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Content

We have covered the main elements of Evolution and 
GAs (Heredity + Variation + Selection)GAs (Heredity + Variation + Selection)

Today, some GA  background theory, review of  Steady 
State GAs and  Tournament Selection,  The Microbial 
GA, Embodied Evolution and application in robotics 

This lecture is based on a lecture from ALIFE course 
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This lecture is based on a lecture from ALIFE course 
(by Inman Harvey) MSC Evolutionary and Adaptive 
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This lecture is based on a lecture from ALIFE course 
(by Inman Harvey) MSC Evolutionary and Adaptive 
Systems, The University of Sussex



Why Should GAs work ?

John Holland (1975) 'Adaptation in Natural and  Artificial 
Systems'   -- and most of the textbooks Systems'   -- and most of the textbooks 
Schema Theorem , and ideas of 

Roughly speaking, building blocks are segments of  the genotype 
which encode for functional components of the 'phenotype', or 
potential solution to the problem.

These building blocks can, in principle, be evaluated 
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These building blocks can, in principle, be evaluated 
independently of all the rest, as varying between 'good' and 'bad'.
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These building blocks can, in principle, be evaluated 
independently of all the rest, as varying between 'good' and 'bad'.



Cartoon Version

Cartoon version of genotypes:

*** long legs *****************short arms**********

***short legs***************** long arms **********
^

Recombination (when crossover happens to land  
appropriately) allows different parents like these 
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appropriately) allows different parents like these 
generation to produce a child with long legs 
arms 

Cartoon version of genotypes:

*** long legs *****************short arms**********

***short legs***************** long arms **********

Recombination (when crossover happens to land  
appropriately) allows different parents like these in one 
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appropriately) allows different parents like these in one 
to produce a child with long legs and long 



Schemata

Schemata (plural of schema) are a formalisation of this 
idea of a building block. idea of a building block. 

Consider binary genotypes of length 16. Let # be a 
'wild -card' or 'dont-care' character.

Then             #####00#010#####
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is a schema of order 5 (5 specified alleles) and
of defining length 6 (length of segment which includes
specified alleles). 

Schemata (plural of schema) are a formalisation of this 

Consider binary genotypes of length 16. Let # be a 
character.

Then             #####00#010#####
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5 (5 specified alleles) and
6 (length of segment which includes



‘Processing Schemata’

Considering this schema    

#####00#010#####                               

then

0000000001010000

is just one of many genotypes corresponding to  this schema 

actually this genotype also corresponds simultaneously to 

other schemata.
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Implicitly, the GA 'evaluates' and 

of schemata in parallel, every generation.

‘Processing Schemata’

#####00#010#####                               

of many genotypes corresponding to  this schema -- and 

actually this genotype also corresponds simultaneously to many
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and 'processes' loads

every generation.



The Schema Theorem claims …

... that schemata of short defining lengths

blocks such as 'cartoon legs') will, 

�IF they are of above-average fitness, (..that is, evaluated whatever 

the other loci outside the schema are)

�get exponentially increasing numbers of trials in successive 

generations.

i.e., despite recombination and mutation being 
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i.e., despite recombination and mutation being 

(too not too disruptive of short schemata)

'good building blocks' will multiply and 

and 'mix and match' with other 'good building blocks'.

The Schema Theorem claims …

short defining lengths (coding for building 

blocks such as 'cartoon legs') will, 

average fitness, (..that is, evaluated whatever 

the other loci outside the schema are)

increasing numbers of trials in successive 

recombination and mutation being 'disruptive'
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recombination and mutation being 'disruptive'

(too not too disruptive of short schemata)

'good building blocks' will multiply and take over ---

' with other 'good building blocks'.



Implications of the Schema 
Theorem ??

The Schema Theorem is formally

conditions.

