567 0.366 0.560 0.567 0.360
gp

1 �5.753 �4.848 �5.607 �5.498 �0.580 �2.348
gn

1 1.217 2.829 1.982 0.301 �1.503 0.105
gp

2 �0.861 �0.645 �0.520 �0.920 �0.986 �0.691
gn

2 1.462 0.960 0.979 1.674 2.731 2.174

N(1535) S11 h 0.132 0.079 0.078 0.083 0.078 0.079
gp 0.219 0.078 0.028 0.435 0.230 0.084
gn �0.102 �0.127 �0.080 �0.164 �0.195 �0.129

D(1620) S31 h 0.133 0.159 0.155 0.126 0.159 0.155
g �0.154 �0.324 �0.308 �0.063 0.008 0.044

N(1650) S11 h 0.102 0.132 0.107 0.110 0.134 0.107
gp 0.113 �0.167 0.025 0.117 0.074 0.127
gn 0.018 0.411 0.324 0.019 0.281 0.056

D(1700) D33 h 0.285 0.149 0.528 0.285 0.149 0.528
g1 �3.513 0.663 �11.875 �3.996 �19.642 �26.531
g2 1.871 0.548 �2.392 2.000 3.701 7.293

The E2/M1 ratio (EMR) of D(1232) is also given. All magnitudes are dimensionless.
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determination of the parameters of other resonances. Contributions from crossed terms to
the background cannot be neglected and there are resonant contributions to several multi-
poles. For instance, N(1520) contributes to Ep;n

2� and Mp;n
2� , as expected for a D13 isobar, but

also contributes strongly to Mp
1þ. Thus, the background of Breit–Wigner models is much

simpler because it only has contributions from Born terms and vector mesons (q and x).
Figs. 4–6 show the comparison of the six different sets of Table 2 to experimental

data from SAID database [4]. Without FSI, at low energies, we get nice fits to some
of the multipoles: M3=2

1þ , E3=2
2� , and Ep

2�. With increasing energy there is a breakdown
of the model which calls for further improvements. The major ingredient that lacks
the model is FSI, which we introduce phenomenologically as described in Section
4.1.3. Indeed, the fits are greatly improved—specially the fits of the imaginary parts
of the multipoles—when FSI are included, as it stems from the comparison of the v2

(Table 2). The experimental data are quite well reproduced by theory with better qual-
ity for the low-energy region than for the high energy (900 MeV and further), where
some of the fits start to diverge (i.e., ImMp

1þ and ImEn
0þ). In this section, we focus

on fits that include FSI, except in the case in which comparison with nonFSI sets pro-
vides relevant information.



Table 4
Helicity amplitudes in GeV�1/2 for the different sets

#1 #2 #3 #4 #5 #6

D(1232) P33 AD
1=2 �0.129 �0.123 �0.123 �0.129 �0.101 �0.090

AD
3=2 �0.247 �0.225 �0.224 �0.263 �0.248 �0.231

N(1440) P11 Ap
1=2 �0.061 0.064 0.058 �0.061 0.039 �0.004

An
1=2 0.030 �0.065 �0.055 0.030 �0.023 0.030

N(1520) D13 Ap
1=2 �0.020 �0.020 �0.034 �0.015 0.027 0.006

An
1=2 �0.050 �0.013 �0.022 �0.068 �0. 121 �0.092

Ap
3=2 0.161 0.129 0.136 0.161 0.095 0.092

An
3=2 �0.128 �0.118 �0.107 �0.128 �0. 190 �0.163

N(1535) S11 Ap
1=2 0.060 0.022 0.008 0.119 0.065 0.024

An
1=2 �0.028 �0.036 �0.023 �0.045 �0. 055 �0.037

D(1620) S31 AD
1=2 0.038 0.081 0.077 0.016 �0.002 �0.011

N(1650) S11 Ap
1=2 0.037 �0.054 0.008 0.037 0.024 0.041

An
1=2 0.006 0.133 0.105 0.006 0.091 0.018

D(1700) D33 AD
1=2 0.109 0.015 0.222 0.119 0.406 0.573

AD
3=2 0.063 0.055 0.057 0.063 �0.156 0.006
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Despite the difference between SP and Vrana et al.’s masses and widths, the curves that
we obtain for sets #2 and #3 are very close to each other (so are their v2, see Table 2),
sometimes undistinguishable, except for some high-order multipoles as ImMp

2�. Curves
from set #1 do not reproduce data as well as #2 and #3 do and the v2 is almost twice
as large due to the additional restrictions in the values of the parameters.

If we go through the multipoles in detail, it is convenient to start with E3=2
1þ and M3=2

1þ
(both in Fig. 4) which provide information about the most important low-lying nucleon
resonance, the D(1232). These multipoles are of great interest at present and a lot of exper-
imental effort has been put in the study of the D(1232) in the last years [6,65]. The M3=2

1þ
presents a quite simple structure which is very well reproduced by all our sets and it is
not affected by FSI. That is why all sets are quite similar. Sets #1, #4, and #5 overestimate
the multipole peaks which will cause an overestimation of the cross-section as will be seen
in Section 4.5. The situation is much more complicated for the E3=2

1þ , where the FSI are crit-
ical, as can be inferred when we compare data to sets with and without FSI and check the
strong differences among them. For these multipoles, data cannot be reproduced well with-
out the inclusion of dFSI. When the latter is included the multipoles show a discontinuity atffiffi

s
p ¼ 1:249 GeV due to an abrupt change in SAID phases at that energy.

