
Lecture 10 : Why GAs work,
More on Gas ,The Microbial

GA, Embodied Robotics GA, Embodied Robotics

Computación Evolutiva

http://www.ldc.usb.ve/~gabro

29/04/2014 Evolutionary Computation

Why GAs work,
More on Gas ,The Microbial

GA, Embodied Robotics GA, Embodied Robotics

Computación Evolutiva
Gabriela Ochoa

http://www.ldc.usb.ve/~gabro/

Evolutionary Computation 1

Content

We have covered the main elements of Evolution and
GAs (Heredity + Variation + Selection)GAs (Heredity + Variation + Selection)

Today, some GA background theory, review of Steady
State GAs and Tournament Selection, The Microbial
GA, Embodied Evolution and application in robotics

This lecture is based on a lecture from ALIFE course

29/04/2014 Evolutionary Computation

This lecture is based on a lecture from ALIFE course
(by Inman Harvey) MSC Evolutionary and Adaptive
Systems, The University of Sussex

We have covered the main elements of Evolution and
Heredity + Variation + Selection)Heredity + Variation + Selection)

Today, some GA background theory, review of Steady
State GAs and Tournament Selection, The Microbial
GA, Embodied Evolution and application in robotics

This lecture is based on a lecture from ALIFE course

Evolutionary Computation 2

This lecture is based on a lecture from ALIFE course
(by Inman Harvey) MSC Evolutionary and Adaptive
Systems, The University of Sussex

Why Should GAs work ?

John Holland (1975) 'Adaptation in Natural and Artificial
Systems' -- and most of the textbooks Systems' -- and most of the textbooks
Schema Theorem , and ideas of

Roughly speaking, building blocks are segments of the genotype
which encode for functional components of the 'phenotype', or
potential solution to the problem.

These building blocks can, in principle, be evaluated

29/04/2014 Evolutionary Computation

These building blocks can, in principle, be evaluated
independently of all the rest, as varying between 'good' and 'bad'.

Why Should GAs work ?

John Holland (1975) 'Adaptation in Natural and Artificial
and most of the textbooks -- explain this with the and most of the textbooks -- explain this with the

, and ideas of building blocks.

Roughly speaking, building blocks are segments of the genotype
which encode for functional components of the 'phenotype', or
potential solution to the problem.

These building blocks can, in principle, be evaluated

Evolutionary Computation 3

These building blocks can, in principle, be evaluated
independently of all the rest, as varying between 'good' and 'bad'.

Cartoon Version

Cartoon version of genotypes:

*** long legs *****************short arms**********

short legs************** long arms **********
^

Recombination (when crossover happens to land
appropriately) allows different parents like these

29/04/2014 Evolutionary Computation

appropriately) allows different parents like these
generation to produce a child with long legs
arms

Cartoon version of genotypes:

*** long legs *****************short arms**********

short legs************** long arms **********

Recombination (when crossover happens to land
appropriately) allows different parents like these in one

Evolutionary Computation 4

appropriately) allows different parents like these in one
to produce a child with long legs and long

Schemata

Schemata (plural of schema) are a formalisation of this
idea of a building block. idea of a building block.

Consider binary genotypes of length 16. Let # be a
'wild -card' or 'dont-care' character.

Then #####00#010#####

29/04/2014 Evolutionary Computation

is a schema of order 5 (5 specified alleles) and
of defining length 6 (length of segment which includes
specified alleles).

Schemata (plural of schema) are a formalisation of this

Consider binary genotypes of length 16. Let # be a
character.

Then #####00#010#####

Evolutionary Computation 5

5 (5 specified alleles) and
6 (length of segment which includes

‘Processing Schemata’

Considering this schema

#####00#010#####

then

0000000001010000

is just one of many genotypes corresponding to this schema

actually this genotype also corresponds simultaneously to

other schemata.

29/04/2014 Evolutionary Computation

Implicitly, the GA 'evaluates' and

of schemata in parallel, every generation.

‘Processing Schemata’

#####00#010#####

of many genotypes corresponding to this schema -- and

actually this genotype also corresponds simultaneously to many

Evolutionary Computation 6

and 'processes' loads

every generation.

