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Abstract
Small animal PET scanners require high spatial resolution and good sensitivity.
To reconstruct high-resolution images in 3D-PET, iterative methods, such as
OSEM, are superior to analytical reconstruction algorithms, although their
high computational cost is still a serious drawback. The higher performance
of modern computers could make iterative image reconstruction fast enough
to be viable, provided we are able to deal with the large number of
probability coefficients for the system response matrix in high-resolution PET
scanners, which is a difficult task that prevents the algorithms from reaching
peak computing performance. Considering all possible axial and in-plane
symmetries, as well as certain quasi-symmetries, we have been able to reduce
the memory requirements to store the system response matrix (SRM) well
below 1 GB, which allows us to keep the whole response matrix of the system
inside RAM of ordinary industry-standard computers, so that the reconstruction
algorithm can achieve near peak performance. The elements of the SRM are
stored as cubic spline profiles and matched to voxel size during reconstruction.
In this way, the advantages of ‘on-the-fly’ calculation and of fully stored SRM
are combined. The on-the-fly part of the calculation (matching the profile
functions to voxel size) of the SRM accounts for 10–30% of the reconstruction
time, depending on the number of voxels chosen. We tested our approach with
real data from a commercial small animal PET scanner. The results (image
quality and reconstruction time) show that the proposed technique is a feasible
solution.

1. Introduction

There is a strong demand for fast and accurate reconstruction procedures for high-resolution,
high-sensitivity PET scanners. These systems, typically used in small animal PET studies,

0031-9155/06/184547+19$30.00 © 2006 IOP Publishing Ltd Printed in the UK 4547

http://dx.doi.org/10.1088/0031-9155/51/18/007
mailto:jose@nuc2.fis.ucm.es
http://stacks.iop.org/PMB/51/4547


4548 J L Herraiz et al

are designed with the goal of optimizing spatial resolution while maintaining good detection
sensitivity. They consist of several pairs of opposite scintillation detectors, each of which is
coupled to an array of small crystals arranged in a static ring or in a rotating device. The
detector ring diameter and the size of the field of view (FOV) are usually less than 20 cm.
Since spatial resolutions in the range of 1 mm are required, these detectors employ many small
crystals, thus leading to a very large number of lines of response (LORs), defined by every
possible pair of crystals. Moreover, 3D acquisitions (and reconstructions) are mandatory due
to sensitivity requirements.

Statistical 3D reconstruction methods such as expectation maximization (EM) (Shepp
and Vardi 1982, Browne and De Pierro 1996) have shown superior image quality than
conventional analytic reconstruction techniques. Moreover, EM has some desirable properties
such as conservation of the number of counts, non-negativity, good linearity and dynamic
range. One of the key advantages of statistical reconstructions is the ability to incorporate
accurate models of the PET acquisition process through the use of the system response matrix
(SRM). However, SRM for 3D systems are of the order of several billions of elements, which
imposes serious demands for statistical iterative methods in terms of the time required to
complete the reconstruction procedure and the computer memory needed for the storage of the
SRM. We have designed, developed, implemented and tested a new EM-based reconstruction
methodology that provides fast reconstructions while remaining very flexible. With our
approach, the usual difficulties of iterative reconstruction methods regarding the large size of
the SRM or the use of unrealistic estimates of it are overcome by means of a compressed
and realistic SRM. The efficiency of the proposed method relies on the design and method
of storing this SRM. The imaging process of obtaining the y(i) counts on each of the i
pair of detectors, from an object discretized in x(j) voxels, can be described by the operation
y(i) = ∑

j A(i, j)x(j), where A(i, j) is the SRM, the vector x(j) corresponds to the voxelized
image and y(i) to the measured data. Each element A(i, j) is defined as the probability of
detecting an annihilation event coming from image voxel j by a detector pair i. This probability
depends on factors such as the solid angle subtended by the voxel to the detector element, the
attenuation and scatter in the source volume and the detector response characteristics.

The forward projection operation just introduced above estimates the projection data from
a given activity distribution of the source. Backward projection is the transposed operation of
forward projection; it estimates a source volume distribution of activity from the projection
data. The operation corresponds to b(j) = ∑

i A(i, j)y(i), where b(j) denotes an element of
the backward projection image. Both the forward and backward projection operations require
the knowledge of the SRM (Frese et al 2003, Rafecas et al 2004). Iterative reconstruction
algorithms repeatedly use the forward and backward projection operations, which are the
most time-consuming parts of iterative reconstruction programs. Some implementations trade
accuracy for speed by making approximations that neglect some physical processes, such as
positron range, scatter and fractional energy collection at the scintillators or visible light loses
in the detectors (Vaquero et al 2004, Lee et al 2000, Yamaga and Murayama 2002–2003).
This approach simplifies these operations to increase speed, but this trade-off often leads to
non-optimal images.

The evaluation and storage of SRM elements is a very active subject of research. Ideally,
the SRM could be calculated, using MC methods (Rafecas et al 2004) or from empirical data
(Frese et al 2003), and stored once and for all before the beginning of the reconstruction
process. In practice, memory requirements for doing this have become prohibitive so far.
A number of methods have been proposed to compute and handle huge sparse matrices like
the SRM. Some implementations compute the elements A(i, j) on the fly, only if and when
they are required (Kudrolli et al 2002), thus avoiding the need to store the whole SRM.
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Table 1. Vista parameters.