An important quantity related to D(1232) is the E2/M1 Ratio (EMR) which is related to
the deformation of the nucleon [6,19,24]. This quantity can be defined as the GE/GM ratio

EMR ¼ GE

GM

¼ � ðMD �MÞg2

2ðMD þMÞg1 þ ðMD �MÞg2

	 100%. ð59Þ

We obtain a negative value for this ratio, which according to [14] corresponds to an oblate
deformation. The values from the most reliable fits (sets #2 and #3) are very similar,
around �1.3%. This result compares well to some other analysis: �1.45% (K-matrix)
[11]; �1.42% (ELA) [12]; �1.43% (ELA) [14]; �2.7% (dynamical model) [17]; �2.09%
(dynamical model) [18]. However, it is quite different from the result recently obtained



-30
-25
-20
-15
-10

-5
0
5

 

R
e[

E
0+3/

2 ]  
(m

F
)

-2
0
2
4
6
8

10

 

Im
[E

0+3/
2 ]  

(m
F

)

-14
-12
-10
-8
-6
-4
-2
0

  

R
e[

M
1-3/

2 ]  
(m

F
) 4

3

2

1

0

  

Im
[M

1-3/
2 ]  

(m
F

)

 

-4
-3
-2
-1
0
1
2
3

  

R
e[

E
1+3/

2 ]  
(m

F
)

-5
-4
-3
-2
-1
0
1
2

  

Im
[E

1+3/
2 ]  

(m
F

)

-20
-10

0
10
20
30

  

R
e[

M
1+3/

2 ]  
(m

F
)

10
20
30
40
50
60

   

Im
[M

1+3/
2 ]  

(m
F

)

-10
-8
-6
-4
-2
0

 

R
e[

E
2-3/

2 ]  
(m

F
)

-7
-6
-5
-4
-3
-2
-1
0

Im
[E

2-3/
2 ]  

(m
F

)

-1.5
-1

-0.5
0

0.5
1

1.5
2

2.5
3

0.0 0.2 0.4 0.6 0.8 1.0

R
e[

M
2-3/

2 ]  
(m

F
)

Eγ (GeV)

-1.5

-0.5

0.5

1.5

2.5

3.5

0.0 0.2 0.4 0.6 0.8 1.0

Im
[M

2-3/
2 ]  

(m
F

)

Eγ (GeV)

Fig. 4. Electromagnetic multipoles for the isospin-3/2 channel. Data have been taken from [4]. Photon energy is
given in the laboratory frame. Curves conventions: thick dotted set #1; thick solid set #2; thick dashed set #3;
thin dotted set #4; thin solid set #5; thin dashed set #6.
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by Pascalutsa and Tjon (EMR = 3.8%) [19] within a dynamical model. This ratio is
discussed in more detail in [66].

The multipoles Mp
1� and Mn

1� are closely related to the N(1440) resonance. If we focus
on sets #2 and #3, when dFSI is included the fits look quite well except for the real part of
the Mn

1� (second figure of the left panel in Fig. 6) where a serious discrepancy between the-
ory and data is found in the 0.2–0.5 GeV energy range. Also, a rather odd behavior in the
Mp

1� is found between 0.3 and 0.4 GeV (see Fig. 5), where no experimental data are
available. For these multipoles related to N(1440) resonance, background and resonant
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contributions are not well established. As a consequence, the parameters of the P11 reso-
nance cannot be well determined. These multipoles also show the importance of FSI in the
model in order to determine the properties of the resonances because of the large discrep-
ancies among fits with and without dFSI. However, if we focus on sets #1 and #4, FSI do
not seem so important if the PDG values are used. Actually, set #4 provides better results
than set #1 except for the high-energy region of ReMp

1� and ReMn
1�. More research on the

properties of this resonance (and of its role in nuclear medium) has to be done in forth-
coming years [1].
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Resonance N(1520) contributes mainly to Ep;n
2� and Mp;n

2� due to its angular
momentum and isospin. It also contributes sizeably to other multipoles. The s-channel
contributes to Mp

1þ and its crossed term to ImM3=2
1� as background. It also has small

contributions to the background of other multipoles. Considering set #2 and multi-
poles Ep;n

2� and Mp;n
2� , the agreement is excellent except where there are few experimental

data. Set #3 overestimates the peak of the resonance in the multipoles and so will do
for the cross-section.
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E3=2;p;n
0þ multipoles get contributions from Born terms and vector mesons mainly.

Resonances N(1535), D(1620), and N(1650) only contribute in the high-energy region,
but in that region they acquire great importance defining the shape of the multipoles.
For example, the cusp peak that shows up in ImEp;n

0þ (Figs. 5 and 6) is due to the structure
of the phenomenological width—Eq. (44)—and to the inclusion of the partial decay width
Cg/C in N(1535) resonance. Multipoles Ep;n

0þ are well reproduced by sets #2 and #3, except
in the high-energy region of ImEn

0þ. The multipole E3=2
0þ (Fig. 4) is not so well reproduced in

the intermediate energy region (0.4–0.8 GeV), with an overestimation of the real part and
an underestimation of the imaginary part. This indicates that the prediction of the model is
correct for the absolute values of the multipoles and that there may be a problem with the
phases.

Only one resonance remains, D(1700), which is associated mainly to multipoles E3=2
2� and

M3=2
2� . As one can see in Fig. 4, when enough data points are available the fits are good, yet

the large ambiguities in the mass and width of this resonance make somewhat unreliable
the determination of its coupling constants and its contribution to the observables (see
Table 3). Further research on the properties of this resonance is necessary.

In Fig. 7, we show two examples of the various contributions to the multipoles using the
coupling constants of set #2. It is clear that, without FSI, the Born terms and vector
mesons do not contribute to the imaginary part of the multipoles and represent a back-
ground—it has to be noticed that when the FSI are included, they do contribute to both
real and imaginary parts of the multipole. Left panel shows the multipole M3=2

1þ , whose
main contribution is the D(1232). In this multipole, FSI are not important and curves
with and without SAID phases differ little. Thus, the phenomenological width included
is enough to describe accurately the multipole and its structure is quite simple.
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However, the situation is different for the multipole Ep
0þ which presents a more complex

structure because its dominant contribution comes from Born terms and vector mesons.
In the absence of FSI, the imaginary part of this multipole is practically zero up to
0.8 GeV. While inclusion of FSI makes Born and vector mesons contribute to the imagi-
nary part too, improving agreement with data.

We have not considered spin-5/2 resonances in the model. This will be required in order
to extend the model to multipoles of higher angular momentum. For the energy range con-
sidered here, their contribution is expected not to be important, although their contribu-
tion to the background could improve the agreement with data.