The Schema Theorem claims …

... that schemata of short defining lengths

blocks such as 'cartoon legs') will,

�IF they are of above-average fitness, (..that is, evaluated whatever

the other loci outside the schema are)

�get exponentially increasing numbers of trials in successive

generations.

i.e., despite recombination and mutation being

29/04/2014 Evolutionary Computation

i.e., despite recombination and mutation being

(too not too disruptive of short schemata)

'good building blocks' will multiply and

and 'mix and match' with other 'good building blocks'.

The Schema Theorem claims …

short defining lengths (coding for building

blocks such as 'cartoon legs') will,

average fitness, (..that is, evaluated whatever

the other loci outside the schema are)

increasing numbers of trials in successive

recombination and mutation being 'disruptive'

Evolutionary Computation 7

recombination and mutation being 'disruptive'

(too not too disruptive of short schemata)

'good building blocks' will multiply and take over ---

' with other 'good building blocks'.

Implications of the Schema
Theorem ??

The Schema Theorem is formally

conditions.

This Theorem is widely interpreted

RECOMBINATION is the 'powerhouse'

-- whereas mutation is just a 'background operator‘ (whose only role

is to add variety in loci where, throughout the whole population, no

29/04/2014 Evolutionary Computation

is to add variety in loci where, throughout the whole population, no

variety is left).

Implications of the Schema

formally proved subject to certain

interpreted as implying that

'powerhouse' of GAs,

whereas mutation is just a 'background operator‘ (whose only role

is to add variety in loci where, throughout the whole population, no

Evolutionary Computation 8

is to add variety in loci where, throughout the whole population, no

Doubts about the Schema
Theorem

The Schema Theorem is formally

But nowadays many peoplebelieve it has been

The 'subject to certain conditions' bit means that this exponential

increase is only guaranteed over 1 generation

-- thereafter the conditions change!

29/04/2014 Evolutionary Computation

-- thereafter the conditions change!

Doubts about the Schema

The Schema Theorem is formally correct.

But nowadays many peoplebelieve it has been missinterpreted.

The 'subject to certain conditions' bit means that this exponential

increase is only guaranteed over 1 generation

change!

Evolutionary Computation 9

change!

Recombination versus Mutation ?

So be aware that despite this common view in the textbooks, some

people think that in some sense

GAs, with recombination as a background (tho often useful) genetic

operator.

"The Schema Theorem is true, but not very significant"

Nevertheless, the common view of the importance of recombination

29/04/2014 Evolutionary Computation

Nevertheless, the common view of the importance of recombination

lies behind the exclusive emphasis (often without any mutation) on

recombination in

GP = Genetic Programming.

Recombination versus Mutation ?

So be aware that despite this common view in the textbooks, some

people think that in some sense MUTATION is the powerhouse of

GAs, with recombination as a background (tho often useful) genetic

"The Schema Theorem is true, but not very significant"

Nevertheless, the common view of the importance of recombination

Evolutionary Computation 10

Nevertheless, the common view of the importance of recombination

lies behind the exclusive emphasis (often without any mutation) on

Generational vs. Steady State GA

You need not have a generational

(where the whole population is swept aside

every generation, and replaced by a fresh lot

of offspring).

You can have a STEADY STATE

Here just ONE member of the population is

29/04/2014 Evolutionary Computation

Here just ONE member of the population is

replaced at each time step, by the offspring

of some others.

Generational vs. Steady State GA

generational GA

(where the whole population is swept aside

every generation, and replaced by a fresh lot

STEADY STATE GA.

member of the population is

Evolutionary Computation 11

member of the population is

replaced at each time step, by the offspring

Steady State GA

Eg with a popn of 100:

�Choose a mum by some selection mechanism

biased towards the fitter.

�Choose a dad by same method.

�Generate a child by recombination + mutation

�Add the child to the population

�Keep the numbers down to 100 by choosing

someone else to die

29/04/2014 Evolutionary Computation

someone else to die

(eg at random, or biased towards the less fit)

Roughly speaking, 100 times round this loop is

equivalent to one generation of a generational GA

Choose a mum by some selection mechanism

Choose a dad by same method.

Generate a child by recombination + mutation

Add the child to the population

Keep the numbers down to 100 by choosing

Evolutionary Computation 12

(eg at random, or biased towards the less fit)

Roughly speaking, 100 times round this loop is

equivalent to one generation of a generational GA

Tournament Selection

Here is a very simple way to implement the equivalent of linear rank

selection in a Steady State GA

Pick 2 at random

Fittest of tournament is mum –

29/04/2014 Evolutionary Computation

Generate offspring from mum and dad

someone chosen at random.