Ring diameter 11.8 cm
Aperture 8 cm
Axial FOV 4.8 cm
Number of DOI detector modules 36 position-sensitive PMTs
Number of dual-scintillator DOI elements 6084
Crystal array pitch 1.55 mm
Total number of crystals 12 168
Total number of 3D coincidence lines 28.8 × 106

In other approaches, the SRM has been factorized as a product of independent contributions:
geometry, attenuation and detector sensitivity (Qi et al 1998). The simplifications required by
on-the-fly or factorized calculations often overlook important effects (Lee et al 2004).

Due to the fact that the SRM is very large but sparse, it may be kept on disk by using
sophisticated storage schemes and taking advantage of system symmetries (Johnson and Sofer
1999b) to reduce the size of the SRM to a few tenths of gigabytes. Due to the fact that
accessing the SRM from disk for every forward and backward projection operation is very
slow, this considerably slows down the reconstruction. Our approach involves compressing
the SRM to the extent that enables its allocation in the RAM memory of industry-standard
computers, avoiding disk access during reconstruction. In this way, it is possible to achieve
a sustained performance of around 50% of the theoretical peak computing capability of the
processors.

2. System response matrix (SRM)

The SRM is composed of all the V × L probability elements A(i, j), i = 1, . . . , L, j =
1, . . . , V , representing the probability of detecting an event coming from voxel V (j) at detector
LOR (line of response) L(i). Forward and backward projections require the knowledge of all
of these elements. This matrix depends on factors such as the physics of beta decay, attenuation
and scatter in the source volume, solid angle subtended from voxel to detector element and
intrinsic detector response characteristics. For a reconstruction method to be accurate, all these
effects should be considered. The equipment used in this study is an eXplore Vista-DR (GE)
small animal PET scanner (Vaquero et al 2004). It is a ring-type scanner with a diameter of
11.8 cm, a transverse field of view (FOV) of 6.8 cm and an axial FOV of 4.6 cm.
Vista technology is based on scintillator detector modules with depth-of-interaction (DOI)
capabilities (Lee et al 2000) arranged in single (SR) or double rings (DR). The detector modules
are composed of a 13 × 13 crystal array with 1.55 mm pitch size. The number of LORs in
this scanner is over 2.8×107 (see table 1). DOI determination enables spatial resolution and
sensitivity to be improved simultaneously (Yamaga and Murayama 2002–2003).

From the data of table 1 and at nominal image resolution of 175 × 175 × 62 voxels (near
1.9 millions of voxels), the number of elements in the SRM (number of LORs × number of
voxels) is of the order of 5 × 1013. Storing all the elements of the SRM would require more
than 10 TB (Rafecas et al 2004). This exceeds the resources of any ordinary workstation,
making it necessary to disregard all redundant elements and to perform approximations in
order to be able to store the SRM in the limited amount of RAM of ordinary workstations.
Three techniques have been used to achieve this goal: null or almost-null element removal
(matrix sparseness), intensive use of system symmetries and compression of the resulting
SRM employing quasi-symmetries.
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2.1. Matrix sparseness

Every detector pair can receive coincidence counts only from a relatively small portion of
the FOV. Thus, most matrix elements of the SRM are null and only the non-zero elements
should be stored, reducing considerably the storage requirements. To estimate how many
non-zero elements of the SRM have to be taken into account, we proceed as follows: the
voxels connected to a given LOR (that is, the voxels from which positron decay can produce
with non-negligible probability a valid coincidence count in the detectors that define the
LOR) constitute the so-called channel of response or CHOR (Michel et al 2000) for that
LOR. Extensive simulations determine the maximum size of the CHOR needed and only the
SRM elements that are part of some CHOR are stored. We consider a voxel not connected to
a LOR (i.e., not being part of the CHOR) if the probability that a positron emitted from that
voxel yields a count in the corresponding detector pair is smaller than one-thousandth of the
maximum value of all the voxels for such given CHOR. For the scanner considered here we
use a nominal number of voxels of 175 × 175 × 62 in XYZ to cover the FOV. This yields
a voxel size of 0.38 × 0.38 × 0.76 mm3 (see table 1) and an average number of voxels in a
CHOR of about 6000 for a typical CHOR size of 150 (longitudinal) × 10 (transverse width
of the CHOR in the transaxial XY plane of the scanner) × 4 (transverse width in the axial
or Z direction scanner) voxels (Johnson and Sofer 1999b). With these choices, the number of
non-zero elements of the SRM is then 28.8 × 106 LORs × 6000 connected voxels on average
or 1011 elements. That is, only around 0.2% of the elements of the SRM are non-zero. Yet,
storing these non-zero elements as floats (4 bytes per SRM element) will require about 600 GB
of disk space, still too high for the current RAM amount of industry-standard computers.

2.2. System symmetries

An additional reduction factor of approximately 40 in the number of non-null SRM elements
that needed to be stored can be achieved by assuming that (exact) axial (translation and
reflection) and in-plane symmetries exist (Johnson and Sofer 1999b). Voxels were chosen in
an orthogonal grid oriented along X, Y and Z-axis, with Z being the axis of the scanner. If an
integer number of voxels is employed for the width of the CHOR in the Z-axis, then there is a
Z-translation symmetry, due to the fact that voxels in the same relative position of the CHOR
and belonging to parallel CHORs should have equal values (see figure 1).

We must however note that although our SRM exhibits indeed this translational symmetry,
in real scanners, due to edge and block effects, it is only an approximate symmetry.