4.3. Results at threshold energy

Special attention has to be paid to the behavior of the model at low/threshold energy,
because cross-sections and multipoles are well predicted by low-energy theorems (LET)
[67] and chiral perturbation theory (ChPT) [22,23]. Owing to the change in the spin-3/2
coupling scheme, the threshold energy results change substantially when compared to
previous works. In particular, in [12], using the off-shell formalism, it was found that
the contributions from resonances, direct and crossed terms, were of great importance
to explain the reduced cross-section at threshold and the low-energy behavior of the
cross-section. These contributions were specially important in neutral processes, mainly
because of D(1232), and were almost the total contribution to the np0 production channel
[68]. However, in the present calculation we obtain a zero contribution to the reduced
cross-section at threshold from both direct and crossed resonance terms. The reason for
such a change is the spin-3/2 coupling scheme used in the present article, which has no
spurious spin-1/2 sector. The reduced differential cross-section at threshold is proportional
to the E0+ multipole [23] which is a spin-1/2 multipole. Thus, at threshold, any contribu-
tion of the direct channel from spin-3/2 resonances is a contamination which unveils a
pathology in the model. This is the case of models based upon the traditional spin-3/2 for-
malism explained in Section 3.4.1, as the one used in [12]. This result is independent on the
phenomenology of the decay width and on the form factors. Therefore, we conclude that,
at threshold, only Born terms (Fig. 1) and vector mesons (Fig. 2E) contribute, as the spin-
1/2 resonances are at much higher energy. In Table 5, we present results for the reduced
cross-section at threshold for the four different processes and we find a good agreement
with experimental values. Tiny differences are found with various parameter sets
(#1–#6) that use different cutoff K and small variations in the vector meson parameters.
Table 5
Reduced cross-section at threshold q�

k�
dr
dX in lb/sr

Sets #1 #2 #3 #4 #5 #6 Experiment

cp fi pp0 0.0984 0.0998 0.0998 0.0949 0.1023 0.1020 0.094 ± 0.017
cn fi np0 0.0046 0.0045 0.0045 0.0049 0.0044 0.0044
cn fi pp� 18.92 18.93 18.93 18.91 18.95 18.95 20.4 ± 0.7

20.0 ± 0.3
19.7 ± 1.4

cp fi np+ 14.51 14.50 14.50 14.52 14.48 14.49 15.4 ± 0.5
15.6 ± 0.5

Experimental data have been taken from [12].



1432 C. Fernández-Ramı́rez et al. / Annals of Physics 321 (2006) 1408–1456
4.4. Differential cross-sections and asymmetries

In this section, we show results for the differential cross-sections together with results
for five asymmetries: the recoil nucleon polarization, P; the polarized target asymmetry,
T; the polarized beam asymmetry, R; and the double polarization parameters G and H.
Details on the definition of these quantities can be found in [8,34,69]. The asymmetries
are of great interest in the search of missing resonances which do not show up so clearly
in other observables [70]. The formulae which relate the amplitudes with the asymmetries
will be presented in forthcoming paragraphs. We provide the reader with a wide sample of
figures to have a broad outlook of the model compared to data whenever available.

The FSI treatment described in Section 4.1.3 has been applied only to the cp fi p0p pro-
cess. For the other three pion production processes, no FSI phases have been included
because we have no means to determine them from the data available. We calculate the
observables for these processes for the six sets of coupling constants obtained by fitting
cp fi p0p multipoles, given in Tables 2 and 3. Thus, these calculations have no adjustable
parameters. As we shall see in what follows an overall good agreement with data has been
found. As the energy increases, differences among the curves obtained with the different
sets of parameters show up more data favoring the sets of coupling constants obtained
using FSI.

4.4.1. cp fi p0p
Let us first consider the process cp fi p0p, for which the experimental database has been

largely increased in the last 10 years mainly thanks to the experimental programs devel-
oped at Mainz (MAMI) and Brookhaven (LEGS). For this process, the amount of exper-
imental information is much larger than for any other pion photoproduction process.
Even so, the database on asymmetries is not yet large enough and more measurements
are needed to fill in the existing gaps. Figs. 8 and 9 show theoretical curves for the differ-
ential cross-sections compared to experimental data. Differential cross-sections have been
calculated using equations from Section 2 and amplitudes from Appendix A.

Because of parity, among the eight helicity amplitudes, only four of them are
independent

H 1 ¼ A1=2;�1=2;1 ¼ �A�1=2;1=2;�1; ð60Þ
H 2 ¼ A�1=2;�1=2;1 ¼ A1=2;1=2;�1; ð61Þ
H 3 ¼ A1=2;1=2;1 ¼ A�1=2;�1=2;�1; ð62Þ
H 4 ¼ A�1=2;1=2;1 ¼ �A1=2;�1=2;�1. ð63Þ

In terms of these four independent helicity amplitudes (see Section 2 for Ak1;k2;kc defini-
tion), it is possible to define all the physical observables [2]. In particular, the five asym-
metries previously mentioned.

Focusing on sets with dFSI phases, the fits are qualitatively good in the whole energy
region, and even quantitatively so in the range 250–400 MeV. Asymmetries are well pre-
dicted in almost the whole energy range.

In Fig. 10, we provide recoil nucleon polarization asymmetries (P) defined by

rðhÞP ¼ � 1

64p2s�
k�

E�c
Im ½H 2

�H 4 þ H 1
�H 3�; ð64Þ
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where the bar over the helicity amplitudes Hj stands for complex conjugate and r (h) for the
differential cross-section given by Eq. (5). Up to 600 MeV, data are well reproduced by sets
with FSI. Above this energy, data are reproduced qualitatively but not quantitatively.

In Fig. 11, we present polarized target asymmetry (T) given by equation

rðhÞT ¼ 1

64p2s�
k�

E�c
Im ½H 2

�H 1 þ H 4
�H 3�. ð65Þ

Up to 400 MeV the six curves are very similar. For 500 and 580 MeV, the sets with phases
provide good results and the sets without phases do not. The high-energy region (700 and
800 MeV) is not well reproduced in general.

Polarized beam asymmetry (R) is well predicted in the whole energy range by sets with
FSI (Fig. 12). Even sets without FSI provide good results except in the very high energy
region (800 MeV). Helicity amplitudes are related to R through

rðhÞR ¼ 1

64p2s�
k�

E�c
Re ½H 2

�H 3 � H 1
�H 4�. ð66Þ

In short, compared to data, good agreement is obtained for energies below 800 MeV.
Beyond that energy some observables (e.g., R) are also reasonably well described.