Note: everyone else remains, including mum and dad.

Repeat until happy!

Tournament Selection

Here is a very simple way to implement the equivalent of linear rank

3.5 compare fitnesses

2.7

choose dad the same way

Evolutionary Computation 13

Generate offspring from mum and dad – the new offspring replaces

Note: everyone else remains, including mum and dad.

You needn’t even have death !

microbes can evolve by horizontal

of genes (within the same generation)

rather than (or as well as) vertical

(down the generations, from parents to offspring).

ie recombination happens within

Microbial sex =

29/04/2014 Evolutionary Computation

Microbial sex =

'hey, wanna swap some of my genes for yours?'

rather than

'lets make babies'

You needn’t even have death !

horizontal transmission

of genes (within the same generation)

vertical transmission

(down the generations, from parents to offspring).

within generations

Evolutionary Computation 14

'hey, wanna swap some of my genes for yours?'

Microbial Genetic Algorithm
the picture

29/04/2014 Evolutionary Computation

Microbial Genetic Algorithm –

Evolutionary Computation 15

Microbial Genetic Algorithm
the algorithm

�Pick two genotypes at random

�Compare scores -> Winner and Loser

�Go along genotype, at each locus

–with some prob copy from Winner to Loser (overwrite)

–with some prob mutate that locus of the Loser

So ONLY the Loser gets changed

(gives a version of Elitism for free!)

29/04/2014 Evolutionary Computation

(gives a version of Elitism for free!)

This allows what is technically a one

which is problem-specific) -- quite a long line !

Microbial Genetic Algorithm –

Pick two genotypes at random

> Winner and Loser

Go along genotype, at each locus

with some prob copy from Winner to Loser (overwrite)

with some prob mutate that locus of the Loser

the Loser gets changed

(gives a version of Elitism for free!)

Evolutionary Computation 16

(gives a version of Elitism for free!)

This allows what is technically a one-liner GA (bar the evaluate(),

quite a long line !

Microbial Genetic Algorithm
one-liner

/* tournament loop */

for (t=0;t<END;t++) for (t=0;t<END;t++)

/* loop along genotype of winner of tournament,

selected in initial loop conditions */

for (W=(evaluate(a=POP*drand48())>

evaluate(b=POP*drand48()) ? a : b),

L=(W==a ? b : a), i=0; i<LEN; i++)

/* throw dice to decide: cross or mutate */

if ((r=drand48())<REC+MUT)

29/04/2014 Evolutionary Computation

if ((r=drand48())<REC+MUT)

/* update genotype of loser */

gene[L][i]=(r<REC ? gene[W][i] : gene[L][i]^1);

Microbial Genetic Algorithm – the

/* loop along genotype of winner of tournament,

selected in initial loop conditions */

for (W=(evaluate(a=POP*drand48())>

evaluate(b=POP*drand48()) ? a : b),

L=(W==a ? b : a), i=0; i<LEN; i++)

/* throw dice to decide: cross or mutate */

if ((r=drand48())<REC+MUT)

Evolutionary Computation 17

if ((r=drand48())<REC+MUT)

/* update genotype of loser */

gene[L][i]=(r<REC ? gene[W][i] : gene[L][i]^1);

… or slightly longer
int gene[POP][LEN];

Initialise genes at random; define problem

/* tournament loop */

for (t=0;t<END;t++) {

/* pick 2 at random, find Winner and

a=POP*drand48();

do {b=POP*drand48()}

29/04/2014 Evolutionary Computation

do {b=POP*drand48()}

while (a==b); /*make sure a and b different */

if (evaluate(a) > evaluate(b)) {W=a; L=b;}

else {W=b; L=a;}

To be continued …

… or slightly longer

Initialise genes at random; define problem-specific evaluate(n)

inner and Loser */

Evolutionary Computation 18

/*make sure a and b different */

if (evaluate(a) > evaluate(b)) {W=a; L=b;}

… continued
Continued …

for (i=0;i<LEN;i++) {for (i=0;i<LEN;i++) {

if (drand48()<REC)

gene[L][i]=gene[W][i];

if (drand48()<MUT)

gene[L][i]=1

29/04/2014 Evolutionary Computation

} /* end tournament loop */

Possible values for REC=0.5; ? And

if (drand48()<REC) /* cross with probability REC */

gene[L][i]=gene[W][i];

if (drand48()<MUT) /* mutate with probability MUT */

gene[L][i]=1-gene[L][i]; /* flip bit */

Evolutionary Computation 19

And MUT=1.0/LEN; (If Binary) ?