There is also another axial symmetry, Z-reflection symmetry. Using both parallel and
reflection Z-symmetries, the number of elements to be stored is reduced considerably. Each pair
of blocks has (2×13×13)×(2×13×13) LORs, but using symmetries, only 2×13×(2×13×13)

need to be stored. A factor 13 of reduction in the space needed is achieved.
Another symmetry, reflection symmetry among blocks in the XY plane, also holds. Using

this, the number of pairs of detectors that have CHORs with different values is reduced by a
factor of 3. Using them all, as we have already mentioned, these symmetries allow to reduce
by a factor or near 40 the number of different elements of the SRM that must be stored. Storage
needs can thus be reduced to a few (slightly less than 10, for the scanner we consider here)
GB, small enough to fit in hard disks, yet too much to be maintained in RAM.

2.3. Compressed SRM

The last step of the method we propose here uses additional non-exact symmetries, or quasi-
symmetries, in order to obtain additional reduction of the SRM. If we allow for relatively
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Figure 1. Schematic drawing of a Vista small animal PET scanner detector pair, showing the
(exact) translation and reflection symmetries employed in this work. All the elements of the SRM
belonging to parallel LORs are, by symmetry, equivalent.

small differences between quasi-symmetric elements of the SRM (versus no difference
a priori in the case of the exact symmetries), we can group certain LORs into sets of the same
quasi-symmetry class. The differences between the elements of the SRM for LORs belonging
to a given class should be much smaller than between LORs from different classes. Quasi-
symmetry classes can be obtained, for instance, by grouping together LORs from crystals
with different, but close, LOR-crystal orientations. The differences among the elements of
the same quasi-symmetry class are about 5–10%, depending on the amount of compression
(reduction in size) desired.

In figures 2–4, we illustrate this procedure with an example taken from our simulations.
MC events were generated at different positions inside a CHOR. As shown in figure 2, LORs
1–3 are parallel or almost parallel to the crystals and thus the probability values along these
three CHORs should be very similar. Analogously, LORs 4–6 have a large LOR-crystal angle,
similar for the three of them. In figure 3, longitudinal profiles along these LORs are shown.
We can see indeed that the results of the MC simulations for the calculation of the probabilities
for LORs 1–3 (and 4–6), shown by the data points (that include statistical error bars), are very
similar. We could even say that these are the same within the error bars. In figure 4, now the
profiles of the CHORs along the transverse direction to the LORs (s-coordinate) are shown at
several values of the l-coordinate. As in the case of the longitudinal profiles, we can see that
the results of the simulated data for the near equivalent LORs 1–3 or 4–6 are very similar. Also
we realize that the variation of probability inside a CHOR is smooth, which allows us to fit the
simulated points to profiles with an smooth interpolating cubic spline. The differences among
the results of the interpolating curves for LORs 1–3 are marginal and the three interpolating
curves could be considered identical within the statistical error bars of the MC points. A
similar observation can be made for CHORs 4–6. Our quasi-symmetry assumption means
that we will employ the same profile functions for CHORs 1–3 that belong to the same quasi-
symmetry class. CHORs 4–6 belong to another quasi-symmetry class and be represented by
one set of profile functions, different from those of the other quasi-symmetry classes.

Depending on the geometry of the system, the use of quasi-exact symmetries allows us
to obtain a number of quasi-equivalent LOR classes (that is, CHORs with non-equivalent
values) which may be 9 (in the example so far discussed) to 25 (for up to five different
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Figure 2. Schematic representation of several lines of response (LOR) considered for the discussion
on quasi-symmetries. Three LORs (numbered 1–3 from top to bottom) with a small relative LOR-
crystal angle and three (numbered 4–6, also from top to bottom) with large relative LOR-crystal
angle are depicted. l and s are the coordinates along the LOR direction and normal to it, respectively.

LOR-crystal angles in the same quasi-symmetry class, allowing for larger differences among
the profiles within the same quasi-symmetry class) times smaller than the number of classes
obtained with only exact symmetries. The elements of this notably reduced SRM are encoded
as transverse and longitudinal profile functions obtained by cubic spline interpolation of MC
sampled points. For each transversal or longitudinal profile, MC estimates of probability at
20 points along or across the CHORs are employed to determine the cubic spline profile
functions. At reconstruction time, the probability element of the SRM corresponding to
each voxel inside a CHOR is obtained by interpolation of the profile functions. If the voxel
size chosen is large, we average several values interpolated from the profile functions at
different points inside the voxel, in order to compute the probability for each voxel. The
interpolation and averaging of probability inside each voxel from profile functions is compared
with the results of averaging of points obtained directly from the MC simulations. From these
comparisons, we conclude that for a number of voxels above or below a factor of 3 of the
nominal number of voxels of 175 × 175 × 62 the interpolation procedure differs typically by
less than 5% from the results of direct MC simulation in the example shown in figures 2–4
(three different LOR-crystal angles) and by less than 10% for larger quasi-symmetry class
(five different LOR-crystal angles).

In short, the same quasi-equivalent profiles can be used to build the non-zero SRM
elements for a reasonable range of voxel sizes. The optimal voxel size that should be
employed for each reconstruction may be different depending for instance on the number
of counts of a particular acquisition. This profile function approach makes it possible to
generate reconstructions with different voxel sizes without the need to recompute the SRM
elements. Eventually, this process leads to a compressed SRM that fits in 30–150 MB,
depending on the degree of quasi-symmetry assumed.