In the energy region considered here there are no experimental data on the other two
asymmetries G and H. These asymmetries are expressed in terms of helicity amplitudes
by means of the following equations:

rðhÞG ¼ � 1

64p2s�
k�

E�c
Im ½H 2

�H 3 þ H 1
�H 4�; ð67Þ
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Fig. 11. Polarized target asymmetry of the cp fi p0p reaction. Experimental data are within the range
Ec ± 3 MeV. Same conventions as in Fig. 10.
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rðhÞH ¼ � 1

64p2s�
k�

E�c
Im ½H 2

�H 4 þ H 3
�H 1�. ð68Þ

We have also calculated these asymmetries and our results are presented in Figs. 13 and 14.
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4.4.2. cn fi p0n

The situation for the cn fi p0n process is quite different from the previous case.
The amount of experimental information is very small: No asymmetry data are
available and the differential cross-section data are scant. In Fig. 15, we show dif-
ferential cross-sections and in Figs. 16–20 the predicted asymmetries (P, T, R, G,
and H, respectively) obtained with sets of parameters. There is a reasonable agree-
ment with data, and sets #1 and #4 (PDG values) provide the best results
globally.

4.4.3. Charged pion production

In the next paragraphs we go in detail through the predicted differential cross-sections
and asymmetries for charged pion processes, and compare them to available data
(Figs. 21–32).

cp fi p+n differential cross-sections (Fig. 21) are well predicted by the model in the
whole energy range by all parameter sets. In the high-energy regime (two last figures of
the panels) differential cross-sections are not well predicted by any of the parameter
sets in the forward scattering region, with the exception of set #1 (PDG with dFSI)
which provides an impressively good agreement. For the P asymmetry (Fig. 22) all
curves are alike and reproduce data correctly up to 400 MeV. As the energy is
increased, sets #1 and #4 (PDG values) provide the best results. The T asymmetry
is qualitatively well predicted, but quantitative agreement is only achieved up to
500 MeV (Fig. 23). Sets with and without FSI provide a good agreement with data
for the R asymmetry (Fig. 24). Only in the last figure of the panel (700 MeV) we
observe different qualitative behaviors from one set of constants to another. Data
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Fig. 13. G asymmetry of the cp fi p0p reaction. Same conventions as in Fig. 10.
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Fig. 15. Differential cross-section of the cn fi p0n reaction. Experimental data are within the range Ec ± 5 MeV.
Same conventions as in Fig. 8.
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Fig. 14. H asymmetry of the cp fi p0p reaction. Same conventions as in Fig. 10.
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are scant and not reliable for G and H asymmetries. As in previous asymmetries, in the
low-energy regime all the curves are alike, but as energy is increased their predictions
become quite different.
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Fig. 16. Recoil nucleon polarization of the cn fi p0n. Same conventions as in Fig. 10.

-0.8

-0.4

0.0

0.4

0.8

  

T

Eγ=200 MeV

-0.8

-0.4

0.0

0.4

0.8

  

T

Eγ=300 MeV

-0.8

-0.4

0.0

0.4

0.8

  

T

Eγ=400 MeV

-0.8

-0.4

0.0

0.4

0.8

  

T

Eγ=500 MeV

-0.8

-0.4

0.0

0.4

0.8

20 40 60 80 100 120 140 160 180

T

θ (degrees)

Eγ=600 MeV

-0.8

-0.4

0.0

0.4

0.8

20 40 60 80 100 120 140 160 180

T

θ (degrees)

Eγ=700 MeV

Fig. 17. Polarized target asymmetry of the cn fi p0n reaction. Same conventions as in Fig. 10.
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Differential cross-section data for the reaction cp fi p�p are well predicted by the
sets with FSI (#1, #2, and #3). All the curves are similar for the P asymmetry
(Fig. 28) and are close to data. Overall agreement is good for the T asymmetry
(Fig. 29). This agreement becomes excellent for the highest energy (Ec = 802 MeV) if
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Fig. 19. G asymmetry of the cn fi p0n reaction. Same conventions as in Fig. 10.
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Fig. 18. Photon beam asymmetry of the cn fi p0n reaction. Same conventions as in Fig. 10.
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we consider only curves #2 and #3. R asymmetry (Fig. 30) is very well predicted by
curves #2 and #3 in the whole energy range. All predictions are qualitatively quite
similar for the G and H asymmetries (Figs. 31 and 32) except for Ec = 800 MeV, where
large differences are found.
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Fig. 20. H asymmetry of the cn fi p0n reaction. Same conventions as in Fig. 10.
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Fig. 21. Differential cross-section of the cp fi p+n reaction. Experimental data are within the range Ec ± 5 MeV.
Same conventions as in Fig. 8.
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The model works quite well for processes with charged pion. So, this is remarkable if we
take into account that no dFSI have been included, and indicates that FSI are not as impor-
tant in the studied energy region, for charged pions as they are for neutral pion channels.
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Fig. 22. Recoil nucleon polarization of the cp fi p+n reaction. Experimental data are within the range
Ec ± 3 MeV. Same conventions as in Fig. 10.
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Fig. 23. Polarized target asymmetry of the cp fi p+n reaction. Experimental data are within the range
Ec ± 4 MeV. Same conventions as in Fig. 10.
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Quantitatively, the model provides satisfactory results nearly in the whole energy range
and in almost every observable. Even in the cases where good quantitative result is not
achieved, at least the qualitative behavior of data is well reproduced (i.e., Figs. 21 and 23).
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Fig. 24. Photon beam asymmetry of the cp fi p+n reaction. Experimental data are within the range Ec ± 4 MeV.
Same conventions as in Fig. 10.
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Fig. 25. G asymmetry of the cp fi p+n reaction. Experimental data are within the range Ec ± 3 MeV. Same
conventions as in Fig. 10.
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4.5. Cross-sections

Finally, in Fig. 33 we present results for the total cross-sections compared to available
experimental data. The two upper figures show the total cross-section for charged pion
channels and the two lower are for neutral pion photoproduction.
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Fig. 26. H asymmetry of the cp fi p+n reaction. Experimental data are within the range Ec ± 3 MeV. Same
conventions as in Fig. 10.
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Same conventions as in Fig. 8.
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It is interesting to notice how some of the observed effects in the multipoles show up in
the cross-sections. For example, sets #1, #4, and #5 overestimate the first resonance
region due to the overestimation of M3=2

1þ peak. On the other hand, set #4 presents a cusp
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Fig. 28. Recoil nucleon polarization of the cp fi p�p reaction. Experimental data are within the range
Ec ± 1 MeV. Same conventions as in Fig. 10.
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Fig. 29. Polarized target asymmetry of the cp fi p�p reaction. Experimental data are within the range
Ec ± 5 MeV. Same conventions as in Fig. 10.
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peak in multipole ImEp
0þ, that also shows up in the cross-section, specially so in the p+n

channel. The high-energy behavior is well regularized. Nevertheless, it has to be considered
that we do not take into account resonances D15 and F15 which may change the shape of
the cross-section in the second resonance region.