Microbial Genetic Algorithm
the picture

29/04/2014 Evolutionary Computation

Microbial Genetic Algorithm –

Evolutionary Computation 20

Is there a point ?

Microbial GA paper on my home page

http://www.cogs.susx.ac.uk/users/inmanh

It does actually work.

By no means guaranteed to be better than other GAs

show how really simple a GA can be

29/04/2014 Evolutionary Computation

Apart from the one line, it needs declaration of gene[

initialisation of a random popn, and

nth member.

Microbial GA paper on my home page

http://www.cogs.susx.ac.uk/users/inmanh

By no means guaranteed to be better than other GAs -- but does

how really simple a GA can be, and still work !

Evolutionary Computation 21

Apart from the one line, it needs declaration of gene[POP][LEN],

initialisation of a random popn, and evaluate(n) that returns fitness of

Embodied Evolution EE

Richard Watson, at Brandeis (papers available on web) has modified

this to use with real robots in

'Embodied Evolution'.

Robots go around 'broadcasting' their genes, and listening out to

other broadcasts.

Fitter robots 'shout louder' (or more often)

29/04/2014 Evolutionary Computation

Fitter robots 'shout louder' (or more often)

Weaker robots are more likely to listen in, and use the genes they

'hear' to copy over their own.

Embodied Evolution EE

Richard Watson, at Brandeis (papers available on web) has modified

Robots go around 'broadcasting' their genes, and listening out to

Fitter robots 'shout louder' (or more often)

Evolutionary Computation 22

Fitter robots 'shout louder' (or more often)

Weaker robots are more likely to listen in, and use the genes they

Embodied Evolution (2)

� Evolutionary Robotics (ER), uses a virtual population
(a set of controllers centrally stored) (a set of controllers centrally stored)

� Fitness evaluation either simulation, or using real
robots

� EE new methodology for evolutionary robotics (ER).
� EE uses a population of physical robots that

autonomously reproduce with one another while

29/04/2014 Evolutionary Computation

autonomously reproduce with one another while
situated in their task environment.

� Fully-distributed evolution algorithm embodied in
physical robots.

Embodied Evolution (2)

Evolutionary Robotics (ER), uses a virtual population
(a set of controllers centrally stored) (a set of controllers centrally stored)
Fitness evaluation either simulation, or using real

EE new methodology for evolutionary robotics (ER).
EE uses a population of physical robots that
autonomously reproduce with one another while

Evolutionary Computation 23

autonomously reproduce with one another while
situated in their task environment.

distributed evolution algorithm embodied in

29/04/2014 Evolutionary Computation

A) Infrared transmit/receive, B) PIC microcontroller, C) Lego motor

D) Tupperware body, E) Rechargeable cell, F) Recharge circuit

Light sensors, and 4 contact points that collect power from the floor

Evolutionary Computation 24

A) Infrared transmit/receive, B) PIC microcontroller, C) Lego motor

D) Tupperware body, E) Rechargeable cell, F) Recharge circuit

Light sensors, and 4 contact points that collect power from the floor

EE Experiment: Phototaxis task

� 8 robots
� Behaviour controlled by a simple ANN architecture
� Weights evolved to perform a phototaxis task
� Task environment: 1.30 x 2.0 M pen with a lamp in

the middle, visible from all positions
� Robot task: reach the light from any starting point in

29/04/2014 Evolutionary Computation

Robot task: reach the light from any starting point in
the pen

EE Experiment: Phototaxis task

Behaviour controlled by a simple ANN architecture
Weights evolved to perform a phototaxis task

: 1.30 x 2.0 M pen with a lamp in
the middle, visible from all positions

: reach the light from any starting point in

Evolutionary Computation 25

: reach the light from any starting point in

29/04/2014 Evolutionary Computation

Robot pen for the phototaxis experiment. 8 robots, light in the center, power floor

Evolutionary Computation 26

Robot pen for the phototaxis experiment. 8 robots, light in the center, power floor

EE: Control Architecture

� Fully connected feed-forward neural network
4 nodes, 4 weights, � 4 nodes, 4 weights,
� 2 outputs one for each motor (motor speed and direction)
� 1 input node (binary-valued): which sensor is receiving

more light, 1 bias node

� Values sent to output nodes: weighted sum of input
nodes (no sigmoid function used)