To end this section on compressing the SRM, we comment on the storing strategy that is
also useful to save space. All the cubic spline coefficients for the profiles of a quasi-symmetry
class (or superCHOR) are rescaled in order to convert (and store) them as integer values. Two
bytes are employed to represent every coefficient, which allows us to represent ratios of more
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Figure 3. Longitudinal profile of the probability elements for the LORs shown in figure 2. The
probability of detection of a coincidence count in LORs 1–6 per every positron decay in the axis
of the CHOR as a function of the distance to the centre of the CHOR is shown. The data points
represent the results for the MC simulation described in the text, the error bars are given by the
statistical uncertainty. Symbols employed are as follows: 1, plus (+) sign; 2, times (×) sign; 3, star
(*) sign; 4, empty square; 5, solid square; 6, empty circle. Profiles fitted to the points by means of
cubic splines are also shown. The small crystal-LOR angle (1–3) profiles are very similar among
them, but rather different from the large crystal-LOR angle ones (4–6).

than 60 000 to 1 inside the same CHOR. The scale factors (maximum and minimum values
of the coefficients for all the profiles in each superCHOR) are also recorded as two additional
floating numbers. During reconstruction, the integer values are converted into the adequate
float ones on the fly. The FOV is divided in voxels arranged in an orthogonal grid. For a
given CHOR, voxels are visited from bottom to top, left to right and back to front directions.
Every voxel in the superCHOR is visited in order and the SRM element corresponding to
that voxel–LOR combination is obtained by interpolation of the cubic spline profiles. Then,
the superCHOR values are stored as a list of numbers formed by the probabilities of each
voxel of the superCHOR visited in the assumed order. Once the superCHOR is obtained
(decompressed) on the fly, all the operations (forward or backward projections) that involve
the CHORs in the quasi-symmetry class are performed.

2.4. MC simulation

Given the fact that the compressed SRM fits in RAM, it does not need to be computed
during reconstruction, nor read from disk once loaded in memory at the beginning of the
reconstruction. Thus, the SRM can be computed using a very realistic model and stored once
and for all. Monte Carlo (MC) methods are, in principle, well suited to provide realistic
estimates of SRM elements. In our case, we use our own MC model that includes scatter and
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Figure 4. Transverse profiles of LORs 1–6 of figure 2. Data points and curves as in figure 3.
Several profiles at different distances l to the centre of the LOR are shown. The transversal width
of the CHORs as shown in the figures is around 4 mm or three crystal widths.

incomplete collection of energy in the scintillator crystals, positron range and non-collinearity
effects. Positron range is dependent on the object. In order to incorporate its effect in the
SRM, in our simulations the range is computed assuming that water uniformly fills the whole
FOV. Most importantly, we also include the scatter of gamma photons when they reach the
scintillator crystals. The comparison of simulated phantoms with actual acquisitions reveals
that the simulation is very realistic indeed.

A large number of simulated events are accumulated until the statistical uncertainty is
below 5% at the centre of a typical LOR. Several weeks of computing time were required for
the calculation of the SRM in a cluster composed of 12 industry-standard workstations. The
total time employed for the full MC simulation is equivalent to 180 days of a single Pentium
IV 3.0 GHz workstation.

3. Iterative image reconstruction algorithms

To test the accuracy of the compressed SRM we have obtained, we use one of the most widely
applied algorithm for finding the maximum-likelihood (ML) estimation of activity x given the
projections y, that is expectation maximization (EM). This was first applied to the emission
tomography problem by Shepp and Vardi (1982). ML, though, is a general statistical method,
formulated as a method of solving many different optimization problems.

Usually, iterative algorithms obtained from the ML statistical model assume that the
data being reconstructed retain Poisson statistics. However, to preserve the Poisson statistical
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nature of data it is necessary not to perform any pre-corrections (Qi et al 1998). Corrections for
randoms, scatter and any other effects should be incorporated into the reconstruction procedure
itself, rather than being applied as pre-corrections. At times, sophisticated rebinning strategies
are employed to build sinograms into radial and angular sets, which changes the statistical
distribution of the data, which may no longer be Poisson like (Kadrmas 2004). Furthermore,
much attention must be paid in order that sinogram rebinning does not cause a loss in the
potential accuracy of the reconstruction. Our approach does not involve sinograms in any way,
thus preserving all the information obtained during the acquisition. Uncorrected data, binned
into raw 3D-LOR histograms, should maintain Poisson statistics (Kadrmas 2004).

A serious disadvantage of the EM procedure is its slow convergence (Lewitt and Matej
2003). This is due to the fact that the image is updated only after a full iteration is finished,
which implies that all the LORs have been projected and back projected at least once. In the
ordered subset EM (OSEM) algorithm, proposed by Hudson and Larkin (1994), the image is
updated more often, which has been shown to reduce the number of necessary iterations to
achieve a convergence equivalent to that of EM.

According to the literature, EM methods have another important drawback: noisy images
are obtained from over-iterated reconstructions, and this is usually attributed to either the fact
that there is no stopping rule in this kind of iterative reconstruction or to the statistical (noisy)
nature of the detection process and reconstruction method (Bettinardi et al 2002, Biemond et al
1990). In practice, however, an image of reasonable quality is obtained after a few iterations.

Several techniques have been proposed to address the issue of the noisy nature of the
data: filtering the image either after completion of the reconstruction, during iterations or
between them (Slijpen and Beekman 1999), removal of noise from the data using wavelet-
based methods (Mair et al 1996) or smoothing the image with Gaussian kernels (Sieves
method) (Snyder et al 1987, Liow and Strother 1991).