-0.8

-0.4

0.0

0.4

0.8

Σ
Eγ=300 MeV

-0.8

-0.4

0.0

0.4

0.8

Σ

Eγ=400 MeV

-0.8

-0.4

0.0

0.4

0.8

Σ

Eγ=500 MeV

-0.8

-0.4

0.0

0.4

0.8

Σ

Eγ=630 MeV

-0.8

-0.4

0.0

0.4

0.8

20 40 60 80 100 120 140 160 180

Σ

θ (degrees)

Eγ=710 MeV

-0.8

-0.4

0.0

0.4

0.8

20 40 60 80 100 120 140 160 180

Σ

θ (degrees)

Eγ=790 MeV

Fig. 30. Photon beam asymmetry of the cp fi p�p reaction. Experimental data are within the range Ec ± 1 MeV.
Same conventions as in Fig. 10.
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Fig. 31. G asymmetry of the cp fi p�p reaction. Same conventions as in Fig. 10.
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The low-energy behavior of the charged processes is quite well reproduced by all the
sets of parameters. Actually, curves obtained with coupling constants from sets #1 and
#2 agree quite well with data in almost the whole energy range. Other sets do not provide
good results: sets #5 and #6 overestimate greatly the second resonance region for p�p
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channel, and set #4 does the same in p+n channel. Overestimation of the second resonance
region by set #3 is due to the overestimation of multipoles related to resonance N(1520).

Concerning the cn fi p0n channel we found several differences among sets either in the
region of the first or in the region of the second resonance. As no data are available for p0n
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total cross-sections, we rely on results on differential cross-section to infere that: up to
400 MeV, sets #2 and #3 may provide a good estimation of the total cross-section; and
that beyond that energy, there may be probably an underestimation of the total cross-
section.

In summary, we conclude that set #2 is the most reliable one because it provides
the best results when all data are considered globally. We weigh that this is so,
regardless of the fact that other sets may provide better fits to individual cases. For
instance, set #6 provides the best fit to p0p total cross-section and set #1 is very good
for charged pion channels. As a matter of fact, set #2 has the lowest v2 for the elec-
tromagnetic multipoles. With this set the only deviations from experimental data in
the total cross-section are the slight underestimation of p+n and p0p processes beyond
400 MeV.

5. Summary and final remarks

We have elaborated on a pion photoproduction model which is based on an Effective
Lagrangian Approach (ELA) and is guided by Weinberg’s theorem, fulfilling chiral sym-
metry, gauge invariance, and crossing symmetry. We have included Born terms, q and x
mesons exchange, and seven nucleon resonances: D(1232), N(1440), N(1520), N(1535),
D(1620), N(1650), and D(1700). Under these premises, the model is independent of the
underlying subnuclear physics (quarks, gluons), which is embedded in the parameters of
the model, such as coupling constants, masses, and widths.

With respect to former models along similar lines, this is the first one that covers all the
well-established spin-1/2 and spin-3/2 resonances up to 1.7 GeV and, at the same time, ful-
fills gauge invariance as well as chiral and crossing symmetries. Crossing symmetry could
not be achieved in previous models such as the one of [12] due, among other things, to
pathologies of former spin-3/2 Lagrangians. This problem is fixed in the present work by:

(a) the use of a spin-3/2 Lagrangian due to Pascalutsa that contains no spurious spin-1/2
components in the direct channel,

(b) the use of consistent, energy-dependent, strong couplings and widths, as well as form
factors.

One of the goals of this paper is to establish a reliable set of parameters for the model. In
addition to the cutoff K—which is related to short-distance effects and can be considered as
the only free parameter of the model—we adjust electromagnetic coupling constants of the
nucleon resonances within the usually accepted ranges. The determination of the param-
eters has been performed by fit to the experimental cp fi p0p multipoles, through a min-
imization procedure. In the minimization we have considered three different sets of
masses and widths:

(a) Masses and widths taken from PDG with electromagnetic coupling constants within
the PDG error bars.

(b) Masses and widths taken from the multichannel analysis of Vrana et al. [60] with
electromagnetic coupling constants considered as free parameters.

(c) Masses and widths obtained by means of a speed plot calculation with the electro-
magnetic coupling constants considered as free parameters.



1448 C. Fernández-Ramı́rez et al. / Annals of Physics 321 (2006) 1408–1456
On the other hand, we have considered final state interactions (FSI) phenomenological-
ly by adding an extra phase to the cp fi p0p multipoles, in order to match the current ener-
gy-dependent solution of SAID phases [4]. In all, we have derived six sets of parameters,
one with and one without FSI for each of the abovementioned sets of masses and widths:

(a) Sets #1 and #4.
(b) Sets #2 and #5.
(c) Sets #3 and #6.

Electromagnetic multipoles for cp fi p0p are globally well reproduced by sets #1, #2,
and #3 that include FSI. The fits without FSI (#4, #5, and #6) are also good in the
low-energy regime. Other experimental observables are surveyed such as differential
cross-section, asymmetries, and total cross-sections. At threshold we find good agreement
with experimental data. In our model almost all the contribution at threshold comes from
Born terms at variance with results in [12].

For charged pion production, where we have no adjustable parameters, the agreement is
remarkably good for almost all the observables. We note that FSI phases obtained for the
cp fi p0p process are not applicable to charged pion production. Thus, no FSI phases have
been included in these charged pion photoproduction calculations. The fact that we get good
agreement with data indicates that FSI are small in cp fi p+n and cn fi p�p.

