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Overview

Tutorial Overview (1)
e Computational Intelligence and Evolutionary Algorithms
e General Characteristics of Evolutionary Algorithms

e Evolution Strategies:
— Representation
— Mutation
— Recombination
— Selection

— Other Components & Algorithm

e Classification of Parameter Adaptation Methods
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Overview

Tutorial Overview (2)
e Self-Adaptation in Evolution Strategies
e Self-Adaptation in Evolutionary Programming
e Some Theory of Evolution Strategies

e Application Examples of Evolution Strategies
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Evolution Strategies
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Evolution Strategies

Evolutionary Algorithms
1. Set of candidate solutions (individuals): Population.

2. Generating candidates by:
e Reproduction: Copying an individual.
e Crossover (recombination): > 2 parents — > 2 children.

e Mutation: 1 parent — 1 child.
3. Quality measure of individuals: Fitness function, objective function.

4. Survival-of-the-fittest principle.
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Evolution Strategies

Main components of EAS

1. Representation of individuals: Coding.

2. Evaluation method for individuals: Fitness.

3. Initialization procedure for the 1st generation.

4. Definition of variation operators (mutation and crossover).
5. Parent (mating) selection mechanism.

6. Survivor (environmental) selection mechanism.

7. Technical parameters (e.g. mutation rates, population size).
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Evolution Strategies

‘Optimal’ Parameter Tuning:
e EXxperimental tests.
e Adaptation based on measured quality.

e = Self-adaptation based on evolution !
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Evolution Strategies

The Evolution Loop

initialize population

l

evaluate
select mating partners
(terminate)
recombinate
select
mutate
evaluate
/! <
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Evolution Strategies

Algorithm Outline

t .= Q0;

initialize P(t);

evaluate P(t);

while not terminate do
P'(t) := select-mates(P(t));
P"(t) := variation(P'(t)),

evaluate(P"(t));
P(t+ 1) := select(P"(t) U P(t));
t:=t+ 1;

od
e Variation summarizes recombination and mutation.

e Selection can take old parents into account.
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Evolution Strategies

Advantages of EASs

e Widely applicable, also in cases where no (good) problem specific techniques
are available:

— Multimodalities, discontinuities, constraints.
— Noisy objective functions.
— Multiple criteria decision making problems.

— Implicitly defined problems (simulation models).
e NO presumptions with respect to the problem space.
e Low development costs; i.e. costs to adapt to new problem spaces.
e T he solutions of EA’s have straightforward interpretations.

e They can be run interactively (online parameter adjustment).
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Evolution Strategies

Disadvantages of EAsS

e NO guarantee for finding optimal solutions within a finite amount of time:
True for all global optimization methods.

e No complete theoretical basis (yet), but much progress is being made.

e Parameter tuning is largely based on trial and error (genetic algorithms);
solution: Self-adaptation (evolution strategies).

o Often computationally expensive: Parallelism.
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Evolution Strategies

Evolution Strategies: Main Characteristics
e Often continuous search spaces, IR".
e Emphasis on mutation: n-dimensionally normal-distributed, expectation zero.
e Various recombination operators.
e Deterministic (u,\)-selection.
e Self-adaptation of strategy parameters: First self-adaptive EA.

e Generation of an offspring surplus A > u.
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Evolution Strategies

Representation (1)

Spaces:

e Search space:

IR"

e Strategy parameter space (standard deviations and rotation angles of muta-

tion): Internal model

S = IRZ—O X [—m, 7]

e Individual space:

I=IR"x S
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Evolution Strategies

Representation (2)

One individual:

a= ((z1,...,20),(01,...,00,),(a1,...,0n,)) €I

vV vV vV
— — —
€T g 84

The three parts of an individual:

T Object variables = Fitness f(¥)
o Standard deviations = Variances
a Rotation angles = Covariances
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Evolution Strategies

Representation (3)

A strategy parameter set

e Is part of an individual.

e Represents the probability density function (p.d.f.) for its mutation.

N Remark

No
1 0 standard mutation
n 0 standard mutations
n n-(n—1)/2 correlated mutations
1<n,<n | (n—-"%)(n,—1) | general case
(correlated mutations)

Possible settings of n, and n,.
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Evolution Strategies

Simple Self-Adaptive Mutation (1)

e Simple mutation makes use of normally distributed variations, N(&, o).

exp (_(Awi — 5)2>

Ai —
p(Az;) 5o

1
oV 2T

e Expectation (£) is assumed to equal O.

e Standard deviation (o) must be adapted.
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Evolution Strategies

Simple Self-Adaptive Mutation (2)

T he one-dimensional case:

Center for Appled Systems Analysis

0.50F = 77

0.40
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0.20
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Evolution Strategies

Simple Self-Adaptive Mutation (3)
e n, =1 = Low degree of freedom; one step size per individual.
e o is mutated by multiplying by e', with I from a normal probability distribution.

e r; IS mutated by adding some Ax; from a normal probability distribution.