Maximum a priori (MAP) algorithms are also widely used (Green 1990). MAP adds
a priori information during the reconstruction process, the typical assumption being that due
to the inherent finite resolution of the system the reconstructed image should not have abrupt
edges. Thus, MAP methods apply a penalty function to those voxels which differ too much
from their neighbours. Whether the maximum effective resolution achievable is limited, or
even reduced, by the use of these methods is still an open issue. On the other hand, a proper
choice of the reconstruction parameters, such as the number of iterations, the use of an adequate
system response and a smart choice of subsetting, allows high quality images to be obtained
by the EM procedure.

We implemented an OSEM algorithm that includes the possibility of MAP by means of
a generalized one-step late MAP-OSEM algorithm, similar to the one described in Lewitt and
Matej (2003) and Kadrmas (2004):

xn,s+1(j) = xn,s(j)




∑
i∈Subset S A(i, j)

y(i)

(Rn
i +Si )∑

i∈Subset S A(i, j) (1 + Penalty(j, n))


 (1)

where the parameters and functions are defined as follows: x(j) is the activity of voxel j

(j = 1, maximum voxel number V ), xn,s(j) is the expected value of voxel j at iteration n
and subiteration s, A(i, j) is the probability that a photon emitted from voxel j is detected at
LOR i, y(i) is the projection from the object measured at LOR i (experimental data), Si is the
object scatter and random coincidences at LOR i, Penalty(j, n) is the penalty value at voxel j

and iteration n,Rn
i is the projection estimated for the image reconstructed at iteration n:

Rn
i =

Maximum voxel number∑
j=1

A(i, j)xn(j). (2)
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This MAP-OSEM algorithm can be considered as a generalization of the ML–EM. It
incorporates a penalty MAP function which can be chosen in different ways (Stayman and
Fessler 2001, Yu and Fessler 2002, Nuyts and Fessler 2003), and scatter and random counts’
estimates that may require additional modelling of these processes. OSEM reconstruction
without MAP regularization is obtained by setting the penalty function to zero. We note,
however, that in this work we are mostly interested in the way we compress the SRM and not
in the effect of MAP on the image quality, and thus all the reconstructed images we present
are obtained with zero penalty.

With regard to the number of iterations and subsets, we have found that reconstruction
with 25 + 25 + 50 subsets exhibit a good compromise between resolution and reconstruction
time. Thus, all the reconstructions presented in this work are obtained with three iterations of
25, 25 and 50 subsets (25 + 25 + 50), respectively.

The effect of scatter inside the object in 3D acquisitions of small animal has been studied
recently (Yang et al 2004, Yongfeng Yang 2006). It has been measured as a non-negligible
fraction of recorded events coming from scatter. An accurate modelling of scatter at the object
during reconstruction may improve image quality. In this work, scatter inside the object has
been estimated assuming an isotropic and homogeneous scatter distribution.

With regard to attenuation, as it is a relatively minor effect for small animal PET (Yao
et al 2005) and our main aim is to test the adequacy of our compressed SRM and not the
importance of attenuation, we have not included it in the reconstructed images shown.

4. Simulation results

4.1. Test set

To test our methodology, we first reconstructed data from different simulated phantoms:
uniform cylinders and point sources in different axial and transaxial positions and simulated
microresolution and Defrise phantoms. In order to study the linearity of the reconstruction
method as well as the conservation of the number of counts and noise properties, a ‘spiral
phantom’ was designed (figures 7–8). It is comprised of three cylinders (background) of
11.5 mm in diameter, each with two spirals inside: a hot one (activity four times greater than
the background) and a cold one (activity four times lower than the background). The diameter
of these spiral shape cylinders are 1.4, 2.2 and 2.6 mm. Events were generated from these
test sets using our own MC method, taking into account positron range and non-collinearity
effects. Neither attenuation nor scatter within the object were included for these simulations.
The response of the detector was also realistically simulated considering the main physical
effects contributing to the spread of the energy among crystals due to scatter in the scintillators.
For each study, 10 billion events were simulated and stored as projection data. We realized
that the realistic model of detector response resulted in wider CHORs, which contained many
more voxels than when more simplistic models of the system response are used. The images
reconstructed from these simulations have a resolution of 175 × 175 × 62 voxels. The size of
the phantoms and the images were chosen to be the same as the FOV of the eXplore Vista-DR
(GE), namely 65 mm in diameter. Thus, the voxel size is 0.38 × 0.38 × 0.78 mm3.

4.2. Evaluation

Initial tests were run to verify that the compressed SRM and the uncompressed SRM yielded
images of similar quality and with no artefacts (see figure 5). We will comment in more detail
on the effect of compression in the SRM in the reconstructed images in the next section.

In a second step, an estimate of the point spread function (PSF) was obtained by using a
phantom consisting of an array of small sources located at different radial and axial positions
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Figure 5. Reconstructions with different degree of quasi-symmetry assumptions. Transaxial slices
of a 25 + 25 + 50 3D-OSEM reconstruction of a cold Derenzo phantom (1 mCi of 68Ge, 90 min
acquisition time) are shown at the top panel. Left slice is obtained without quasi-symmetries. The
centre one has been reconstructed using the quasi-symmetries explained in figures 2–4. With this
degree of quasi-symmetry, differences of less than 5% inside superCHORs are found. The right
slice has been obtained with a higher degree of quasi-symmetries (and compression), meaning
up to 10% of difference of the profiles inside a superCHOR. At the bottom panel, the activity
profile against the distance (in mm) from the centre of the line drawn in the slices is shown.
Small differences in the activity profile begin to be visible at the highest level of quasi-symmetry.
Horizontal scale in mm. Darker grey in the figure corresponds to larger activity values.