Although all the parameter sets are reasonable, we favor set #2 because of its lowest v2 to
the multipole data and its better agreement with the total cross-sections for all processes. Set
#3, which also has a low v2, is very similar to set #2 and also yields similar helicity amplitudes
for all the resonances except for D(1700). This resonance is poorly known and more precise
information would be necessary. A better experimental knowledge of multipole M3=2

2� would
improve the determination of the properties of D(1700) resonance. Similarly, better knowl-
edge of the Mp

1� multipole would help to establish more reliably properties of N(1440).
For the future, it would be interesting to analyze contributions from spin-5/2 nucleon

resonances. Although they are not essential to the multipoles considered here, they may
contribute to the background and their effect can be sizeable in the second resonance
region of the total cross-section and asymmetries. The incorporation of the spin-5/2 reso-
nances will require to take into account higher-order multipoles in the analysis. The inclu-
sion of other resonances not considered here (three stars in PDG and missing resonances)
could also improve the fits in some energy regions, but it is difficult to perform a reliable
determination of the parameters without the aid of other physical processes where their
contribution would be more sizeable.

The results obtained here are encouraging and stimulate the application of this model
to other processes such as pion electroproduction, two pion production in nucleons and
nuclei, as well as electro- and photoproduction of other mesons.
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Appendix A. Invariant amplitudes

In this appendix, we show all the invariant amplitudes needed for the calculations in the
isospin decomposition and the notation for kinematics of Section 2. We name v to the four
momentum of the exchanged particle in each diagram.

A.1. Born amplitudes

• s-channel (diagram A in Fig. 1)

A0
s ¼ �

ef pN

2mp
�uðp0Þ c5

þM

s�M2
F S

1 �
F S

2

2M
Aacabqb

� �
uðpÞ; ðA:1Þ

A�s ¼ Aþs ¼ A0
s F S

1 ! F V
1 ; F

S
2 ! F V

2

� �
. ðA:2Þ

• u-channel (diagram B in Fig. 1)

A0
u ¼ �

ef pN

2mp
�uðp0Þ F S

1 �
F S

2

2M
Aacabqb

� �
þM

u�M2
c5uðpÞ; ðA:3Þ

Aþu ¼ �A�u ¼ A0
u F S

1 ! F V
1 ; F

S
2 ! F V

2

� �
. ðA:4Þ

• t-channel (diagram C in Fig. 1)

A�t ¼ �eF V
1

fpN

mp
�uðp0ÞA � ðvþ kÞ

t � m2
p

c5uðpÞ. ðA:5Þ

• Kroll–Rudermann (contact) term (diagram D in Fig. 1)

A�KR ¼ eF V
1

fpN

mp
�uðp0Þ c5uðpÞ. ðA:6Þ
A.2. Vector meson amplitudes

• q meson (diagram F in Fig. 2)

A0
q ¼ �ie

GqpcF qNN

mp
�uðp0Þ �rkmlqrkmAkgal

t � m2
q

ca þ
Kq

2M
cabvb

� �
uðpÞ. ðA:7Þ

• x meson (diagram F in Fig. 2)

Aþx ¼ �ie
GxpcF xNN

mp
�uðp0Þ �rkmlqrkmAkgal

t � m2
x

ca þ
Kx

2M
cabvb

� �
uðpÞ. ðA:8Þ
A.3. S11 resonance amplitudes

• s-channel

A0
s;S11
¼ egSh

2Mf p

�uðp0Þ GðvÞAlclmq
mc5uðpÞ; ðA:9Þ



1450 C. Fernández-Ramı́rez et al. / Annals of Physics 321 (2006) 1408–1456
Aþs;S11
¼ A�s;S11

¼ A0
s;S11
ðgS ! gVÞ. ðA:10Þ

• u-channel

A0
u;S11
¼ � egSh

2Mf p

�uðp0ÞAlclmq
mc5GðvÞ uðpÞ; ðA:11Þ

Aþu;S11
¼ �A�u;S11

¼ A0
u;S11
ðgS ! gVÞ. ðA:12Þ
A.4. S31 resonance amplitudes

• s-channel
Aþs;S31
¼ �2A�s;S31

¼ 2

3

egh
Mf p

�uðp0Þ GðvÞAlclmq
mc5uðpÞ; ðA:13Þ

• u-channel
Aþu;S31
¼ 2A�u;S31

¼ � 2

3

egh
Mf p

�uðp0ÞAlclmq
mc5GðvÞ uðpÞ. ðA:14Þ
A.5. P11 resonance amplitudes

• s-channel
A0
s;P11
¼ egSh

2Mf p

�uðp0Þ c5GðvÞAlclmq
muðpÞ; ðA:15Þ

Aþs;P11
¼ A�s;P11

¼ A0
s;P11
ðgS ! gVÞ. ðA:16Þ

• u-channel
A0
u;P11
¼ egSh

2Mf p

�uðp0ÞAlclmq
mGðvÞ c5uðpÞ; ðA:17Þ

Aþu;P11
¼ �A�u;P11

¼ A0
u;P11
ðgS ! gVÞ. ðA:18Þ
A.6. P33 resonance amplitudes

• s-channel
Aþs;P33
¼� 2A�s;P33

¼ �ihe
fpM�M M� þMð Þ �uðp

0Þ�lmkbvlkkcbc5GmaðvÞ

	 ig1�xaq/vxqqA/ þ g2c
5ðv � qAa � v � AqaÞ

� �
uðpÞ. ðA:19Þ

• u-channel
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Aþu;P33
¼ 2A�u;P33

¼ ihe
fpM�MðM� þMÞ �uðp

0Þ

	 ig1�lmabvlqaAb þ g2c
5ðv � qAm � v � AqmÞ

� �
Gm/ðvÞ�x/kqvxkkcqc5uðpÞ. ðA:20Þ
A.7. D33 resonance amplitudes

• s-channel

Aþs;D33
¼� 2A�s;D33

¼ ihe
fpMM�ðM þM�Þ �uðp

0Þ�lmkbvlkkcbGkaðvÞ

	 ig1�xaq/vxqqA/c5 þ g2ðv � qAa � v � AqaÞ
� �

uðpÞ. ðA:21Þ

• u-channel

Aþu;D33
¼ 2A�u;D33

¼ ieh
fpMM�ðM þM�Þ �uðp

0Þ

	 ig1�lmabqavlAbc5 þ g2ðv � qAm � v � AqmÞ
� �

GmkðvÞ�xkq/vxkqc/uðpÞ. ðA:22Þ
A.8. D13 resonance amplitudes

• s-channel

A0
s;D13
¼ 3ihe

4f pMM �ðM þM�Þ �uðp
0Þ�lmkbvlkkcbGkaðvÞ

	 igS
1�xaq/vxqqA/c5 þ gS

2ðv � qAa � v � AqaÞ
� �

uðpÞ; ðA:23Þ

Aþs;D13
¼ A�s;D13

¼ A0
s;D13

gS
1;2 ! gV

1;2

� �
. ðA:24Þ

• u-channel

A0
u;D13
¼ 3ieh

4f pMM�ðM þM�Þ �uðp
0Þ

	 igS
1�lmabqavlAbc5 þ gS

2ðv � qAm � v � AqmÞ
� �

GmkðvÞ�xkq/vxkqc/uðpÞ; ðA:25Þ

Aþu;D13
¼ �A�u;D13

¼ A0
u;D13

gS
1;2 ! gV

1;2

� �
. ðA:26Þ
Appendix B. Decay widths

The coupling constants at the strong vertices are related to the decay widths of the
resonances. Given the following kinematical definitions

