
Monte Carlo:

Simulated Experiments

Random numbers: uniform distribution

0 ≤ x ≤ 1 P(x)dx=dx

Basic generator of random numbers

Present in any computer language
. FORTRAN: iseed=1.
. x=ran(iseed)

0 1 x

P(x)
1

0

Based upon linear congruent generators: . .
Ij+1=aIj+b (mod m)

Known problems:
1. Given k random numbers, they are distirbuted inside a k-1 hyperplane.
2. Less significant bits are more correlated than more significant bits.

It is highly recommended to use specialized routines. Like Numerical
Recipes, for instance:
. ran0: has a period of 2x109 and exhibits the problems mentioned.
. ran1: similar to ran0 but without the problems of dimensionality and
correlation. It is one of the most recommended random generators.
. ran2: has a repeat period of 2x1018, but it is slower than ran0 or ran1.

...

(Press et al., “Numerical Recipes”)

Números aleatorios

(Cortesía de Leonardo Sandoval)

DIEHARD, set of randomness tests (George Marsaglia,
ftp://stat.fsu.edu/diehard/index.html)

Other randomness tests and alternate random generators
(http://burtleburtle.net/bob/rand/testsfor.html)

Random numbers: méthod of transformation

Let’s assume that we want to generate random numbers following a
probability density P(y), associated to a cumulated probability F(y)

This distribution can be related to the uniform distribution P(x)

if F(y) can be inverted, then the random number y=F−1(x) is what we
want. Thus, uniform random numbers x are generated and from them are
obtained random numbers y under the desired distribution P(y).

For instance: exponential distribution P(y)=e−y

e−ydy=dx x=1−e−y y=−ln(1−x)

0 ≤ x ≤ 1 0 ≤ y ≤ ∞

)()()()(yFydyPxdxxPdyyP
y

a
≡′′=⇒= ∫

x
1

0 y

(Fig. © “Numerical Recipes”)

(Press et al., “Numerical Recipes”)

Random numbers: gaussian distributions

Given a pair x,y of random numbers generated from normal distributions.
If they are independent, their distribution on a plane will be given by

 +−=

2

)(
exp

2

1
),(

22 yx
yxP

π Or in polar coordinates (R,θ) with d=R2

)2/exp(
2

1

2

1
),(

),(

),(
),(dyxP

d

yx
dP −=

∂
∂=

πθ
θ

This is equivalent to the product of an exponential distribution of mean life
2 and an uniform distribution in the range [0,2π].
This is the base of the Box-Müller transformation:
Let’s take two random numbers u1, u2 with uniform distribution.
We will perform the transformations:

That would yield two random numbers x,y cuya distributed according to a
Gaussian distribution. Taking into account that the transformations involve
trigonometric functions, they are not very efficient.

2

1

2

2

 ln2

u

uR

πθ =
−=

)sin(2 ln2sin

)cos(2 ln2cos

21

21

uuRy

uuRx

πθ

πθ

−==

−==

(Press et al., “Numerical Recipes”)

Random numbers: gaussians

In order to accelerate the Box-Müller algorythm
we define the following variables:
v1 =2u1−1
v2 =2u2−1
And random numbers are generated (v1,v2) picked
such as they lie inside the unit circle R=1.

2/1

2/1

ln2

ln2

 −=

 −=

d

d
y

d

d
x

2

1

v

v

2/1

22

2/1

11

)(
sin

)(
cos

2
2

2
1

2
2

2
1

vv

vv

vv

vv

+
==

+
==

R

R

θ

θ

v1

v2

R

θ
)

(−1,1)

(−1,−1) (1,−1)

(1,1)

for d ≤ 1 This modified transformations are
computationally more efficient.

(Press et al., “Numerical Recipes”)

Let’s assume that we want random numbers that follow a particular
probability density P(y) with cumulated density F(y), that is neither no sea
analytic or non invertible by any reason.

We look for the envelop f(y) with finite and invertible integral I(y)=∫
f(y)dy. If then we take a random number x with uniform distribution in the
interval (0,A), then y=F−1(x) is a random number distributed along the
envelop function f(y). If now we generate a second random number
distributed uniformly, x2 in the interval (0,f(y)), then y is a random
number distributed according to P(y) if x2 ≤ P(y).

For instance: Poisson distribution
where we expand the area as if it were
a continuous distribution

Random numbers: rejection method

!
)(

j

e
jP

j µµ −

=

00

2

0

2

0

0

)tan(

/)(1
)(

yxay

ayy

c
yf

+=
−+

=

π

(Fig. © “Numerical Recipes”)

(Fig. © “Numerical Recipes”)(Press et al., “Numerical Recipes”)

Monte Carlo: brute force approach

x

y

f(x)

∫ =
 puntos de n

curva la bajo puntos de n
o

o

Adxxf)(

Results of an experiment are simulated employing a computer and a
random number generator. This is often useful when the computations are
too difficult or too vaguely defined to be solved by numeric or algebraic
methods numéricos, or we are simply too lazy to think in more elegant
solution strategies.

Classical example: area under a curve.
Given an area easy to measure that contains
a difficult to integrate curve curve f(x) we can compute
the area under the curve by generating many instances
of a pair of uniform random nubers (x,y) representing
coordinates. We simply count the number of pairs
above and below the curve.

This same way of reasoning can also be applied to volumes.

The statistical error is proportional to
N/1

