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Overview of this lecture

What we have seen . . .

How to generate uniform U[0, 1] pseudo-random numbers.

This lecture will cover . . .

Generating random numbers from any distribution using

transformations (CDF inverse, Box-Muller method).

rejection sampling.
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2.1 Transformation Methods
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Transformation methods: Idea

We can generate
U ∼ U[0, 1].

Can we find a transformation T such that

T (U) ∼ F

for a distribution of interest with CDF F?

One answer to this question: inversion method.
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The CDF and its generalised inverse

Cumulative distribution function (CDF)

F (x) = P(X ≤ x)

Generalised inverse of the CDF

F−(u) := inf{x : F (x) ≥ u}

F−(u) x

1

u

F (x)
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CDF inversion method

Theorem 2.1: Inversion method

Let U ∼ U[0, 1] and F be a CDF. Then F−(U) has the CDF F .

So we have a simple algorithm for drawing X ∼ F :

1 Draw U ∼ U[0, 1].
2 Set X = F−(U).

(requires that F−(·) can be evaluated efficiently)
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Example 2.1: Exponential distribution

The exponential distribution with rate λ > 0 has the CDF (x ≥ 0)

Fλ(x) = 1− exp(−λx)
F−λ (u) = F−1

λ (u) = − log(1− u)/λ.

So we have a simple algorithm for drawing Expo(λ):

1 Draw U ∼ U[0, 1].

2 Set X = − log(1− U)
λ

, or equivalently X = − log(U)
λ

.
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Example 2.2: Box-Muller method for generating Gaussians

Consider a bivariate real-valued random variable (X1, X2) and
its polar coordinates (R, θ), i.e.

X1 = R · cos(θ), X2 = R · sin(θ) (1)

Then the following equivalence holds:
X1, X2

i.i.d.∼ N(0, 1) ⇐⇒ θ ∼ U[0, 2π] and R2 ∼ Expo(1/2)
indep.
Suggests following algorithm for generating two Gaussians

X1, X2
i.i.d.∼ N(0, 1):

1 Draw angle θ ∼ U[0, 2π] and squared radius R2 ∼ Expo(1/2).
2 Convert to Cartesian coordinates as in (1)

From U1, U2
i.i.d.∼ U[0, 1] we can generate R and θ by

R =
√
−2 log(U1), θ = 2πU2,

giving

X1 =
√
−2 log(U1)·cos(2πU2), X2 =

√
−2 log(U1)·sin(2πU2)
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Example 2.2: Box-Muller method for generating Gaussians

Box-Muller method
1 Draw

U1, U2
i.i.d.∼ U[0, 1].

2 Set

X1 =
√
−2 log(U1) · cos(2πU2),

X2 =
√
−2 log(U1) · sin(2πU2).

Then X1, X2
i.i.d.∼ N(0, 1).
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2.2 Rejection sampling
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Basic idea of rejection sampling

Assume we cannot directly draw from density f .

Tentative idea:
1 Draw X from another density g (similar to f , easy to sample

from).
2 Only keep some of the X depending on how likely they are

under f .
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Basic idea of rejection sampling
Consider the identity

f(x) =
∫ f(x)

0
1 du =

∫
10<u<f(x)︸ ︷︷ ︸

=f(x,u)

du.

f(x) can be interpreted as the marginal density of a uniform
distribution on the area under the density f(x):

{(x, u) : 0 ≤ u ≤ f(x)}.
Sample from f by sampling from the area under the density.

u

x
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Example 2.3: Sampling from a Beta(3, 5) distribution (1)

How can we draw points from the area under the density?
1 Draw (X,U) from the grey rectangle, i.e. X ∼ U(0, 1) and
U ∼ U(0, 2.4).

2 Accept X as a sample from f if (X,U) lies under the density
(dark grey area).

10

2.4

u

x

Step 2 equivalent to: Accept X if U < f(X), i.e. accept X
with probability P(U < f(X)|X = x) = f(X)/2.4.
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Example 2.3: Sampling from a Beta(3, 5) distribution (2)
Resulting algorithm:

1 Draw X ∼ U(0, 1).
2 Accept X as a sample from Beta(3, 5) with probability

f(X)
2.4

.

Not every density can be bounded by a box. How can we
generalise the idea?
 Bounding f by M times another density g.

1 2 3 4 5 6−1−2−3−4−5−6

M · g(x)
f(x)
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The rejection sampling algorithm (1)

Algorithm 2.1: Rejection sampling

Given two densities f, g with f(x) < M · g(x) for all x, we can
generate a sample from f by

1. Draw X ∼ g.

2. Accept X as a sample from f with probability

f(X)
M · g(X)

,

otherwise go back to step 1.

Note: f(x) < M · g(x) implies that f cannot have heavier tails
than g.
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The rejection sampling algorithm (2)

Remark 2.1

If we know f only up to a multiplicative constant, i.e. if we only
know π(x), where f(x) = C · π(x), we can carry out rejection
sampling using

π(X)
M · g(X)

as probability of rejecting X, provided π(x) < M · g(x) for all x.

Can be useful in Bayesian statistics:

fpost(θ) =
fprior(θ)l(y1, . . . ,yn|θ)∫

Θ f
prior(ϑ)l(y1, . . . ,yn|ϑ) dϑ

= C·fprior(θ)l(y1, . . . ,yn|θ)
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Example 2.4: Rejection sampling from the N(0, 1)
distribution using a Cauchy proposal (1)

Recall the following densities:

N(0, 1) f(x) =
1√
2π

exp
(
−x

2

2

)
Cauchy g(x) =

1
π(1 + x2)

For M =
√

2π · exp(−1/2) we have that f(x) ≤Mg(x).
 We can use rejection sampling to sample from f using g as
proposal.

1 2 3 4 5 6−1−2−3−4−5−6

M · g(x)
f(x)
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Example 2.4: Rejection sampling from the N(0, 1)
distribution using a Cauchy proposal (2)

We cannot sample from a Cauchy distribution (g) using a
Gaussian (f) as instrumental distribution.

Whe Cauchy distribution has heavier tails than the Gaussian
distribution: there is no M ∈ R such that

1
π(1 + x2)

< M · 1√
2πσ2

exp
(
−x

2

2

)
.
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