k� ¼ 1

2M� ðM�2 �M2 � m2
pÞ

2 � 4m2
pM2

h i1
2

; ðB:1Þ

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2 þ m2

p

q
; ðB:2Þ

EN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2 þM2

p
; ðB:3Þ

the decay widths related to the resonance Lagrangians of Section 3 are
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CS11
p ¼ 3

k�h2

2pM�f 2
p

EpðEN þMÞ þ k�2
� �2

2ðEN þMÞ ; ðB:4Þ

CS31
p ¼

k�h2

2pM�f 2
p

EpðEN þMÞ þ k�2
� �2

2ðEN þMÞ ; ðB:5Þ

CP11
p ¼ 3

k�3h2

2pM�f 2
p

ðEN þM þ EpÞ2

2ðEN þMÞ ; ðB:6Þ

CP33
p ¼

h2

3pf 2
p

k�3

M� ðEN þMÞ; ðB:7Þ

CD33
p ¼ h2

3pf 2
p

k�5

M�
1

EN þM
; ðB:8Þ

CD13
p ¼ h2

pf 2
p

k�5

M�
1

EN þM
. ðB:9Þ
Appendix C. Electromagnetic multipoles

The starting point for multipole analysis is to define the helicity spinors in the c.m.
reference system for incoming,

uðpÞk¼
1
2 ¼ ffiffiffi

q
p

0

1

0

f

2
66664

3
77775; uðpÞk¼�

1
2 ¼ ffiffiffi

q
p

1

0

�f

0

2
66664

3
77775; ðC:1Þ

and outgoing nucleons,

�uðp0Þk¼
1
2 ¼

ffiffiffiffi
q0

p
� sin

h
2
; cos

h
2
; f0 sin

h
2
;�f0 cos

h
2

� �
; ðC:2Þ

�uðp0Þk¼�
1
2 ¼

ffiffiffiffi
q0

p
cos

h
2
; sin

h
2
; f0 cos

h
2
; f0 sin

h
2

� �
; ðC:3Þ

where q = E* + M, q 0 = E
0
* + M, f ¼ q�

q , and f0 ¼ k�

q0 .
All formulae in this and forthcoming appendices are in c.m. reference system and with

this spinors definition.
To build up the multipoles it is convenient to change the isospin basis from (A0,A+,A�)

to (A3/2, pA1/2, nA1/2). Both bases are related by means of

A3=2 ¼ Aþ � A�; ðC:4Þ

pA1=2 ¼ 1
3
Aþ þ 2

3
A� þ A0; ðC:5Þ

nA1=2 ¼ �1
3
Aþ � 2

3
A� þ A0. ðC:6Þ

Defining k = kc � k1, initial helicity state along the photon, and l = �k2, final helicity
state along the pion, the spin and isospin projection of amplitudes can be written as
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HI ;j
klðW Þ ¼

1

8W p

Z 1

�1

dðcos hÞdj
klðhÞAI

klðh;W Þ; ðC:7Þ

where W ¼
ffiffiffiffi
s�
p

, j is the spin of the resonance, and dj
klðhÞ are Wigner d-functions with the

conventions of [30]. The lowest-order multipole amplitudes are [2,8,71]:

EI
0þ ¼

ffiffiffi
2
p

4
H I ;1=2

1=2;1=2 þ HI ;1=2
1=2;�1=2

h i
; ðC:8Þ

MI
1� ¼ �

ffiffiffi
2
p

4
H I;1=2

1=2;1=2 � H I ;1=2
1=2;�1=2

h i
; ðC:9Þ

EI
1þ ¼

ffiffiffi
2
p

8
H I;3=2

1=2;1=2 þ HI ;3=2
1=2;�1=2

� �
� 1ffiffiffi

3
p HI ;3=2

3=2;1=2 þ H I;3=2
3=2;�1=2

� �� �
; ðC:10Þ

MI
1þ ¼

ffiffiffi
2
p

8
H I ;3=2

1=2;1=2 þ H I;3=2
1=2;�1=2

� �
þ

ffiffiffi
3
p

HI ;3=2
3=2;1=2 þ H I;3=2

3=2;�1=2

� �h i
; ðC:11Þ

EI
2� ¼

ffiffiffi
2
p

8
H I;3=2

1=2;1=2 � H I ;3=2
1=2;�1=2

� �
þ

ffiffiffi
3
p

H I;3=2
3=2;1=2 � HI ;3=2

3=2;�1=2

� �h i
; ðC:12Þ

MI
2� ¼ �

ffiffiffi
2
p

8
HI ;3=2

1=2;1=2 � H I;3=2
1=2;�1=2

� �
� 1ffiffiffi

3
p H I;3=2

3=2;1=2 � HI ;3=2
3=2;�1=2

� �� �
. ðC:13Þ
Appendix D. Experimental helicity amplitudes

In this appendix we present the connection between our amplitudes and the helicity
amplitudes of the resonances as they are found in [30] to relate the coupling constants
to the usual partial wave analyses. To perform this connection the isospin decomposition
(AD,Ap,An) is needed instead of the one in Section 2. Both are related in the following
way

AD ¼
ffiffiffi
2

3

r
ðAþ � A�Þ; ðD:1Þ

Ap ¼ � 1ffiffiffi
3
p ðAþ þ 2A� þ 3A0Þ; ðD:2Þ

An ¼ 1ffiffiffi
3
p ðAþ þ 2A� � 3A0Þ. ðD:3Þ

And the helicity amplitudes are given by [12,72]