I = IR"x IR,
/ = - =/ /

m{TO}(xa O-) - (:B 9 o )

70 ~ 1/Vn

o-exp(rg-N(0,1))

x; + o - NZ(Oa 1)
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Evolution Strategies

Simple Self-Adaptive Mutation (4)

@ equal probability to place an offspring

2 1 0

Simple mutations, n =2, ny = 1, (= no = 0).
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Evolution Strategies

Simple Self-Adaptive Mutation (5)
e Now: n, = n = Higher degree of freedom.

e Object variables z; have their own, individual step sizes o;.

I = IR" xIRY
m{{T,T,}(a_f, 7) = (@)

T ~ 1/4/2y/n
7/ ~ 1/v2n

o; -exp(r'- N(0,1) +7-N,;(0,1))

zi + o; - N;(0,1)
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Evolution Strategies

Simple Self-Adaptive Mutation (6)

@ equal probability to place an offspring

2 =1 0 1 2

Simple mutations, n = 2, ny = 2, (n, = 0).
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Evolution Strategies

Correlated Mutation (1)

e Correlated mutation uses the following probability distribution function for AZ:

det C 1
AL) = cexp | —=AZT . CcAz
pan) = [T e (- )
e C~! is the covariance matrix:
ci = oy
. 0 no correlations
Cij.(i#ED 5(0? — 0?)tan(2ay;) correlations

e The pdf is just a generalized, n-dimensional normal distribution.
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Evolution Strategies

Correlated Mutation (2)

n=2 A Ax 1

62
c
1
%12
AX 2
lines of equal mutation
probability density

Illustration of the mutation ellipsoid for the case n =2, ny, = 2, n, = 1.
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Evolution Strategies

Correlated Mutation (3)

e Now: Up to n-(n+ 1)/2 degrees of freedom facilitates learning of arbitrary
preference directions.

e o; is mutated by multiplying by e with '; from a normal probability distribu-
tion.

e «; is mutated by adding some Aa; from a normal probability distribution.

° @ig mutated by adding some Ax from an n-dimensional normal distribution
N(O0,C").
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Evolution Strategies

Correlated Mutation (4)

The formal description:
No

n-(n—1)/2

I IR™ x IRQL_ X [—m, ]
@0 = @7

- ~ 1/4/2y/n

7/ 1/v/2n
p 5°

%

Q

o; -exp(r’- N(0,1) 4 7- N;(0,1))
Z 4+ N(0,C"

8 QL 9
\Q'\S.\
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Evolution Strategies

Correlated Mutations (5)

@ equal probability to place an offspring

|
2 =1 0 1 2

Correlated mutations, n =2, ny, = 2, no = 1.
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Evolution Strategies

Mutation Remarks (1)

Some remarks:
e Standard strategy: n, = n, n, = 0.

e For correlated mutations:

— Oc ~ ]\7(5,0) is generated by a multiplication of the uncorrelated random
vector &, by n, rotation matrices (Schwefel 1981, Rudolph 1992).

n—1 n
Fe=1] [l R(ej)- 5.
i=1 j=i+1

— Exactly the feasible (positive definite) correlation matrices C can be cre-
ated this way (Rudolph 1992).
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Evolution Strategies

Mutation Remarks (2)

Why log-normal distribution for o;-modification 7

Probability density function:

Center for Appled Systems Analysis

)2
fx(x) = (n 1) )

1
- . exp —_
ox\ 27 ( 202

Median expla)
Flexpla)) = 1/2

t
!
'
1
1
1
!
1
1
1
I
I
!
1

log-normal distribution, o = 1,4 = 0.
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Evolution Strategies

Mutation Remarks (3)

e EXxpectation:

E(X) = exp (u + ";)

e Median (defined by: Fx(exp(un)) = %): exp(u)
(u =0 = Median is one).

Advantages:
e Identical probability to sample z and %
e Small changes more likely than large ones.

e o; are guaranteed to remain positive.
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Evolution Strategies

Evolution Strategies: Recombination (1)

Basic ideas:
o /" — I, u parents yield 1 offspring.
e Is applied X times, typically A > pu.

e Is applied to object variables as well as strategy parameters; often different
for both.

e Per offspring gene two corresponding parent genes are involved.

e Two ways to recombine two parent alleles:
— Discrete recombination: Choose one randomly.

— Intermediate recombination: Average the values.

e Might involve two or (up to) u parents (global recombination).
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Evolution Strategies

Evolution Strategies: Recombination (2)

Different methods:

e Discrete: Exchange of variables.

e Intermediary:. Averaging of variables.

e In dual (2 parents) and global (up to u parents) form:

Center for Appled Systems Analysis

Dual: Two parents are chosen at random for the creation of one offspring.
Global: One parent is chosen anew for each component of the offspring.
Recombination on &, &, « is usually different from each other !

Most commonly: Discrete recombination on object variables, global inter-
mediate on strategy parameters.
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Evolution Strategies

Evolution Strategies: Recombination (3)

Recombination illustrated

11 X12 *13 X14 15 o11 012 013 14 %15
. 1 1T ..
¥1 | %22 | Y23 | Y24 | o5 1 %1 | %2 | %3 | %4 ! %5 i
]

%31 %32 %33 %34 %35 %31 %32 033 ! 934 935
| | L[] N N
j_ *41 X42 43 j_ X44 45 ‘ %11 L 42 ‘ %3 : O44 %45
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Evolution Strategies

Evolution Strategies: Recombination (4)

Example:

e Population size 6, 5 object variables, 5 strategy parameters.

e Local discrete recombination on xz;: 2 parents sampled; random decision for
each z;.

e Global intermediary recombination on o;: 1st parent held fixed; 2nd sampled
for each x;; averaging of parental x; values.

