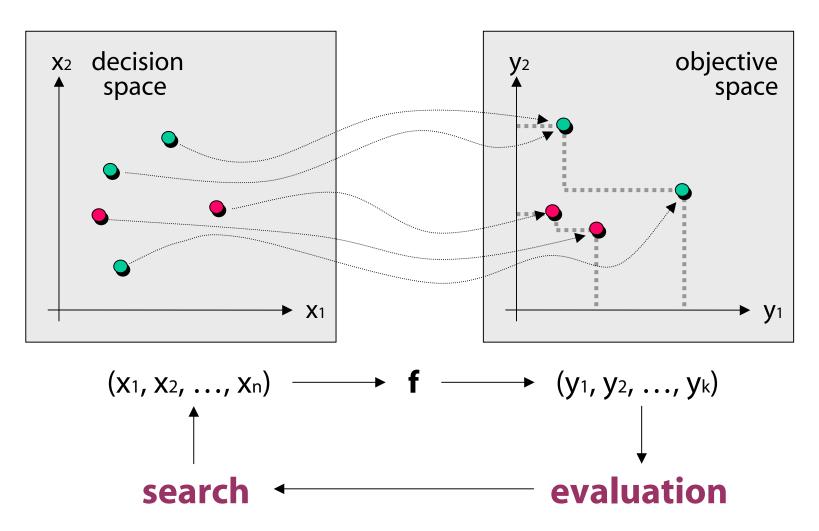
A Tutorial on Evolutionary Multiobjective Optimization

Eckart Zitzler

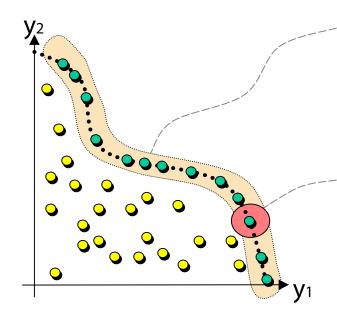
Computer Engineering and Networks Lab Swiss Federal Institute of Technology (ETH) Zurich

- The Big Picture:
 - Optimization and evolutionary computation
- **2** The Construction Kit:
 - Design issues and algorithmic concepts
- **1** The Pieces Put Together:
 - Example of an algorithm variant
- **4** The Big Question:
 - Performance of evolutionary algorithms
- **5** The Challenge:
 - Standard interface for search algorithms
- **6** The End:
 - Conclusions and outlook

- Pareto set Pareto front
- Pareto set approximation
 - Pareto front approximation



Optimization and Decision Making



Pareto optimality:

defines set of optimal trade-offs (all objectives equally important)

Decision making:

choose best compromise (based on preference information)

- Decision making before search (define single objective)
- Decision making after search (find/approximate Pareto set first)
- **3** Decision making during search (guide search interactively)
- 4 Combinations of the above