AI
kdj

klðhÞ ¼
i

8pð2jþ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2jþ 1Þ 2p

s�
k�

q�
M�

M
C2

Cp

s
AI

k1k2kc
; ðD:4Þ

where k, l, j, and dj
klðhÞ have the same meaning as in Appendix C; C is the total decay width

and Cp the pion–nucleon decay width of the resonance as defined in Appendix B. k* and q* are
the pion and the photon momenta in the c.m. system. We define the kinematical coefficients

q� ¼ M�2 �M2

2M� ; ðD:5Þ
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n ¼ q�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�2 þM2

p
þM

; ðD:6Þ

T ¼ 1

4

M�

MðM þM�Þ
q�ffiffiffiffiffiffiffi
Mn
p ; ðD:7Þ

to obtain finally the following results:

• Resonance S11

Ap;n
1=2ðS11Þ ¼

1ffiffiffi
2
p egp;n

M

ffiffiffiffiffi
n
M

r
ðM þM�Þ. ðD:8Þ

• Resonance S31

AD
1=2ðS31Þ ¼ �

1ffiffiffi
3
p eg

M

ffiffiffiffiffi
n
M

r
ðM þM�Þ. ðD:9Þ

• Resonance P11

Ap;n
1=2ðP11Þ ¼ �

1ffiffiffi
2
p egp;n

M

ffiffiffiffiffi
n
M

r
ðM þM�Þ. ðD:10Þ

• Resonance P33

AD
1=2ðP33Þ ¼ �eT

ffiffiffi
1

2

r
½g1 � ng2�; ðD:11Þ

AD
3=2ðP33Þ ¼ �eT

ffiffiffi
3

2

r
½g1 þ ng2�. ðD:12Þ

• Resonance D33

AD
1=2ðD33Þ ¼ eT

ffiffiffi
2
p

2
½g2 � ng1�; ðD:13Þ

AD
3=2ðD33Þ ¼ eT

ffiffiffi
3

2

r
½g2 þ ng1�. ðD:14Þ

• Resonance D13

Ap;n
1=2ðD13Þ ¼ �eT

3

2
ffiffiffi
3
p gp;n

2 � ngp;n
1½ �; ðD:15Þ

Ap;n
3=2ðD13Þ ¼ �eT

3

2
gp;n

2 þ ngp;n
1½ �. ðD:16Þ
References

[1] B. Krusche, S. Schadmand, Prog. Part. Nucl. Phys. 51 (2003) 399–485.
[2] R.A. Arndt, R.L. Workman, Z. Li, L.D. Roper, Phys. Rev. C 42 (1990) 1853–1863.



C. Fernández-Ramı́rez et al. / Annals of Physics 321 (2006) 1408–1456 1455
[3] R.A. Arndt, I.I. Strakovsky, R.L. Workman, Phys. Rev. C 53 (1996) 430–440;
R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman, Phys. Rev. C 66 (2002) 055213.

[4] R.A. Arndt, W.J. Briscoe, R.L. Workman, I.I. Strakovsky, SAID database. <http://gwdac.phys.gwu.edu/>.
[5] A. Shafi et al., Phys. Rev. C 70 (2004) 035204.
[6] G. Blanpied et al., Phys. Rev. C 64 (2001) 025203.
[7] C. Molinari et al., Phys. Lett. B 371 (1996) 181–185;

J. Peise et al., Phys. Lett. B 384 (1996) 37–42;
R. Beck et al., Phys. Rev. Lett. 78 (1997) 606–609;
F. Wissmann et al., Nucl. Phys. A 660 (1999) 232–245;
B. Krusche et al., Eur. Phys. J. A 22 (2004) 277–291.

[8] R.L. Walker, Phys. Rev. 182 (1969) 1729–1748.
[9] D. Drechsel, O. Hanstein, S.S. Kamalov, L. Tiator, Nucl. Phys. A 645 (1999) 145–174, <http://

www.kph.uni-mainz.de/MAID//>.
[10] M.G. Olsson, Nucl. Phys. B 78 (1974) 55–76;

M.G. Olsson, E.T. Osypowski, Phys. Rev. D 17 (1978) 174–184.
[11] R.M. Davidson, N.C. Mukhopadhyay, R.S. Wittman, Phys. Rev. D 43 (1991) 71–94.
[12] H. Garcilazo, E. Moya de Guerra, Nucl. Phys. A 562 (1993) 521–568.
[13] T. Feuster, U. Mosel, Nucl. Phys. A 612 (1997) 375–390.
[14] M. Vanderhaeghen, K. Heyde, J. Ryckebusch, M. Waroquier, Nucl. Phys. A 595 (1995) 219–258.
[15] O. Scholten, A.Yu. Korchin, V. Pascalutsa, D. Van Neck, Phys. Lett. B 384 (1996) 13–19.
[16] S. Nozawa, B. Blankleider, T.-S.H. Lee, Nucl. Phys. A 513 (1990) 459–510.
[17] T. Sato, T.-S.H. Lee, Phys. Rev. C 54 (1996) 2660–2684;

T. Sato, T.-S.H. Lee, Phys. Rev. C 63 (2001) 055201.
[18] M.G. Fuda, H. Alharbi, Phys. Rev. C 68 (2003) 064002.
[19] V. Pascalutsa, J.A. Tjon, Phys. Rev. C 70 (2004) 035209.
[20] I.G. Aznauryan, Phys. Rev. C 67 (2003) 015209.
[21] Z.-P. Li, H.-X. Ye, M.-H. Lu, Phys. Rev. C 56 (1997) 1099–1113;

Q. Zhao, J.S. Al-Khalili, Z.-P. Li, R.L. Workman, Phys. Rev. C 65 (2002) 065204.
[22] V. Bernard, N. Kaiser, U.-G. Meißner, Int. J. Mod. Phys. E 4 (1995) 193–344.
[23] V. Bernard, N. Kaiser, U.-G. Meißner, Nucl. Phys. B 383 (1992) 442–496.
[24] A.W. Thomas, W. Weise, The Structure of the Nucleon, Wiley-VCH, Berlin, 2001.
[25] H. Garcilazo, E. Moya de Guerra, Phys. Rev. C 49 (1994) R601–R604;

H. Garcilazo, E. Moya de Guerra, Phys. Rev. C 52 (1995) 49–60.
[26] S. Karataglidis, C. Benhold, Phys. Rev. Lett. 80 (1998) 1614–1617.
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