AN
AAAI '99 MP3-32
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Evolution Strategies

Evolution Strategies: Selection (1)
e Strictly deterministic, rank-based.
e The u best ranks are handled equally.

o (u,\)-selection:
— A> .
— The pu best of the offspring population (P"(t)) survive.
— Important for self-adaptation.

— Applicable also for noisy objective functions, moving optima.
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Evolution Strategies

e (u+MN)-selection:
— A < u possible.
— The u best out of parents and offspring (P"(t) U P(t)) survive.
— Hinders self-adaptation to work.

— Keeps best solution.

e Selective pressure: Very strong.
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Evolution Strategies

Evolution Strategies: Selection (2)
Selective pressure measured by takeover time 7*:
Definition:

Number of generations until repeated application of selection completely fills the
population with copies of the best individual (Goldberg and Deb 1991).

Remarks:

e Result for (u,\)-selection (Back 1994):
e T & 2 generations for a (15,100)-ES.

e Proportional selection in GAs: 7™ &~ Aln A = 460 generations!
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Evolution Strategies

Evolution Strategies: Other components

e Initialization:

— x;,05. randomly

— oy 0x;/+/n, with §x; a very rough measure for the distance to the optimum.
e Termination:

— Termination after a number of generations.

— Or iff max{f(Zi(¢))} — min{f(Zi(t))} < c(P(1)).
x c(P(t)) absolute (=¢1 > 0), or

x c(P(t)) relative (=2 |f])).

AAAI '99 MP3-36




Evolution Strategies

Evolution Strategies: Algorithm

t .= Q0;
initialize P(0) := {d1(0),...,d,(0)} € I" where [ = IR" X S;
evaluate P(0) : {f(£1(0)),..., f(£.,(0))};
while not terminate(P(t)) do
recombine: a,(t) :=r'(P(t)) Yk € {1,...,A};
mutate: d/(t) := m{{T,T,’B}(c‘i}C(t)) Vk € {1,...,\};
evaluate P"(t) := {a(t),...,a\(t)} : {f(&(t)),..., (@ ()},
select: P(t+ 1) := if (u, \)-selection

thens(, ) (P"(t));
else s, (P (t) U P(1)),
t:=t+ 1;
od
AN
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Self-Adaptation in Evolution Strategies

Classification of Adaptation in EAs (1)
According to (Hinterding, Michalewicz, Eiben, 1997):

Type of adaptation:
e Static (i.e., none: Constant parameter settings).

e Dynamic (i.e., parameters modified during run).

— Deterministic:
Parameter altered by some deterministic rule.

— Adaptive:
Monitor progress, use feedback mechanism to determine direction and/or
magnitude of change.

— Self-Adaptive:
Parameters encoded in individuals, undergo evolution.
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Self-Adaptation in Evolution Strategies

Classification of Adaptation in EAs (2)

Level of adaptation:

e Environment:
Fitness function changes.

e Population:
Concerns global parameters which apply to all population members.

e Individual:
Concerns strategy parameters which apply to single individuals.

e Component:
Concerns strategy parameters local to some component of an individual.
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Self-Adaptation in Evolution Strategies

Classification of Adaptation in EAs (3)

Combinations:

Deterministic | Adaptive | Self-adaptive
Environment E-D E-A E-SA
Population P-D P-A P-SA
Individual I-D I-A I-SA
Component C-D C-A C-SA

AAAI '99 MP3-40
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Self-Adaptation in Evolution Strategies

Self-adaptation principles
e Biological model: Repair enzymes, mutator genes.
e No deterministic control: strategy parameters evolve.
e Indirect link between fitness and useful strategy parameter settings.
e Strategy parameters are conceivable as an internal model of the local topology.

e Typical approaches: I-SA and C-SA.

e Individual space:

I =MXxS
— M: Search space.

— & Strategy parameter space.
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Self-Adaptation in Evolution Strategies

The crucial claim (Schwefel 1987, 1992):

Self-adaptation of strategy parameters works I

e Without exogenous control.

e By recombining/mutating the strategy parameters.

e By exploiting the implicit link between fithness and useful internal model.
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Self-Adaptation in Evolution Strategies

Necessary conditions (found by experiments):
e Generation of a surplus, A > u
e (u,N)-selection (to guarantee extinction of misadapted individuals.

e A not too strong selective pressure e.g., (15,100) where \/u = 7, but clearly
@ > 1 is neccesary.

e Recombination also on strategy parameters (especially: intermediate recom-
bination).
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Self-Adaptation in Evolution Strategies

Empirical Test Design

e With simple functions (with predictable optimal o; values), check whether it
works.

e Investigate impact of selection.

e Compare with optimal behavior (if known).
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Self-Adaptation in Evolution Strategies

Test functions for experiments

e One common step size (n, = 1): Sphere model.
@) =) a7
i=1

e Appropriate scaling of variables (n, = n):

n

f2(&) =) i-af

=1
e A metric (no =n, nao=n-(n—1)/2):
n T 2
E) =) D) =
i=1 \j=1
o
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Self-Adaptation in Evolution Strategies