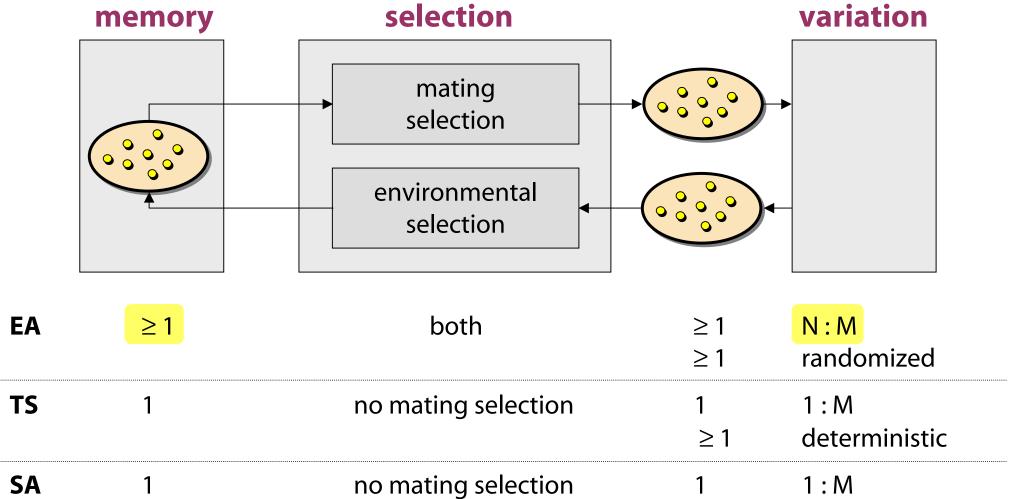
ACO

randomized

randomized

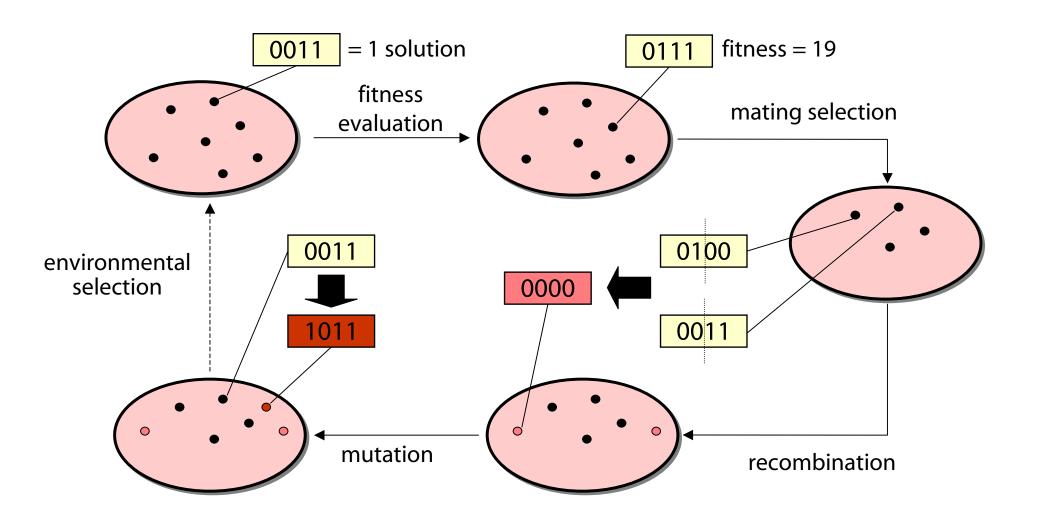
1:1

≥ 1



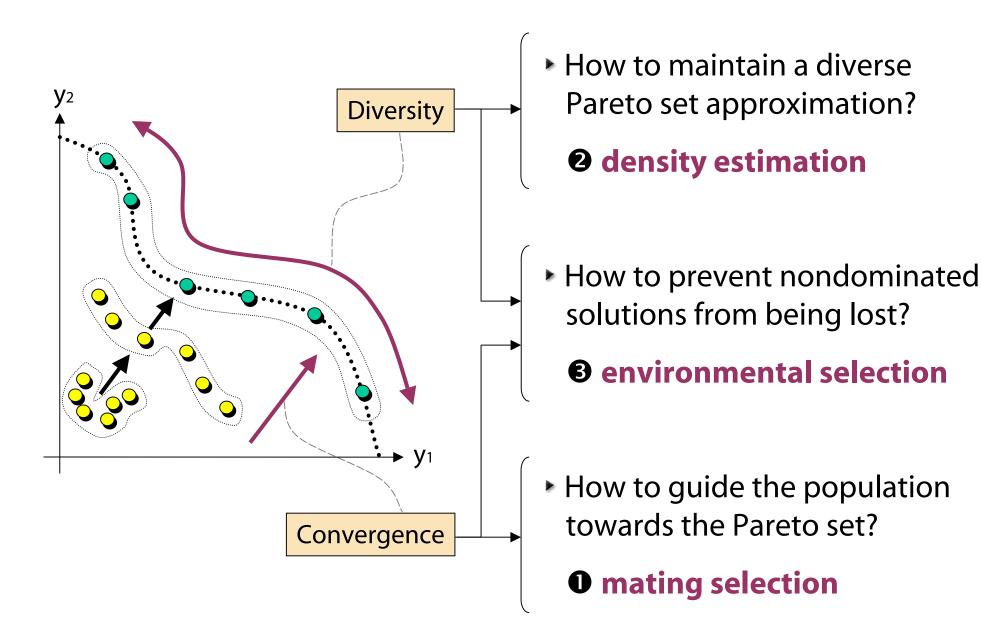
neither

Outline of a Simple Evolutionary Algorithm



- The Big Picture:
 - Optimization and evolutionary computation
- **2** The Construction Kit:
 - Design issues and algorithmic concepts
- **1** The Pieces Put Together:
 - Example of an algorithm variant
- The Big Question:
 - Performance of evolutionary algorithms
- **5** The Challenge:
 - Standard interface for search algorithms
- **6** The End:
 - Conclusions and outlook