This Theorem is widely interpreted

RECOMBINATION is the 'powerhouse'

-- whereas mutation is just a 'background operator‘ (whose only role 

is to add variety in loci where, throughout the whole population, no 
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is to add variety in loci where, throughout the whole population, no 

variety is left).

Implications of the Schema 

formally proved subject to certain 

interpreted as implying that 

'powerhouse' of GAs,

whereas mutation is just a 'background operator‘ (whose only role 

is to add variety in loci where, throughout the whole population, no 
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is to add variety in loci where, throughout the whole population, no 



Doubts about the Schema 
Theorem

The Schema Theorem is formally 

But nowadays many peoplebelieve it has been 

The 'subject to certain conditions' bit means that this exponential 

increase is only guaranteed over 1  generation

-- thereafter the conditions change!
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-- thereafter the conditions change!

Doubts about the Schema 

The Schema Theorem is formally correct.

But nowadays many peoplebelieve it has been missinterpreted.

The 'subject to certain conditions' bit means that this exponential 

increase is only guaranteed over 1  generation

change!
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change!



Recombination versus Mutation ?

So be aware that despite this common view in the textbooks, some 

people think that in some sense 

GAs, with recombination as a background (tho often useful) genetic 

operator.

"The Schema Theorem is true, but not very significant"

Nevertheless, the common view of the importance of recombination 
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Nevertheless, the common view of the importance of recombination 

lies behind the exclusive emphasis (often without any mutation) on 

recombination in

GP = Genetic Programming.

Recombination versus Mutation ?

So be aware that despite this common view in the textbooks, some 

people think that in some sense MUTATION is the powerhouse of 

GAs, with recombination as a background (tho often useful) genetic 

"The Schema Theorem is true, but not very significant"

Nevertheless, the common view of the importance of recombination 
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Nevertheless, the common view of the importance of recombination 

lies behind the exclusive emphasis (often without any mutation) on 



Generational vs. Steady State GA

You need not have a generational

(where the whole population is swept aside 

every generation, and replaced by a fresh lot 

of offspring).

You can have a STEADY STATE

Here just ONE member of the population is 
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Here just ONE member of the population is 

replaced at each time step, by the offspring 

of some others.

Generational vs. Steady State GA

generational GA

(where the whole population is swept aside 

every generation, and replaced by a fresh lot 

STEADY STATE GA.

member of the population is 

Evolutionary Computation 11

member of the population is 

replaced at each time step, by the offspring 



Steady State GA

Eg with a popn of 100:

�Choose a mum by some selection mechanism

biased towards the fitter.

�Choose a dad by same method.

�Generate a child by recombination + mutation

�Add the child to the population

�Keep the numbers down to 100 by choosing 

someone else to die 
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someone else to die 

(eg at random, or biased towards the less fit)

Roughly speaking, 100 times round this loop is 

equivalent to one generation of a generational GA

Choose a mum by some selection mechanism

Choose a dad by same method.

Generate a child by recombination + mutation

Add the child to the population

Keep the numbers down to 100 by choosing 
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(eg at random, or biased towards the less fit)

Roughly speaking, 100 times round this loop is 

equivalent to one generation of a generational GA



Tournament Selection

Here is a very simple way to implement the equivalent of linear rank 

selection in a Steady State GA

Pick 2 at random

Fittest of tournament is mum –
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Generate offspring from mum and dad 

someone chosen at random.

Note: everyone else remains, including mum and dad.

Repeat until happy!

Tournament Selection

Here is a very simple way to implement the equivalent of linear rank 

3.5 compare fitnesses

2.7

choose dad the same way
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Generate offspring from mum and dad – the new offspring replaces 

Note: everyone else remains, including mum and dad.



You needn’t even have death !

microbes can evolve by horizontal

of genes (within the same generation)

rather than (or as well as) vertical

(down the generations, from parents to offspring).

ie recombination happens within

Microbial sex = 
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Microbial sex = 

'hey, wanna swap some of my genes for yours?'

rather than

'lets make babies'

You needn’t even have death !

horizontal transmission

of genes (within the same generation)

vertical transmission

(down the generations, from parents to offspring).

within generations
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'hey, wanna swap some of my genes for yours?'