Experiments

Sketch of the lines of equal probability density
o Left: Standard mutations, n, = 1.
e Middle: Standard mutations, n, = 2.

e Right: Correlated mutations, n, = 2, n, = 1.

kX2

\J
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Self-Adaptation in Evolution Strategies

Experimental Results on Sphere Model (1)

20 T T T T T T T T T T T T ‘ T T T T
(1,10)
151 g B
(1+10)
n
[0}
o
o 10 _
e L
(Al
57 —
O L L L L ‘ L L L L ‘ L L ‘ L L L L
0 500 1000 1500 2000

Generation

Convergence velocity of a (1,10)-ES vs. that of a (1 4+ 10)-ES (sphere model f; with n = 30 and
ne = 1).
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Self-Adaptation in Evolution Strategies

Experimental Results on Sphere Model (2)

Progress measure:

Pg:Iog fmin(o)

fmin(g)
e Counterintuitive: Elitist strategy is a bad choice.
e Misadapted o might survive in an elitist strategy.

e Forgetting is necessary to prevent stagnation periods.

AAAI '99 MP3-48




Self-Adaptation in Evolution Strategies

Time-Varying Sphere Model (1)
e Sphere model, f(%) = || — &*||? = R2.
e Optimum location x* is shifted every 150 generations.
e (15,100)-ES, n, = 1, n = 30, no recombination.

e Simple model of a dynamic environment (with “catastrophes”).
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Self-Adaptation in Evolution Strategies

Time-varying Sphere Model (2)

vg O max

y Og

step sizes o,

Average best objective function value /

0 200 400 600 800 1000
Generation

Best objective function value and minimum, average, maximum and optimal standard deviation.
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Self-Adaptation in Evolution Strategies

Time-varying Sphere Model (3)

e Standard deviation o adapts to the optimum value

R VI (@)

Topt — CM,A; — Cu,A -

e Transition time is g x n (Beyer 1995).

= The principle learns the optimal setting of the mutation rate (“internal strat-
egy” ) without exogenous control.
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Self-Adaptation in Evolution Strategies

Self-Adaptation is Collective Learning (1)

Center for Appled Systems Analysis

40T

300

Progress
N
o
\

| Optimal, precalculated o,

Number of parents u

Average convergence velocity on f>
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Self-Adaptation in Evolution Strategies

Self-Adaptation is Collective Learning (2)
e (11,100)-ES with p € {1,...,30}
e n, = n = 30, and the optimum o; 1/\/5 is known.
e Optimum setting of g;: u =1 performs best.

e Self-adaptation: p = 12 imperfect, diverse parents are as good as the optimal
strategy.

e Individuals exchange information about their “internal models” by recombina-
tion.
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Self-Adaptation in Evolution Strategies

Self-Adaptation of Covariances (1)

40 C T T T T

30F .
[9)]
K e
% 201 correlated L7 n
S L i 4
a

10k /’/ uncorrelated ]

oV .+ v v & v v v T T R

0 500 1000 1500 2000

Generation

Convergence velocity of ES with correlated mutations vs. one
with self-adaptation of standard deviations only, on f3.
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Self-Adaptation in Evolution Strategies

Self-Adaptation of Covariances (2)
e (15,100)-ES, n = n, = 10, n, = 45.

e Recombination:
— Intermediary on z;.
— @Global intermediary on o;.

— None on «; (covariances).

Covariances increase effectiveness in case of rotated coordinate systems. I
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Self-Adaptation in Evolution Strategies

Other Variants for Continuous Search Spaces

e Original EP:
o =0-(14+a-N(0,1))
Equivalent to log-normal with n, = 1, 70 = o (Beyer 1995).

e Two-point distribution:

y_ ) ora , ifu~U(0,1)<1/2
=Y o/a , ifu~U,1)>1/2

(Mutational step size control after Rechenberg, a = 1.3).

e Substitution of N(0,1) by other distributions (e.g., one-dimensional Cauchy,
Yao and Liu 1996).

AAAI '99 MP3-56
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Self-Adaptation in Evolutionary Programming

Evolutionary Programming: Purpose

Simulate Evolution as a Learning Process to Generate Artificial Intelligence.

e Intelligence defined as the capability of a system to adapt its behavior to meet
its goals in a range of environments (Fogel 1995).

e Intelligence viewed as adaptive behavior.

e Prediction of the environment is a prerequisite to intelligent behavior (predic-
tion and response in the light of a given goal).

e Adaptation is not possible without a capability to predict.
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Self-Adaptation in Evolutionary Programming

Historical EP

Developed by L. Fogel (1962):
e Evolve a population of finite state machines (FSMs).
e FSMs provide successively better predictions of an environmental sequence.

e Predictions in light of a given goal.
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Self-Adaptation in Evolutionary Programming

Example of a Finite State Machine (1)

O/c

m

0/b
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Self-Adaptation in Evolutionary Programming

Example of a Finite State Machine (2)

e States S={A,B,C}.
e Inputs I ={0,1}, outputs O = {a,b, c}.
e Transition function §: S x I —= S x O.

e Transforms input stream into output stream.
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Self-Adaptation in Evolutionary Programming

Finite State Machines as Predictors

Performance measured on the basis of the machine’s prediction capability, e.g. by
output; = input;4;.