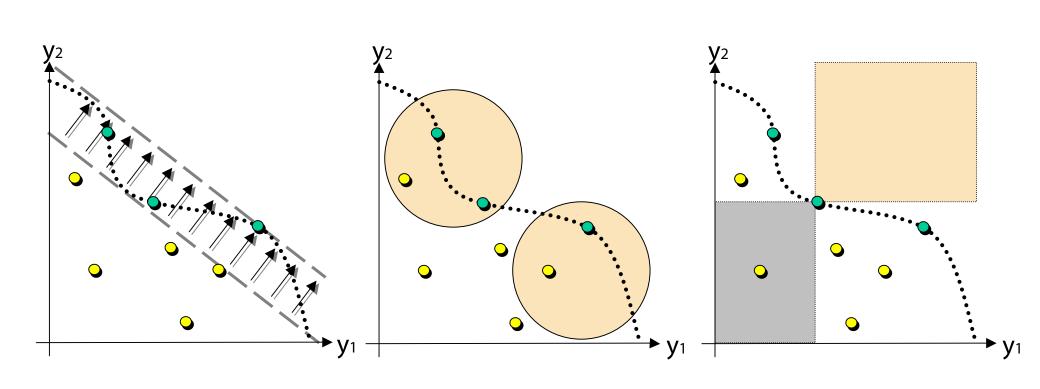
Issues in EMO



Fitness Assignment Strategies

criterion-based *VEGA*

dominance-based SPEA2



parameter-oriented scaling-dependent

set-oriented scaling-independent

Types of information:

dominance rank
 by how many individuals is an

individual dominated?

dominance count how many individuals does an

individual dominate?

dominance depth at which front is an individual

located?

Examples:

MOGA, NPGA dominance rank

NSGA/NSGA-II dominance depth

SPEA/SPEA2 dominance count + rank

Density estimation techniques: [Silverman: 1986]