29/04/2014 Evolutionary Computation

� There is no individual learning, weights are evolved
(robots get weights from other robots during
reproduction

EE: Control Architecture

forward neural network

2 outputs one for each motor (motor speed and direction)
valued): which sensor is receiving

Values sent to output nodes: weighted sum of input
nodes (no sigmoid function used)

Evolutionary Computation 27

There is no individual learning, weights are evolved
(robots get weights from other robots during

EE: Control architecture

One bit input, 1 if the left sensor is
brighter than the right sensor, 0 brighter than the right sensor, 0
otherwise

Bias node, constant activation of 1

29/04/2014 Evolutionary Computation

EE: Control architecture

Evolutionary Computation 28

EE: Evolution

� Robots reproduce when physically encounter
� Infrared communication channel broadcast of genes
� Energy levels reflect robot performance and regulate

reproduction events. Energy level is updated as follows:
� Whenever a robot reaches the light, its energy is increased
� Whenever a robot sends a gene for reproduction, its energy

is reduced by a small amount

29/04/2014 Evolutionary Computation

is reduced by a small amount

� The robot rate of sending genes is proportional to its
energy level

Robots reproduce when physically encounter
Infrared communication channel broadcast of genes
Energy levels reflect robot performance and regulate
reproduction events. Energy level is updated as follows:

Whenever a robot reaches the light, its energy is increased
Whenever a robot sends a gene for reproduction, its energy
is reduced by a small amount

Evolutionary Computation 29

is reduced by a small amount

The robot rate of sending genes is proportional to its

Choosing how to encode the
Genotype

When faced with a new problem, if you are going to tackle it with a

GA then one of the first decisions is:

How can I sensibly encode different phenotypes (possible

solutions) as genotypes (artificial DNA, strings of symbols) ?

E.g., in the L-Systems examples, the symbols were those appropriate

for an L-system rule (including [brackets])

29/04/2014 Evolutionary Computation

Then it is necessary for genetic operators such as mutations to

respect the encoding – cannot mutate just one side of a pair of

brackets.

Choosing how to encode the

When faced with a new problem, if you are going to tackle it with a

GA then one of the first decisions is:

How can I sensibly encode different phenotypes (possible

solutions) as genotypes (artificial DNA, strings of symbols) ?

Systems examples, the symbols were those appropriate

system rule (including [brackets])

Evolutionary Computation 30

Then it is necessary for genetic operators such as mutations to

cannot mutate just one side of a pair of

The purpose of the
Phenotype encoding

There are many possible ways (P)

ways to build a plant, a neural network, a transmission tower …ways to build a plant, a neural network, a transmission tower …

You want to encode these different ways as different strings of

symbols (G) so that Heredity and

As far as possible, small changes in G

29/04/2014 Evolutionary Computation

As far as possible, small changes in G

(mutations) should make small changes in P.

And inheriting bits of G from different parents

should ideally result in inheriting bits of each

parent’s Phenotypic characteristics

The purpose of the Genotype –
henotype encoding

(P) to solve your problem – many

ways to build a plant, a neural network, a transmission tower …ways to build a plant, a neural network, a transmission tower …

You want to encode these different ways as different strings of

and Variation work properly.

As far as possible, small changes in G

Evolutionary Computation 31

As far as possible, small changes in G

(mutations) should make small changes in P.

And inheriting bits of G from different parents

should ideally result in inheriting bits of each

parent’s Phenotypic characteristics.

Fitness Function

When faced with a new problem, your first decision was:

How can I sensibly encode different phenotypes (possible How can I sensibly encode different phenotypes (possible

solutions) as genotypes (artificial DNA, strings of symbols) ?

But then your second decision will have to be:

How can I sensibly give a score to each member of the

population, how can I evaluate its

29/04/2014 Evolutionary Computation

This is a problem-dependent decision, no firm rules. Usually

several different ways, some more sensible than others. This

where you have to use your sense and discretion!

When faced with a new problem, your first decision was:

How can I sensibly encode different phenotypes (possible How can I sensibly encode different phenotypes (possible

solutions) as genotypes (artificial DNA, strings of symbols) ?

But then your second decision will have to be:

How can I sensibly give a score to each member of the

population, how can I evaluate its fitness ?

Evolutionary Computation 32

decision, no firm rules. Usually

several different ways, some more sensible than others. This

sense and discretion!