0/0

present state
input symbol
next state
output symbol

= TOoON
O ®
oOXxr QN
= > = >
— Mo >
O ®

Initial state: C
Input string: 011101
Output string: 110111

Good predictions: 60 %
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Self-Adaptation in Evolutionary Programming

Search Operators

Mutation: Representation “naturally” determines the mutation operators:
e Change an output symbol.
e Change a state-transition.
e Add a state.
e Delete a state.
e Change the start state.

Crossover: None
Normally: All mutations with fixed probabilities p;.

Here: Self-adaptation of p;.
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Self-Adaptation in Evolutionary Programming

Self-adaptation of p;

According to (Fogel, Angeline, Fogel, 1995):
e Associate p; with each component of the FSM.
e Initial values of mutability parameters: p? = 0.001.

e Modification of strategy parameters p;:

p; =pi+a-N(0,1)
(o = 0.01).

e Two alternative methods:
Selective ~

AAAI '99 MP3-63
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Self-Adaptation in Evolutionary Programming

Selective Self-Adaptation

e Component selection for mutation based on
b

> Dk

P{Select comp. i} =
(relative selection probabilities).

e Summation index k running over all components (related to the particular type
of mutation).

e p; > ¢ =0.001 explicitly guaranteed.

e Mutation of a component depends on p; of other components.

AAAI '99 MP3-64
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Self-Adaptation in Evolutionary Programming

Multi-Mutational Self-Adaptation

e The p; are absolute mutation probabilities.
e 0.005 < p; < 0.999 explicitly guaranteed.
e Mutation of a component independent of p; of other components.

e Greater diversity of offspring than selective self-adaptation.
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Self-Adaptation in Evolutionary Programming

Results (1)

Simpler prediction experiment: (101110011101)*

vvvvvvvvvvvvvvvvv

- -,.—-.a‘
———_y pm

— NO Adapt
—— Selective
? ----- Multi-Mutate

0 100 200 300 400 500 600 700

Fraction Correct

Generation

= Selective self-adaptation slightly better.
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Self-Adaptation in Evolutionary Programming

Results (2)

More complex prediction experiment: (101100111000110010)*

Y PWOUW DY

- No Adapt
— Selective

0.825§ ----- Multi-Mutate

Fraction Correct

11111 4 A & A '] " " M A 'l A A " P A " A & S 4 A A L " A A N I "N R

0 100 200 300 400 500 600 700

Generation

= Multi-mutational self-adaptation better.
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Self-Adaptation in Evolutionary Programming

Conclusion

Multi-mutational self-adaptation
e explores a larger diversity, and therefore
e is more helpful on complex problems.

= More work needed !

AAAI '99 MP3-68



Self-Adaptation in Evolutionary Programming

Modern EP

Applied for continuous parameter optimization

Similar to evolution strategy, with:
e Self-adaptation of n standard deviations (meta-EP).
e Self-adaptation of covariances (Rmeta-EP).
e =) (i.e., parent and offspring population size are identical).
e NoO analogue of recombination.

e Probabilistic (u + u)-selection.
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Self-Adaptation in Evolutionary Programming

Mutation operator

Modifies strategy parameters and object variables

oi- (1 +a-N;i(0,1))

ST e

Recent results by Beyer (1995):
e For 1o = a (small), n, = 1, the ES and EP method behave identically.

e Self-adaptation works for a variety of different pdf’'s for the modification of
step sizes.
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Self-Adaptation in Evolutionary Programming

Experimental Test (1)

Best objective function value, time-varying sphere model, ES / EP:

Average best objective function value

0 200 400 600 800 1000
Generation
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Self-Adaptation in Evolutionary Programming

Experimental Test (2)

Average mutation rate, time-varying sphere model, ES / EP:

Average standard deviation

10 PR S S E R N I

0 200 400 600 800 1000
Generation
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Self-Adaptation in Evolutionary Programming

Empirical Findings on Self-Adaptation (1)

1. Often, lognormal modifications outperform normal modifications.
= EP typically uses the ES method.
(Saravanan 1994, Saravanan, Fogel 1994, Saravanan, Fogel, Nelson 1995).

2. On noisy objective functions, this behavior inverts (Angeline 1996).

3. It is important to modify o; first and use o to modify the object variables
(Gehlhaar, Fogel 1996).

4. Self-adaptation works also with (x4 \)-selection.
5. Self-adaptation works also with u = A.

6. Self-adaptation works also without recombination.
The last three results from (Gehlhaar, Fogel 1996).
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Self-Adaptation in Evolutionary Programming

Empirical Findings on Self-Adaptation (2)

= 1. confirms ES findings.
= 2., 4., 5., 6. contradict ES findings.
e Definition of self-adaptation 7
e Quantitative measurement of self-adaptation 7

e Assessment for more complex objective functions 7
(Until now only by experiment).

e Relation to learning in AI 7
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Conclusions

Self-Adaptation: Conclusions

e Powerful & robust parameter control scheme.

e Optimal conditions concerning selection, population size, etc.?
e Perfect adaptation vs. useful diversity — or a mixture 7

e Optimal speed of self-adaptation (i.e., learning rate settings) 7

e Few theoretical results.
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Conclusions

Self-Adaptation: Individuals as Agents
e Individuals are autonomous; internal control of their behavior (mutation).
e Individuals communicate by exchanging partial information (recombination).
e Individuals are reactive to their environment (objective function).

e Further possibilities:
— Spatial communication structure (graph).
— Parallel implementation.