Table 2. Spatial resolution.

Measured R = 0 mm R = 25 mm
Radial 0.7 mm 0.9 mm
Tangential 0.7 mm 0.9 mm

Simulated (MC) R = 0 mm R = 25 mm
Radial 0.6 mm 0.8 mm
Tangential 0.6 mm 0.8 mm

and separated by 5 mm. Resolution obtained from reconstructions of simulated projections
as well as from real phantoms are shown in table 2, revealing that submillimetre resolution
can be obtained from real projections. As shown in the figures and summarized in table 2,
very uniform values of resolution (as measured by FWHM) throughout the FOV of 0.7 mm
(at centre of the scanner) to 0.9 mm (2.5 cm off axis) were obtained.

These results of resolution can also be observed with the microresolution phantom
reconstruction displayed in figure 6, where the uniform resolution, almost constant along
the radial direction, can be observed.

With regard to linearity, figures 7 and 8 show an spiral phantom and the reconstructed
(OSEM) image after three iterations of 25 + 25 + 50 subsets. Note the very linear response
exhibited by the reconstructed image: the hot spiral to background and background to cold
spiral activity ratios are preserved after reconstruction.
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Figure 6. Microresolution phantom, Data Spectrum Co., Hillsborough, NC. Top: image
reconstructed from real measured projections and from projections obtained after a simulation.
Transversal and sagittal views. Rod diameters: 1.2, 1.6, 2.4, 3.2, 4.0 and 4.8 mm. Separation =
twice diameter. Bottom: transverse line profile of the measured microresolution phantom along
the arrow indicated in the figure is shown.

5. Evaluation of the effect of compression

To study the effect of the quasi-symmetries we have implemented, we have chosen a 90 min
acquisition of a cold Derenzo phantom of 1 mCi activity of 68Ge. In figure 5, we show a
slice of the phantom reconstructed after three 3D-OSEM iterations of 25 + 25 + 50 subsets
where the SRM was dealt for in three ways. (a) Without making use of the quasi-symmetries.
(b) With the quasi-symmetries explained in previous sections, and quasi-symmetry classes
(superCHORs) built from profiles that typically differ by less than 5%. This allows for a
reduction in a factor of approximately 9 in the size of the SRM that needs to be stored. (c)
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Figure 7. (a) Spiral phantom and (b) 3D representation of a transverse section of the original spiral
phantom. Z-axis represents counts. (c) 3D representation of the OSEM-3D reconstructed image
after three iterations (25 + 25 + 50 subsets). The three large cylinders are 11.5 mm in size, and
there are two small ones inside each large cylinder, a hot one, with activity four times larger than
the average on the large cylinder, and a cold one, with activity four times smaller than the average
one. Small cylinders are 1.4, 2.2 and 2.6 mm in diameter.

Figure 8. Profiles across the spiral phantom study showing the activity distribution: phantom
(solid line), OSEM reconstruction (dots) (25+25+50 subsets). Voxel size is 0.38 (X)×0.38 (Y )×
0.78 (Z) mm3.

With a larger degree of compression, which allows for a reduction factor in size of the SRM of
approximately 25, with superCHORs that represent profiles that differ approximately by less
than 10%. In the bottom part of the figure we show the activity profiles along the lines indicated
in each slice of the upper part of the figure. While the activity profile of the reconstruction
obtained without quasi-symmetry (solid line) and the one of the reconstruction obtained with
moderate compression (labelled QS 5%, medium dashed line) are hardly distinguishable, the
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Figure 9. Single bed study of the head of a 185 g rat. 35 min intake of 1 mCi of FDG and
60 min scan acquisition in an eXplore Vista (GE) drT PET scanner. 3D-OSEM with three
iterations of 25 + 25 + 50 subsets was employed.

reconstruction obtained with the most compressed SRM (labelled QS 10%, short dashed line)
begins to deviate slightly from the uncompressed result.

Apart from this figure where we have studied the effect of quasi-symmetries, in the
remaining of this work we have employed the moderate amount of quasi-symmetries, which
implies for the Vista drT scanner an SRM size of 150 MB.

6. Results from small animal data

Our reconstruction software was also tested on real mice data. 18F and FDG mice whole-
body projections were acquired with a Vista (GE) drT PET scanner (Vaquero et al 2004).
Figures 9 and 10 show the reconstructed images obtained using the 3D-OSEM algorithm with
3 iterations of 25 + 25 + 50 subsets. The number of voxels is 175 × 175 × 62 for the rat head
depicted in figure 9 and 175×175×168 for the whole body (three beds) mice of figure 10. In
all cases, the voxel size is 0.38 × 0.38 × 0.78 mm3. As indicated by the study from phantoms
and simulated data, submillimetric details can be observed in the images of the mice and the
rat head. In the rat head, cortex, spinal cord and olfactory bulb are easily identified. For the
mice results, the fluorine image clearly shows small details such as ribs and spinal bones, and
the small bones in the front legs. The FDG image shows the usual accumulation of activity at
the mouse urinary bladder, but no artefacts are produced in its vicinity.