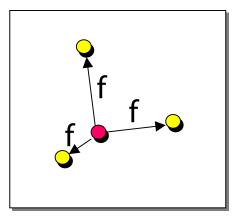
Kernel

MOGA

density estimate

_

sum of f values where f is a function of the distance

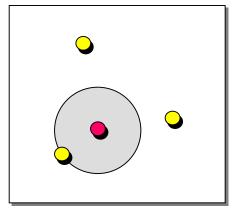


Nearest neighbor

SPEA2

density estimate

volume of the sphere defined by the nearest neighbor



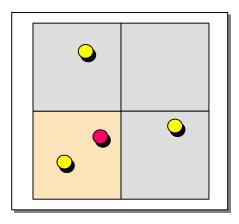
Histogram

PAES

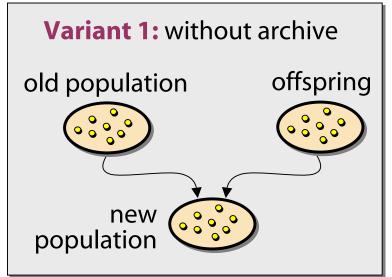
density estimate

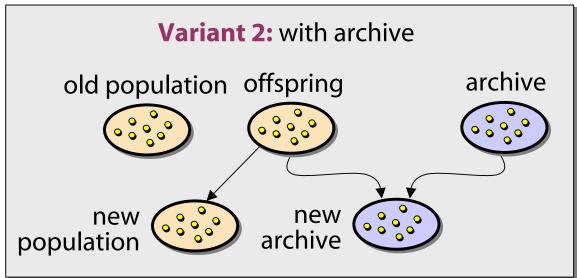
=

number of solutions in the same box



Environmental Selection





Selection criteria:

- Dominance: only nondominated solutions are kept
- Density: less crowded regions are preferred to crowded regions
- Time: old archive members are preferred to new solutions
- Chance: each solution has the same probability to enter the archive

Constraint Handling

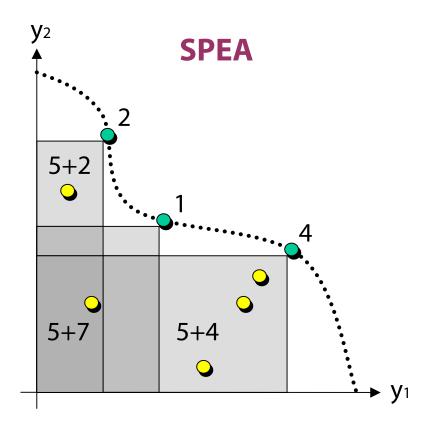
	penalty functions	constraints as objectives	modified dominance
	Add penalty term to fitness	Introduce additional objective(s)	extend to infeasible solutions
overall constraint violation	[Michalewicz: 1992]	[Wright, Loosemore: 2001]	[Deb: 2001]
constraints treated separately	?	[Coello: 2000]	[Fonseca, Fleming: 1998]

- The Big Picture:
 - Optimization and evolutionary computation
- **2** The Construction Kit:
 - Design issues and algorithmic concepts
- **1** The Pieces Put Together:
 - Example of an algorithm variant
- 4 The Big Question:
 - Performance of evolutionary algorithms
- **5** The Challenge:
 - Standard interface for search algorithms
- **6** The End:
 - Conclusions and outlook

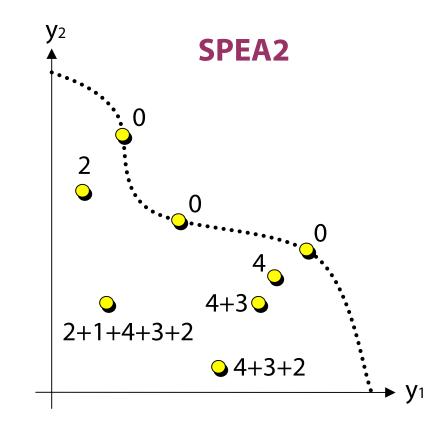
SPEA2 Algorithm

Step 1:	Generate initial population P_0 and empty archive (external set) A_0 . Set $t = 0$.
Step 2:	Calculate fitness values of individuals in P_t and A_t .
Step 3:	A_{t+1} = nondominated individuals in P_t and A_t . If size of A_{t+1} > N then reduce A_{t+1} , else if size of A_{t+1} < N then fill A_{t+1} with dominated individuals in P_t and A_t .
Step 4:	If $t > T$ then output the nondominated set of A_{t+1} . Stop.
Step 5:	Fill mating pool by binary tournament selection with replacement on A_{t+1} .
Step 6:	Apply recombination and mutation operators to the mating pool and set P_{t+1} to the resulting population. Set $t = t + 1$ and go to Step 2.