— More complex internal strategies; including symbolic representation.
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Application Examples

Application Fields

o Experimental optimization & optimization with subjective evaluation, e.g.:
— Coffee recipes; general food recipes.
— Biochemical fermentation processes.
— Wind tunnel experiments.

— Two-phase nozzle optimization experiments.

e Technical optimization:
— Design & Production.
— Logistics.

— Control of dynamic processes.
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Application Examples

Application Fields

e Structure optimization, e.g.:
— Structure & parameters of plants.
— Connection structure & weights of neural nets.

— Number of thicknesses of layers in multilayer structures.

e Data analysis, e.g.:
— Clustering (number & centers of clusters).
— Fitting models to data.

— Time series prediction.
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Application Examples

Application 1: Hot Water flashing nozzle (1)

t

At throat : Mach 1 and onset of flashing

1968 AEG

AN
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Application Examples

Application 1: Hot Water flashing nozzle (2)

Two-phase flashing nozzle

ﬂ
H
A

45 —
Solution
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Application Examples

Application 2: Minimal weight truss layout

I \i \i \d 4 . Start

NN

! | I ] ] Optimum

738 kp
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Application Examples

Application 3: Concrete shell roof

ccccccccccccccccccccccccccccccc

under own and outer load (snow and wind) ’

Optimal shape

Spherical shape

‘Height 1.34m

e Halffspan5.00m \
max |mg| —min Savings : 36% shell thickness
Orthogonal bending strength 27% armation
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Application Examples

y-Range

Go

Application 4: Dipole Magnet Structure (1)
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Application Examples

Application 4: Dipole Magnet Structure (2)

e Analysis of the magnetic field by Finite Element Analysis (FEM).
e Minimize sum of squared deviations from the ideal.
e Individuals: Vectors of positions (y1,...,yn).

e Middle: 9.82% better than upper graphic; bottom: 2.7% better.
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Application Examples

Optical Multilayers (1)

Substrate (Glass)

Desired
A

7 s
— 2
ol

B — ) Current
T —_—™ Q
—_— =0

\/

[

Reflection

o=

Filter layers:
- Thicknesses
- Materials

Goal: Find a filter structure such that the real reflection behavior matches the
desired one as close as possible.
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Application Examples

Optical Multilayers (2)

Problem parameters:
e Thicknesses d = (d1,...,d,) of layers.
e Layer materials 7 = (n1,...,n,) (integer values).
e Number of layers n.

= Mixed-integer, variable-dimensional problem.
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Application Examples

Optical Multilayers (3)

Objective function:

A . _ 2
/ [R(7.0) - RO dx
Ad

o R(d,i,)):
Reflection of the actual filter for wavelength A.
Calculation according to matrix method.

e R()\): Desired reflection value.
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Application Examples

Optical Multilayers (4)

Example topology: Only layer thicknesses vary; n = 2.

i gy
Wl
Wi
g unnllul'l'ff:'l'lull',’,',’,}’;?’ii&ﬁ%ﬂﬁw
[l
I ,,,,un:uu:u,,,:,';,,:#:;,:,:,:,z,;,;;;%,m

N\,
~

i
uuu;',’,’,',',’,’,’,',’,’,’,’,’,'ﬂmﬂlll

RAesten Topese Naws
S

N\

=
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Application Examples

Optical Multilayers (5)

Example structure:

57\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\‘\\\\\\\\\
Durchschnittliche Reflektion = 0.61093

Brechungsindex

0 10 20 30 40 50
Optische Dicke [um]
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Application Examples

Optical Multilayers (6)

Example reflection:

0.010 [ T T T T T T T T T T T

0.008 - n

%

e 0.006 n

[I—

Reflektion

©

(@]

(@]

~
I

|

0.002 -
Durchschnittliche Reflektion = 0.61093

7 8 9 10 11 12 13
Wellenldnge [um]
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Application Examples

Optical Multilayers (7)

Existing Methods:

e Refinement methods:
— Initial design constructed by an expert.

— Local optimization of the initial design.

e Synthesis methods:
— Without initial design (random start).

— Automatical global optimization.
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Application Examples

Optical Multilayers (8)

Parallel evolutionary algorithm:
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Application Examples

Optical Multilayers (9)

Parallel evolutionary algorithm:
e Per node: EA for mixed-integer representation.
e Isolation and migration of best individuals.

e Mutation of discrete variables: Fixed p,, per population.
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Application Examples

Optical Multilayers (10)

Reference Results:

1.7
1.65
1.6
1.55
15
1.45
14
1.35
13
1.25
12
1.15
11
1.05

T T T T T T T T T T T T T T T T T T T T T T
Tikhonravov et. al.