Microbial Genetic Algorithm 
the picture

29/04/2014 Evolutionary Computation

Microbial Genetic Algorithm –
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Microbial Genetic Algorithm 
the algorithm

�Pick two genotypes at random

�Compare scores -> Winner and Loser

�Go along genotype, at each locus

–with some prob copy from Winner to Loser (overwrite)

–with some prob mutate that locus of the Loser

So ONLY the Loser gets changed 

(gives a version of Elitism for free!)
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(gives a version of Elitism for free!)

This allows what is technically a one

which is problem-specific) -- quite a long line !

Microbial Genetic Algorithm –

Pick two genotypes at random

> Winner and Loser

Go along genotype, at each locus

with some prob copy from Winner to Loser (overwrite)

with some prob mutate that locus of the Loser

the Loser gets changed 

(gives a version of Elitism for free!)
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(gives a version of Elitism for free!)

This allows what is technically a one-liner GA (bar the evaluate(), 

quite a long line !



Microbial Genetic Algorithm 
one-liner

/* tournament loop */

for (t=0;t<END;t++) for (t=0;t<END;t++) 

/*  loop along genotype of winner of tournament,

selected in initial loop conditions */   

for (W=(evaluate(a=POP*drand48())>

evaluate(b=POP*drand48()) ? a : b),

L=(W==a ? b : a), i=0; i<LEN; i++)

/* throw dice to decide: cross or mutate */

if ((r=drand48())<REC+MUT) 
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if ((r=drand48())<REC+MUT) 

/* update genotype of loser */

gene[L][i]=(r<REC ? gene[W][i] : gene[L][i]^1);

Microbial Genetic Algorithm – the 

/*  loop along genotype of winner of tournament,

selected in initial loop conditions */   

for (W=(evaluate(a=POP*drand48())>

evaluate(b=POP*drand48()) ? a : b),

L=(W==a ? b : a), i=0; i<LEN; i++)

/* throw dice to decide: cross or mutate */

if ((r=drand48())<REC+MUT) 
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if ((r=drand48())<REC+MUT) 

/* update genotype of loser */

gene[L][i]=(r<REC ? gene[W][i] : gene[L][i]^1);



… or slightly longer
int gene[POP][LEN];

Initialise genes at random;  define problem

/* tournament loop */

for (t=0;t<END;t++) { 

/*  pick 2 at random, find Winner and 

a=POP*drand48();

do {b=POP*drand48()} 
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do {b=POP*drand48()} 

while (a==b);  /*make sure a and b different */

if (evaluate(a) > evaluate(b)) {W=a; L=b;}

else {W=b; L=a;}

To be continued …

… or slightly longer

Initialise genes at random;  define problem-specific evaluate(n)

inner and Loser */   
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/*make sure a and b different */

if (evaluate(a) > evaluate(b)) {W=a; L=b;}



… continued
Continued …

for (i=0;i<LEN;i++) {for (i=0;i<LEN;i++) {

if (drand48()<REC) 

gene[L][i]=gene[W][i];

if (drand48()<MUT) 

gene[L][i]=1
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} /* end tournament loop */

Possible values for REC=0.5; ? And 

if (drand48()<REC) /* cross with probability REC */

gene[L][i]=gene[W][i];

if (drand48()<MUT) /* mutate with probability MUT */

gene[L][i]=1-gene[L][i]; /* flip bit */
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And MUT=1.0/LEN;  (If Binary) ?



Microbial Genetic Algorithm 
the picture
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Microbial Genetic Algorithm –
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Is there a point ?

Microbial GA paper on my home page

http://www.cogs.susx.ac.uk/users/inmanh

It does actually work.