Pareto Fitness Assignment



- S (strength) =#dominated solutions
- ightharpoonup R (raw fitness) = N + ightharpoonup S strengths of dominators ightharpoonup S



- \$ S (strength) =
 #dominated solutions >
- ightharpoonup R (raw fitness) = ightharpoonup strengths of dominators ightharpoonup

Diversity Preservation

Density Estimation

k-th nearest neighbor method:

• Fitness =
$$R + 1 / (2 + D_k)$$

< 1

- D_k = distance to the k-th nearest individual
- $k = \sqrt{popsize + archivesize}$

Truncation

Incremental approach:

- Remove individual A for which A <d B for all individuals B
- B <d A iff:
 - D_k identical for A and B for all k
 - D_k of A greater than D_k of B for a particular k and identical for smaller k

- The Big Picture:
 - Optimization and evolutionary computation
- **2** The Construction Kit:
 - Design issues and algorithmic concepts
- **1** The Pieces Put Together:
 - Example of an algorithm variant
- **4** The Big Question:
 - Performance of evolutionary algorithms
- **5** The Challenge:
 - Standard interface for search algorithms
- **6** The End:
 - Conclusions and outlook

Performance Assessment: Approaches

- Theoretically (by analysis): difficult
 - Limit behavior
 "Is the Pareto set found, if there are unlimited run-time resources?"
 - Run-time analysis
 "How long does it take to generate the Pareto set with high
 probability?"

2 Empirically (by simulation): standard

Basic assumptions:

- Every solution can be generated from every other solution by mutation
- The number of iterations t goes to infinity $(t \rightarrow \infty)$

Studies:

- Convergence: [Hanne: 1999][Rudolph, Agapie: 2000]
- Diversity: e.g., [Knowles, Corne: 2000][Deb et al.: 2001]
- Convergence + diversity:
 - Unlimited memory resources [Rudolph and Agapie: 2000]
 - Limited memory resources [Laumanns et al.: 2002]

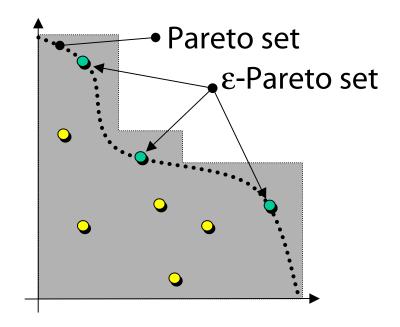
Epsilon Dominance

Definition 1: ε-Dominance

A ε -dominates B iff $\varepsilon \cdot f(A) \ge f(B)$ (known since 1987)

ε-dominated dominated

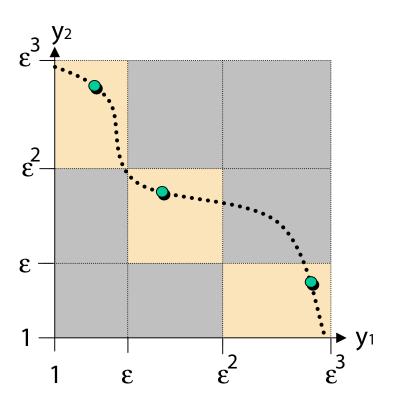
Definition 2: ϵ -Pareto set subset of the Pareto set which ϵ -dominates all Pareto-optimal solutions



Achieving Convergence and Diversity

Goal: Maintain ε-Pareto set

Idea: ε-grid, i.e. maintain a set of nondominated boxes (one solution per box)



Algorithm: (ε-update)

Accept a child if

• the corresponding box is not dominated by any box that contains an individual

AND

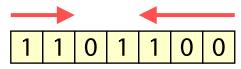
2 any other individual in the same box is dominated by the new solution

Basic question: [Laumanns et al.: 2002]

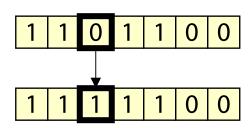
What is the worst case run-time of a multiobjective EA to find the Pareto set with high probability?