+ Willey ----
EVOALG -¢--
Andere Autoren +

T
00
+

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5

045 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54
Optical thickness [1e-6m]

Average reflection [%]

ol
(&)

Comparison of literature results, theoretical predictions, and EA results.
= Excellent algorithm for the synthesis of filters.
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Application Examples

Parallel time series prediction (1)

Goals:

e Combine traditional statistical methods for time series analysis with parallel
computational intelligence approaches.

e Estimate the parameters of a model chosen by experts by means of parallel
evolutionary algorithms.

e Test the feasibility of the approach with classical statistical models (ARMA-
models).

e Use the approach for the long-term sales forecast model of Lewandowski.
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Application Examples

Parallel time series prediction (2)

ARMA-problem:
Tt = a1Ti—1 + ... Fopri—p + et — Bret—1 — ... — ByEi—g

e Parameters to be estimated:

- P,q

— at,...,0p,B1,..., 05

= mixed-integer problem of variable dimension.

e Estimation of error series (&):
g: estimated in iterative process during the evolutionary algorithm: residuals of
actual generation become estimates for error series for following generation.
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Application Examples

Parallel time series prediction (3)

Coding (for the example of the a-vector):

23 (-21|141|102)|17|-76| 10| 13

genotype
n=8 p | 1| 1| 0| 1] 0] 0| 0] 1

phenotype 02 |41]02 -4.9 1.3

p =5 oy Oy Og Oy Ol
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Application Examples

Parallel time series prediction (4)

Fitnhess function:

Z[:ct — (OéliCt—l + ...+ ApTLt—yp + & — 51@—1 — .. 5q§t—q)]2

= Least-squares function )
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Application Examples

Parallel time series prediction (5)

“ ;

Difference between
simualted and estimated
errors

time series index
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Application Examples

Parallel time series prediction (6)

Results:
e Estimation of error series very successful

e L east squares difference of identified models can compete with statistical soft-
ware (SAS).

e About 20% of model orders p and q identified correctly.

AN
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Application Examples

Parallel time series prediction (7)

Parallel forecasting for sales planning:

e Problems:

— All influencing parameters have to be considered
= High complexity.

— Updates needed in high frequency (daily, weekly)
= Time for calculations very important.
e Example: Forecasting the sales of a passenger car
— Influencing variables: Price, Standard equipment, Model policy
— Other factors as e.g. the economy (in form of the gross domestic product,

unemployment rate, etc.) have to be taken into consideration.

e Model: Long-term Lewandowski model.
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Application Examples

Parallel time series prediction (8)

Results for passenger car problem:
e Model not easy to analyse, therefore treated as black box.

e Quality criterion: reached fit in comparison to a parameter setting based on
expert knowledge.

e Comparison of parameter profiles:

— Mean error in the past for parameter setting
x (a): 0.99 (expert’'s parameter setting).

x (b): 0.26 (optimized profile with initialisation by an expert).

x (c): 0.25 (optimized profile with random initialisation).
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Application Examples

Center for Appled Systems Analysis

Param. No.
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Some Theory

The mutation vector (1)

AT =7=(z1,...,2n)

Z1,..., 2. (0,0)-normally distributed random variables.
= S2=>3"_ Z? is x2-distributed.

Random variable S = v S?:
Length of the mutation vector 7.

After some math:

B(S) ~ovn . V(S):%a

e Variance V(S) is independent of n.

e For large n: Offspring located on hypersphere of radius E(S) = o+/n.
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Some Theory

The mutation vector (2)

=) =3 3

i it i i -
— — - e

& 3

it 2 3 =

& [}

5

AN

Center for Appled Systems Analysis
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Some Theory

Convergence velocity: Definition

Convergence velocity: Expectation of the distance towards the optimum covered
per generation.

o= E(|IZ° = Z]| = ||&° — Zr1]l)

Alternatively:

o= E(f(&) - f(@)] - |f(&) = f(Z4+1)])
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Some Theory

Convergence velocity of multi-membered ESs (1)

Simplifications:
e NoO self-adaption.
e One step-size.
e NO recombination.
o n=1

= (1 4+ X\)-strategies, (1, A)-strategies.
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Some Theory

Convergence velocity of multi-membered ESs (2)
O,

f(P) =R’
f(O4) =1

(1,4)-strategy, sphere model
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Some Theory

Convergence velocity of multi-membered ESs (2)
Definition:
Z1,7Z5,...,7Zy i.i.d. random variables with p.d.f. p(z).
Zia < Zoaan <o < 2
is called order statistics of the Z;. p,.n(z) denotes the p.d.f. of Z,.,.

Idea:

Best offspring individual has
e smallest value of »r = rq1-y
e largest value of 2/ = Z|.,

Z': projection into direction of origin.
1,;:)\ ~ N(07 0)
Zv:)\ ~ N(07 1)
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Some Theory

Convergence velocity of multi-membered ESs (3)

p — E(R2 o T%:)\)

S
|_l
-+
e
|

> 0 >
To\ = I“+R°—2R-Z\_ ..,

Some math:

i1t E(2R- Z\.\ — 0°n) = E(2Ro - Zy.) — 0°n)

= / (2Ro - z — 0271) pa:a(z) dz

Zmain
o0 o0
= 2Ro / 2 pan(2) dz — 0”n / pa:r(z) dz
“min “min
Gaia
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Some Theory

Convergence velocity of multi-membered ESs (4)
With:

pra() = A 6(2) (@)1 = 7 (9(:)))

It follows that:

o0 o0

. d d

B4y = 2Ro / 2 (@)Y dz = 0% / - (@()) dz
Zomin Zmin
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Some Theory

Convergence velocity of (1,)\)-ESs (1)

When accepting everything (non-elitist), zin = —oo.