By no means guaranteed to be better than other GAs 

show how really simple a GA can be
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Apart from the one line, it needs declaration of gene[

initialisation of a random popn, and 

nth member.

Microbial GA paper on my home page

http://www.cogs.susx.ac.uk/users/inmanh

By no means guaranteed to be better than other GAs -- but does 

how really simple a GA can be, and still work !
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Apart from the one line, it needs declaration of gene[POP][LEN], 

initialisation of a random popn, and evaluate(n) that returns fitness of 



Embodied Evolution EE

Richard Watson, at Brandeis (papers available on web) has modified 

this to use with real robots in

'Embodied Evolution'.

Robots go around 'broadcasting' their genes, and listening out to 

other broadcasts.

Fitter robots 'shout louder' (or more often)
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Fitter robots 'shout louder' (or more often)

Weaker robots are more likely to listen in, and use the genes they 

'hear' to copy over their own.

Embodied Evolution EE

Richard Watson, at Brandeis (papers available on web) has modified 

Robots go around 'broadcasting' their genes, and listening out to 

Fitter robots 'shout louder' (or more often)
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Fitter robots 'shout louder' (or more often)

Weaker robots are more likely to listen in, and use the genes they 



Embodied Evolution (2)

� Evolutionary Robotics (ER), uses a virtual population 
(a set of controllers centrally stored) (a set of controllers centrally stored) 

� Fitness evaluation either simulation, or using real 
robots 

� EE new methodology for evolutionary robotics (ER). 
� EE uses a population of physical robots that 

autonomously reproduce with one another while 
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autonomously reproduce with one another while 
situated in their task environment. 

� Fully-distributed evolution algorithm embodied in 
physical robots. 

Embodied Evolution (2)

Evolutionary Robotics (ER), uses a virtual population 
(a set of controllers centrally stored) (a set of controllers centrally stored) 
Fitness evaluation either simulation, or using real 

EE new methodology for evolutionary robotics (ER). 
EE uses a population of physical robots that 
autonomously reproduce with one another while 
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autonomously reproduce with one another while 
situated in their task environment. 

distributed evolution algorithm embodied in 
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A) Infrared transmit/receive, B) PIC microcontroller, C) Lego motor

D) Tupperware body, E) Rechargeable cell,  F) Recharge circuit

Light sensors, and 4 contact points that collect power from the floor
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A) Infrared transmit/receive, B) PIC microcontroller, C) Lego motor

D) Tupperware body, E) Rechargeable cell,  F) Recharge circuit

Light sensors, and 4 contact points that collect power from the floor



EE Experiment: Phototaxis task

� 8 robots
� Behaviour controlled by a simple ANN architecture
� Weights evolved to perform a phototaxis task
� Task environment: 1.30 x 2.0 M pen with a lamp in 

the middle, visible from all positions
� Robot task: reach the light from any starting point in 
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Robot task: reach the light from any starting point in 
the pen

EE Experiment: Phototaxis task

Behaviour controlled by a simple ANN architecture
Weights evolved to perform a phototaxis task

: 1.30 x 2.0 M pen with a lamp in 
the middle, visible from all positions

: reach the light from any starting point in 
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: reach the light from any starting point in 
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Robot pen for the phototaxis experiment. 8 robots, light in the center, power floor
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Robot pen for the phototaxis experiment. 8 robots, light in the center, power floor



EE: Control Architecture

� Fully connected feed-forward neural network
4 nodes, 4 weights, � 4 nodes, 4 weights, 
� 2 outputs one for each motor (motor speed and direction)
� 1 input node (binary-valued): which sensor is receiving 

more light, 1 bias node

� Values sent to output nodes: weighted sum of input 
nodes (no sigmoid function used)
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� There is no individual learning, weights are evolved 
(robots get weights from other robots during 
reproduction

EE: Control Architecture

forward neural network

2 outputs one for each motor (motor speed and direction)
valued): which sensor is receiving 