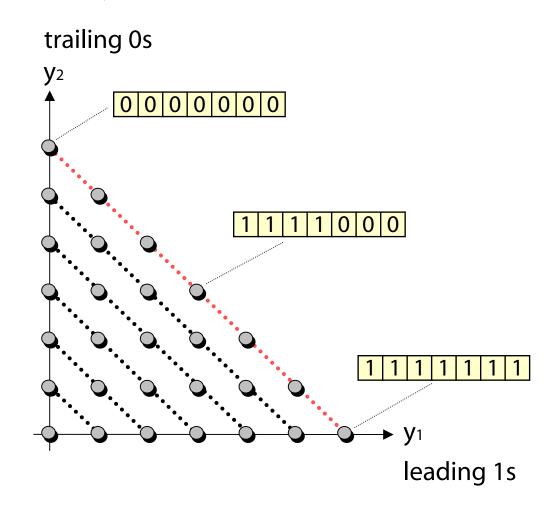
Scenario:

 Problem: leading ones, trailing zeros (LOTZ)

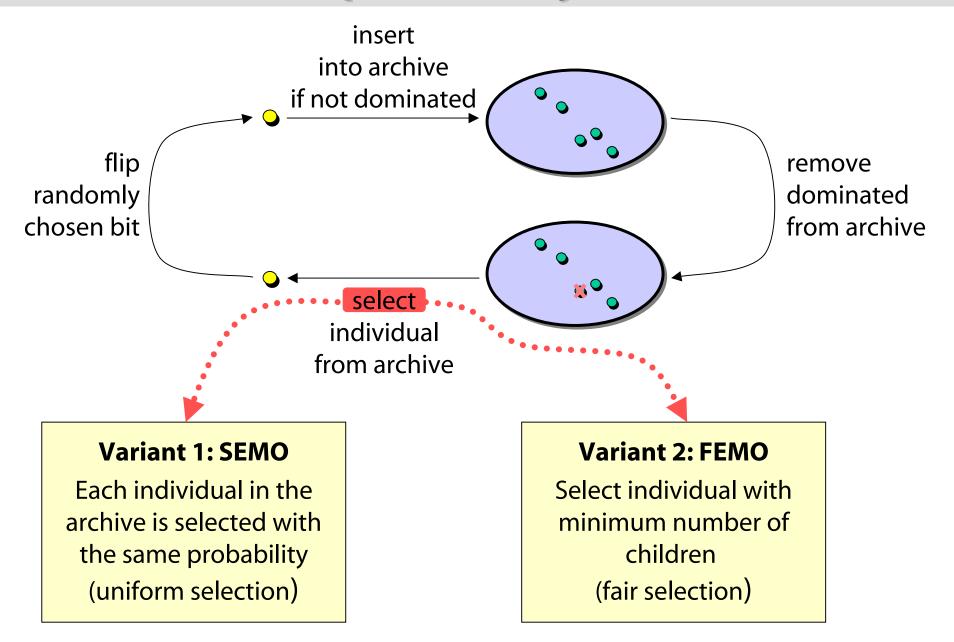


Variation: single point mutation





Two Simple Multiobjective EAs



Results of Analysis

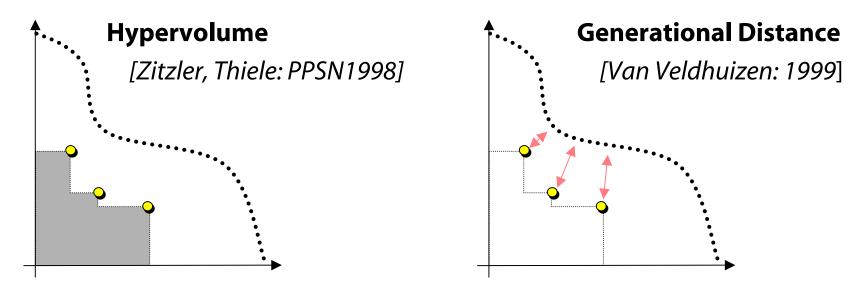
- Multistart single-objective optimizer: $\Omega(n^3)$
 - ▶ In average, one out of *n* mutations successful
 - To get to the Pareto front, n successful mutations needed
 - Overall n Pareto-optimal solutions have to be found
- Simple multiobjective EA with uniform selection (SEMO): $\Theta(n^3)$
 - ▶ To get to the Pareto front requires n^2 steps
 - ▶ To cover the entire front needs n^3 steps
- Simple multiobjective EA with fair selection (FEMO): $\Theta(n^2 \log n)$
 - Fair selection helps to spread over the Pareto front