~ 2
90(1,)\) = 2Ro - Clx— 0N

L progress coefficent (Rechenberg)
c1 ) = E(Z):)) {

selection intensity (Miihlenbein)
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Some Theory

Convergence velocity of (1,)\)-ESs (2)

2+

15 F

Cil.\ —

05

0 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

A —
‘The progress coefficient ¢y y.

e Asymptotic behaviour: ¢1 y & V2In A.
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Some Theory

Convergence velocity of (1,)\)-ESs (3)

Normalisation of ¢, with p & &% ,¢' =% o' =%

! / 1 /2
Py — CLA0 — 50

e Optimal standard deviation:
/ —_
Oopt — C1,\
e Maximum convergence velocity:

15
QD;na:c — Ecl,)\ ~ In A

Evolution condition: ¢/ < 2¢q ) (Guarantees o' > 0).
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Some Theory

Evolution efficiency

Maximum progress per individual: e; x = ¢}, ../ A

€42

0.12 }

10 20 30 40 50

AAAI '99 MP3-115



Some Theory

Convergence velocity of (1 + \)-ESs

e From r < R it follows that

on
Zomin — ——.
min 2R
e T hus:
O'/2 2\
90/(14_)\) — JlCl—I—A(J/) Y (1 —
e \Where
0. @)
A
c14a(z) = /zadﬂ(z) dz
%

No further analytical simplifications are possible.
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Some Theory

Convergence velocity: illustration

2‘55\\\\\\\\\ T 1T T 1T \"\\\\\\\\ TT T T T T TT \\\\\\\\\7
§ 20F F¥;
z :
= r
9 |-
v Wf)j
[0}
O T T~
c _ ~ .
O y ; ~
© 1.0F % AN
0] 7 N
> 4 N
S A s (14+10)
- Wy TNeL(145)
ks 0'55// S Y () NN
.E e (1+1) =)
[S] /SN SR - -
£ co TN -
S 00
=z

o5k (M (1,2) (1,5)

7\\\\\\\\\‘\\\\\\ \\‘\\\\\ \\\‘\\\\\\\\\‘\\\\\\\\\
0 1 2 3 4 5

Normalized standard deviation a,

Normalized convergence velocity ¢’ as a function of normalized standard deviation o’.
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Some Theory

Convergence velocity of (u, \)-ESs (1)

Simplifications:
e NoO self-adaptation.
e One step-size.

e Recombination:

— center of mass recombination ,u/,u]
(intermediary), or

— global discete recombination ,LL/,LLD.
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Some Theory

Convergence velocity of (u, \)-ESs (2)

Illustration of center of mass recombination
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Some Theory

Convergence velocity of (i, \)-ESs (3)

epx = (R)—E{R),))
1 K 1 K

= Y Ri=2 Y
'uv=1 'uv—l

Where:

° <R> . Average distance to the optimum of parents.

o <]5L>N,)\ . Average distance to the optimum of the u best ofspring.
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Some Theory

Convergence velocity of (u/ur, \)-ESs (1)
Without derivation (Rechenberg '94, Beyer '96):

(For o/ € n, u2 < n)

e Optimal standard deviation:

/ —
Topt — K- Cpy )

e Maximum convergence velocity:

1 2
QD;na:c — Elu "Cu
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Some Theory

Convergence velocity of (u/uy, \)-ESs (2)

Progress coefficient (Z,-, ~ N(0,1)):
A
1 A _ 7
ur = - 2 B(Zpy) & e a(eTH(1 = D)
’LLUZ)\—,u—I—l K

(e

Q

Conjecture:
, A
Omaz = M- In—
v
/é %
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Some Theory

Convergence velocity of (u/up,A\)-ESs (1)
Without derivation (Rechenberg '94, Beyer '96):

SOI(M/MD,)\) = VH- a0 = 07 (For o' < n, p? < n)

e Optimal standard deviation:
/ —_
Topt — \/ﬁ Cr,\
e Maximum convergence velocity:
/ 1 2

Pmax — EU T

Again: ¢ - ln%
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Some Theory

Interpretation of results

e Genetic repair (Beyer '96):
,u/,u]—recombination decreases the harmful part of mutation.

e Incest taboo:
,u/,u]—recombination is only useful, if parents are different from each other.

e Implicit genetic repair:
,LL/,LLD—recombination estimates the center of mass corresponding to a species
centered around the wild-type.
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Conclusions

Summary:

e ESs are powerful search and optimization methods.
e Applicable e.g. to data analysis, fuzzy systems, neural networks etc.

e Self-adaptation is an important, distinguishing feature (learning of internal
models).

e A powerful theory is available for ESs; focusing on convergence velocity and
global convergence with probability one.

e Individuals can be seen as agents (especially in parallel spatial implementa-
tions).

AAAI '99 MP3-125