7. Performance analysis

7.1. Optimization techniques during 3D-OSEM reconstruction

Considering all the strategies described previously, we implemented an accelerated version
of OSEM that can optionally incorporate a penalty function in the reconstruction process
(MAP-OSEM). The number of subsets in each iteration can be chosen freely in between
1 and 100, not limited by system symmetries. Subsetting strategies require that all the subsets
have CHORs evenly distributed along the FOV. In order to achieve this, we pick superCHORs
in random order and assign them consecutively to each subset. As all the CHORS belonging
to the a superCHOR lie within the same subset, we can take advantage of symmetries and
quasi-symmetries to speed up decompression of the SRM, because every CHOR needs to be
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Figure 10. Reconstructed images of (a) 18F and (b) FDG mouse study acquired with an eXplore
Vista (GE) drT PET scanner. A three-bed scan of a 25 g mouse, with 5 min scan acquisition per
bed, four slices overlap between beds, 45 min uptake of 250 µCi of FDG (right) or 18F (left).
3D-OSEM with three iterations of 25 + 25 + 50 subsets were employed in both cases.

decompressed once and only once during each iteration. Subsets are thus chosen so that they
include all members of a quasi-symmetry class. From 1 to 100 subsets, there are plenty of
choices to build the subsets that fulfil this requirement of including all the members of the
classes comprised in a subset. We just chose symmetry classes in each subset at random.
Beyond 100 subsets, however, problems arise because every subset will then include too few
symmetry classes.

Always keeping in mind flexibility as a goal of design, the number of subsets as well
as the number and size of voxels or the size of the FOV employed can be changed at any
time during reconstruction, even before full iterations are completed. In this way, we can try
different sizes of voxel, number of subsets and iterations and look for the best combination
in terms of speed, quality of the reconstruction or both. For instance, during the first stages
of reconstruction, when only the low frequencies (gross details) of the image are recovered,
the use of a high number of voxels is a waste of computer power. The number of voxels
employed to represent the image may be increased as the high frequency components of the
reconstructed image begin to appear. This strategy has been described in detail in Raheja
et al (1999) and it has been named multiresolution. We note that the images and execution
times quoted in present work have been obtained without resorting to this feature.

With regard to reconstruction times, a full iteration of an acquisition covering the whole
axial FOV (that is, an acquisition of ‘one bed’ or 175 × 175 × 62 voxels) typically takes
30 min using 1 CPU (Opteron 244, 1800 GHz, 2 GB RAM). Thus 90 min are needed for
the single-bed, three-iteration reconstructions shown in figure 9 of this work in a single-CPU
computer. For larger animal like rats that span a length larger than the axial FOV of 4.8 cm,
the bed that supports the animal is displaced during acquisition and thus several scans
(bed positions) are acquired consecutively in order to cover the whole body. More axial slices
will be acquired and reconstruction time will be increased proportionally to the size of the
axial FOV.

Reconstruction time scales approximately with the product of the number of LORs
(2.9 × 107) and the number of voxels in a LOR (on average 6000 for the standard resolution
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employed of 175 × 175 × 62 voxels). Without compression, a similar reconstruction needs
to access above 3 GB worth of SRM elements from disk for every subset, which slows downs
the reconstruction by a factor of 10–50, depending on disk speed and network activity.

The reduction of the storage needs for the SRM allows us to keep it in RAM. The code is
implemented in a way that no disk I/O is needed in order to forward and backward project.
The SRM is read at once at the beginning of the execution and the image is written to disk
only after a full iteration is finished. Except for the short initial and final periods of intense
disk I/O, the common Unix tools measure a CPU use larger than 99%, which indicates that
the elapsed time during execution is mostly CPU bounded. Determining the performance
of computer codes, however, is a very subtle and non-trivial task. A program can be CPU
bounded yet it may be wasting CPU cycles doing nothing useful.

CPU manufacturers often quote peak performance of modern CPUs, referring to ideal
situations where no cache misses occur, burst mode access to memory is possible, the CPU
internal pipelines are fully used, etc. For instance, a peak performance of two flops per CPU
cycle is quoted for AMD Opteron CPUs, which refers to a single multiply and add instruction
performed in a clock cycle. Real life applications depart from the ideal conditions and thus
peak CPU performance is hardly achieved during sustained execution of complex codes. In
order to assess the performance of the code, FIRST was compiled with the 8.1 version of the
Intel Fortran compiler. The Intel vtune performance analysis and profiling tool was employed
to determine performance and number of flops required by each routine. We conclude that
during reconstruction 50% of peak performance was obtained in sustained fashion. We
also determined that when our compressed SRM that fits in RAM memory is employed,
the decompression time measured was in the range of 10–30% of total reconstruction time,
depending on the number of voxels chosen.

7.2. Parallel implementation

Parallel computing on multiple processors is an attractive option in order to reduce
computational time. The use of protocols like the message passing interface (MPI) enables
clusters of networked industry-standard PCs (Beowulf clusters) to be relatively easy configured
as a multiprocessor unit. Several parallel implementations of the OSEM algorithm have been
presented in other works (Johnson and Sofer 1999a, 1999b, Chen 1998). We have decided
to implement a parallel version of our Fast Iterative Reconstruction Software (FIRST) to run
in Beowulf clusters of several CPUs in a master/slave configuration, characterized by the
use of a master process and several (usually as many as the number of available CPUs) slave
processes. The master distributes the job among the slaves and continuously balances the
workload to achieve the best performance taking into account differences in individual speed
or workload on each CPU. In spite of its name, the master process does not perform any
intensive calculations, though. On startup, the master process reads from disk (once and for
all) the SRM elements and sends them to the slave processes. Enough RAM memory to store
the full compressed SRM must be available for each slave process. After startup, the master
process decides which part of each subset (i.e., which actual superCHORs of such subset) is
forward and backward projected by each slave process. Once all the slave processes have
finished with their share of each subset, the master process updates the image, that is also
stored in memory, and broadcasts the new image to all the slave processes. Upon completion
of the reconstruction, the master process updates the image on disk. The slave processes
are highly CPU intensive, as they are continuously performing the forward and backward
projection operations.
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Table 3. First reconstruction elapsed time. Elapsed times for reconstruction of 50 subsets for one
bed reconstructed with 175 × 175 × 62 voxels are displayed on dedicated machines. The same
code compiled with Intel Fortran compiler 8.1 and 32 bits libraries is employed in both systems.
Fedora core 3.0 x86-i386 operating system. At least 1 GB per CPU is available in all cases. The
elapsed time in minutes is shown. In both cases, the clusters were configured with dual nodes
connected via GB Ethernet cards and switches.