multiobjective EA faster than multistart strategy

Empirical Performance Assessment

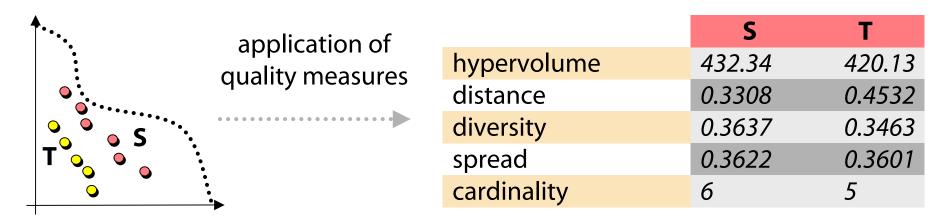
Issues: quality measures, statistical testing, benchmark problems, visualization, ...

Popular approach: unary quality measures



- Assign each outcome a real number
- Outcomes are compared by comparing the corresponding values

Basic question: Can we say on the basis of the quality measures whether or that an algorithm outperforms another?



There is no combination of unary quality measures such that **S** is better than **T** in all criteria is equivalent to **S** dominates **T**

Unary quality measures usually do not tell that **S** dominates **T**; at maximum that **S** does not dominate **T**

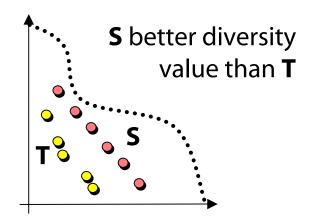
[Zitzler et al.: 2002]

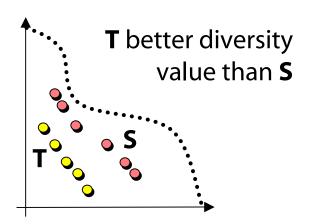
Quality Measures: Theoretical Results II

Many popular quality measures are not compliant with the dominance relation

[Hansen, Jaszkiewicz: 1998][Knowles, Corne: 2002][Zitzler et al.: 2002]

Example: diversity measures



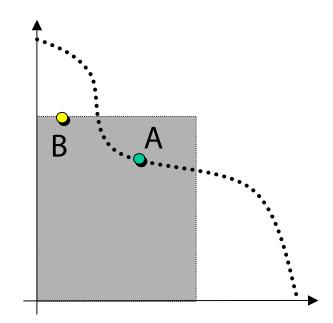


Needed: appropriate binary quality measures that indicate whether an outcome dominates another, e.g., ϵ -measure

Epsilon Quality Measure

Definition 3: single solutions

 $I\epsilon(A,B) = minimum \epsilon such that A \epsilon-dominates B$



Definition 4: sets of solutions

 $l\epsilon(\textbf{S},\textbf{T}) = minimum \epsilon$ such that each solution in T is ϵ -dominated by at least one solution in S

S T

[*Zitzler et al.: 2002*]

- The Big Picture:
 - Optimization and evolutionary computation
- **2** The Construction Kit:
 - Design issues and algorithmic concepts
- **1** The Pieces Put Together:
 - Example of an algorithm variant
- 4 The Big Question:
 - Performance of evolutionary algorithms
- **5** The Challenge:
 - Standard interface for search algorithms
- **6** The End:
 - Conclusions and outlook

Implementation: Current Situation

Application engineer

- knowledge in the algorithm domain necessary
- state-of-the-art algorithms get more and more complex
- many algorithms