Values sent to output nodes: weighted sum of input 
nodes (no sigmoid function used)
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There is no individual learning, weights are evolved 
(robots get weights from other robots during 



EE: Control architecture

One bit input, 1 if the left sensor is 
brighter than the right sensor, 0 brighter than the right sensor, 0 
otherwise

Bias node, constant activation of 1
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EE: Control architecture
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EE: Evolution

� Robots reproduce when physically encounter
� Infrared communication channel broadcast of genes
� Energy levels reflect robot performance and regulate 

reproduction events. Energy level is updated as follows:
� Whenever a robot reaches the light, its energy is increased
� Whenever a robot sends a gene for reproduction, its energy 

is reduced by a small amount
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is reduced by a small amount

� The robot rate of sending genes is proportional to its 
energy level

Robots reproduce when physically encounter
Infrared communication channel broadcast of genes
Energy levels reflect robot performance and regulate 
reproduction events. Energy level is updated as follows:

Whenever a robot reaches the light, its energy is increased
Whenever a robot sends a gene for reproduction, its energy 
is reduced by a small amount
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is reduced by a small amount

The robot rate of sending genes is proportional to its 



Choosing how to encode the 
Genotype

When faced with a new problem, if you are going to tackle it with a 

GA then one of the first decisions is:

How can I sensibly encode different phenotypes (possible 

solutions) as genotypes (artificial DNA, strings of symbols) ?

E.g., in the L-Systems examples, the symbols were those appropriate 

for an L-system rule (including [brackets])
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Then it is necessary for genetic operators such as mutations to 

respect the encoding – cannot mutate just one side of a pair of 

brackets.

Choosing how to encode the 

When faced with a new problem, if you are going to tackle it with a 

GA then one of the first decisions is:

How can I sensibly encode different phenotypes (possible 

solutions) as genotypes (artificial DNA, strings of symbols) ?

Systems examples, the symbols were those appropriate 

system rule (including [brackets])
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Then it is necessary for genetic operators such as mutations to 

cannot mutate just one side of a pair of 



The purpose of the 
Phenotype encoding

There are many possible ways (P)

ways to build a plant, a neural network, a transmission tower …ways to build a plant, a neural network, a transmission tower …

You want to encode these different ways as different strings of 

symbols (G) so that Heredity and 

As far as possible, small changes in G 
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As far as possible, small changes in G 

(mutations) should make small changes in P. 

And inheriting bits of G from different parents 

should ideally result in inheriting bits of each 

parent’s Phenotypic characteristics

The purpose of the Genotype –
henotype encoding

(P) to solve your problem – many 

ways to build a plant, a neural network, a transmission tower …ways to build a plant, a neural network, a transmission tower …

You want to encode these different ways as different strings of 

and Variation work properly.

As far as possible, small changes in G 
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As far as possible, small changes in G 

(mutations) should make small changes in P. 

And inheriting bits of G from different parents 

should ideally result in inheriting bits of each 

parent’s Phenotypic characteristics.



Fitness Function

When faced with a new problem, your first decision was:

How can I sensibly encode different phenotypes (possible How can I sensibly encode different phenotypes (possible 

solutions) as genotypes (artificial DNA, strings of symbols) ?

But then your second decision will have to be:

How can I sensibly give a score to each member of the 

population, how can I evaluate its 
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This is a problem-dependent decision, no firm rules. Usually 

several different ways, some more sensible than others. This 

where you have to use your sense and discretion!

When faced with a new problem, your first decision was:

How can I sensibly encode different phenotypes (possible How can I sensibly encode different phenotypes (possible 

solutions) as genotypes (artificial DNA, strings of symbols) ?

But then your second decision will have to be:

How can I sensibly give a score to each member of the 

population, how can I evaluate its fitness ?
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decision, no firm rules. Usually 

several different ways, some more sensible than others. This 

sense and discretion!