CPUs Version CPU class Elapsed time (min)

1 Non-parallel AMD Opteron 244 1.8 GHz 32.3
1 1 master + 1 slave id. 35.2
2 1 master + 2 slaves id. 18.2
4 1 master + 4 slaves id. 9.4
8 1 master + 8 slaves id. 5.0

1 Non-parallel Intel Xeon EMT64 2.8 GHz 43.6
1 1 master + 1 slave id. 46.1
2 1 master + 2 slaves id. 24.3
4 1 master + 4 slaves id. 12.2

The master process only takes part in the reconstruction whenever one of the slave
processes finishes its share of the reconstruction task and claims for more or when all the
CHORs of a subset have been visited by all the slave processes and then the image must be
updated and broadcasted. Multitask capabilities of modern computers and operating systems
make it possible to have as many slave processes as available CPUs, yet having an additional
master process that will occupy a few cycles of one of the CPUs that is running one of the
slave process. Balance of the workload among different CPUs is easily achieved as the slave
processes that run faster (because they are executed by a less busy or faster CPU) will claim
for their share of subsets more often than the ones that run slower. The only caution that
must be taken is that the initial workload sent to each slave process is similar but not identical
for all of them. In this way, we minimize the possibility that more than one slave process
claims the attention of the master process at the same time. In practice, the tasks assigned to
the slave process take from a few seconds to near a few tenths of seconds to be completed
before requesting the action of the master process. The master process, on the other hand, can
comply with the task required by the slave process in just a fraction of a second.

Overall, the implementation is simple and efficient. In table 3, we quote the elapsed time
in minutes taken by the reconstruction of one iteration of 50 subsets at nominal number of
voxels of 175 × 175 × 62. We made tests in a one-CPU system comparing the parallel to the
nonparallel versions. A master plus a slave process parallel reconstruction in a single CPU
takes less than 10% longer than the nonparallel (only one process in one CPU) version of the
code working in the same single-CPU system. The additional time is due to the overhead
of sending the SRM from the master to the slave, as well as the elements of the image after
updates, using the MPI interface. On the other hand, the parallel version of FIRST working
over several CPUs reduces the elapsed reconstruction time by a factor nearly equal to the
number of CPUs available. For relatively small clusters with up to eight CPUs, the results
shown in table 3 indicate that the implementation with only one master process is rather
efficient. When two or more CPUs are available, the master process uses less than 2% of the
total computing time required for the reconstruction, according to the CPU use stated by the
Unix common tools function ps.

If a number of CPUs larger than eight is to be used, benefits will be found by using more
than one master process. In table 3, a summary of elapsed time for the same reconstruction
over two different platforms using one master process is shown.
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8. Discussion and conclusions

We implemented FIRST, a fully 3D-OSEM or 3D-MAP-OSEM non-sinogram-based
reconstruction algorithm, using a compressed SRM that contains the resolution recovery
properties of EM. The full SRM can be stored in less than 150 MB of storage. Reconstructed
images are indistinguishable from the ones obtained without compression. The use of the
compressed SRM allowed for a reconstruction with a more realistic response of the system.
In this work, we used our own MC model of the scanner which incorporates physical effects
such as positron range, non-collinearity and scatter in the scintillator material. Although it
took several weeks, the SRM was computed only once. It was stored in compressed form so
that the reconstruction program could keep it in dynamic memory.

Thanks to this, near peak performance of the algorithm is achieved with just a slight
overhead (10–30%) due to the decompression procedure. This resulted in short reconstruction
times, even if the realistic SRM implies wider CHORs and thus more voxels are involved
in every projection and back projection operation than when simplified SRM are used. The
algorithm has been validated against simulations as well as real data. Acquisitions of phantoms
and mice from a commercially available high-resolution PET scanner were reconstructed. A
realistic SRM from our own MC model of the scanner with optimal resolution recovery was
used. This fact, together with the intrinsic high resolution (small crystal pitch of 1.55 mm)
of the scanner, resulted in very high quality images with submillimetre resolution, as shown
in figures 6, 9 and 10. The reconstruction time needed by the algorithm enables real time
operation in a small cluster (less than 10 min per bed and iteration in a four CPUs cluster) of
industry-standard PCs. The results from real acquisitions in terms of resolution and linearity
agree with what is expected from the simulated projections that use the same SRM as the
reconstructions. This indicates that the SRM derived from our Monte Carlo simulations
accurately reflects the response of the real scanner. Very uniform resolution and linearity is
exhibited by the reconstructed images.

The flexibility, reduced reconstruction time, accuracy and resolution of the resulting
images prove that the methodologies used to implement the FIRST reconstruction can be
applied to real studies of high-resolution small animal PET scanners. The use of quasi-
symmetries to reduce (compress) the size of the SRM seems to be an adequate way of
dealing with the problem of storing the huge SRM resulting from modern high-resolution PET
scanners.
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