Algorithm designer

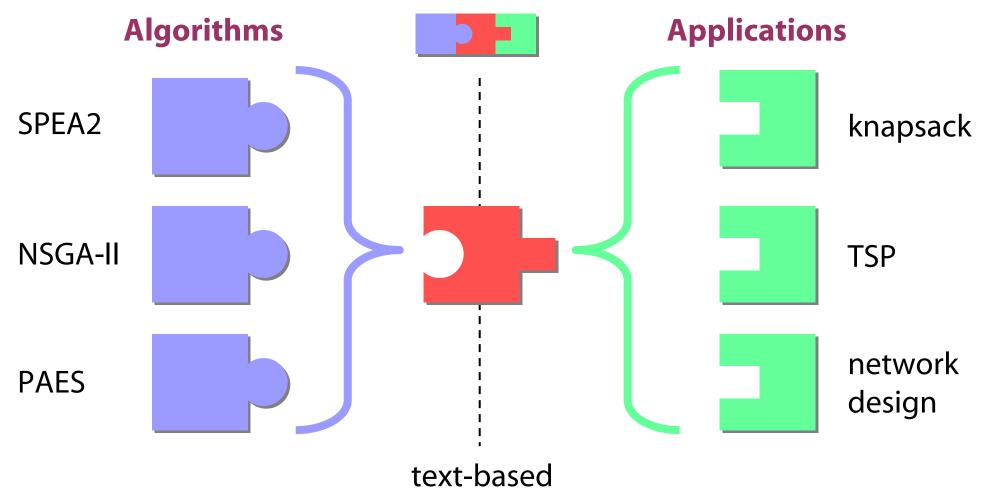
- comparison to competing algorithms mandatory
- tests on various benchmark problems necessary
- algorithms and applications become increasingly complex

high implementation effort / risk of implementation errors

Programming libraries:

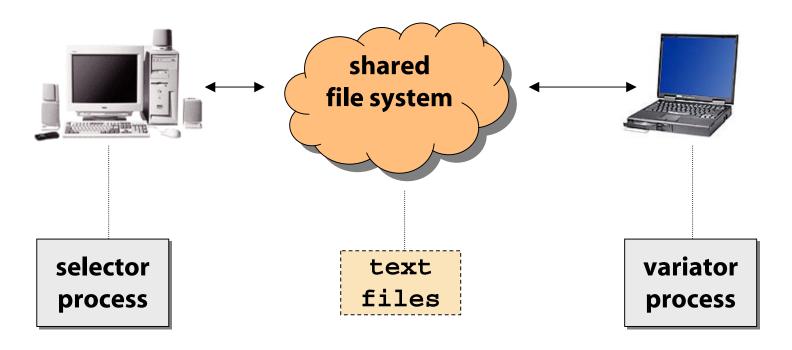
- valuable tools to tailor a particular technique to a specific application
- exchange of optimization algorithm or application still difficult

The Concept of PISA



Platform and programming language independent Interface for Search Algorithms [Bleuler et al.: 2002]

PISA: Implementation



application independent:

- mating / environmental selection
- individuals are described by IDs and objective vectors

handshake protocol:

- state / action
- individual IDs
- objective vectors
- parameters

application dependent:

- variation operators
- stores and manages individuals

Why using an evolutionary algorithm?

- Flexibility: problem formulation can be easily modified / extended (minimum requirements)
- Multiple objectives: the solution space can be explored in a single optimization run
- Feasibility: EAs are applicable to complex and huge search spaces

Why multiobjective optimization?

- Robustness: aggregation of several objectives into a single one requires setting of parameters
- Confidence: it is easier to select a solution if alternatives are known

Main application of EMO: design space exploration

Links:

- EMO mailing list: http://w3.ualq.pt/lists/emo-list/
- EMO bibliography: http://www.lania.mx/~ccoello/EMOO/
- PISA website: http://www.tik.ee.ethz.ch/pisa/

Events:

 Conference on Evolutionary Multi-Criterion Optimization (EMO 2003), April 8-11, 2003, Algarve, Portugal:

http://conferences.ptrede.com/emo03/

Acknowledgments:

Stefan Bleuler, Marco Laumanns, Lothar Thiele