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Overview of this lecture

What we have seen ...

How to generate uniform U[0, 1] pseudo-random numbers.

This lecture will cover ...

Generating random numbers from any distribution using
o transformations (CDF inverse, Box-Muller method).

@ rejection sampling.
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2.1 Transformation Methods
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Transformation methods: ldea

@ We can generate
U ~ UJ0,1].

@ Can we find a transformation T such that
T(U)~F

for a distribution of interest with CDF F'?

@ One answer to this question: inversion method.
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The CDF and its generalised inverse

Cumulative distribution function (CDF)

F(z)=P(X <)

.

Generalised inverse of the CDF

F~(u) :=inf{z: F(z)> u}
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CDF inversion method

Theorem 2.1: Inversion method
Let U ~ U[0,1] and F be a CDF. Then F~(U) has the CDF F.

So we have a simple algorithm for drawing X ~ F
Q@ Draw U ~ UJ0,1].
Q Set X =F(U).

(requires that F'~(-) can be evaluated efficiently)
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Example 2.1: Exponential distribution

The exponential distribution with rate A > 0 has the CDF (z > 0)

Fy(z) = 1—exp(—Az)
Fy(u) = Fy'(u) = —log(l —u)/\

So we have a simple algorithm for drawing Expo(\):
Q@ Draw U ~ UJ0,1].

log(1-0)

log(U)
S .

Q Set X = S

, or equivalently X = —
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Example 2.2: Box-Muller method for generating Gaussians

o Consider a bivariate real-valued random variable (X1, X2) and
its polar coordinates (R, 6), i.e.

X1 =R-cos(9), X2 = R -sin() (1)

@ Then the following equivalence holds:
i.i.d.

X1, X5 < N(0,1) <= 6 ~ U[0,27] and R? ~ Expo(1/2)
indep.

@ Suggests following algorithm for generating two Gaussians
i.i.d.

Xl,XQ ~ N(O, 1)2
@ Draw angle 6 ~ U[0, 27] and squared radius R? ~ Expo(1/2).

@ Convert to Cartesian coordinates as in (1)
i.i.d.

e From Uy,Us <~ U[0,1] we can generate R and 6 by

R = \V —2 log(Ul), 0= 27TU2,

giving
X1 = v/ —2log(Uy)-cos(2nUs), Xo = +/—2log(Uy)-sin(27U>)

Lecture 2: Transformation and Rejection /] 2.1 Transformation methods

Nick Whiteley



Example 2.2: Box-Muller method for generating Gaussians

Box-Muller method

@ Draw
i.i.d.

Ui, Uz ~ U0, 1].
Q Set

X, = —2log(Uy) - cos(2nUs),
Xo = /—2log(Uy) - sin(2wUs).

ii.d.

Then Xl,XQ ~ N(O, 1).
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2.2 Rejection sampling
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Basic idea of rejection sampling

@ Assume we cannot directly draw from density f.
o Tentative idea:

@ Draw X from another density g (similar to f, easy to sample
from).

@ Only keep some of the X depending on how likely they are
under f.
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Basic idea of rejection sampling
o Consider the identity

f@)
f(x) :/ 1du= /10<u<f($) du.
0 —

:f(ac,u)
o f(z) can be interpreted as the marginal density of a uniform
distribution on the area under the density f(x):

{(x,u): 0<u < fa)}.
@ Sample from f by sampling from the area under the density.

U
A
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Example 2.3: Sampling from a Beta(3,5) distribution (1)

@ How can we draw points from the area under the density?
© Draw (X, U) from the grey rectangle, i.e. X ~ U(0,1) and
U ~ U(0,2.4).
@ Accept X as a sample from f if (X, U) lies under the density
(dark grey area).

A

2.4% omene

0 1

o Step 2 equivalent to: Accept X if U < f(X), i.e. accept X
with probability P(U < f(X)|X ==z) = f(X)/2.4.
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Example 2.3: Sampling from a Beta(3,5) distribution (2)
@ Resulting algorithm:
©Q Draw X ~ U(0,1).
Q Accept X as a sample from Beta(3,5) with probability
f(X)
2.4

@ Not every density can be bounded by a box. How can we
generalise the idea?
~» Bounding f by M times another density g.
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The rejection sampling algorithm (1)

Algorithm 2.1: Rejection sampling

Given two densities f, g with f(z) < M - g(x) for all z, we can
generate a sample from f by

1. Draw X ~ g.
2. Accept X as a sample from f with probability
f(X)
M- g(X)’

otherwise go back to step 1.

Note: f(z) < M - g(x) implies that f cannot have heavier tails
than g.
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The rejection sampling algorithm (2)

Remark 2.1

If we know f only up to a multiplicative constant, i.e. if we only
know 7(x), where f(z) = C - m(x), we can carry out rejection

sampling using x)
s

M - g(X)
as probability of rejecting X, provided 7(z) < M - g(x) for all z.

<

Can be useful in Bayesian statistics:

PrOT(0)1(y1, . . ., Y0 o
prSt(e) = f }‘fprior((ﬁ))léiji ;’ |‘§)) do = Cfp (e)l(ylv e aYH|9)
o) yeoy ¥Yn
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Example 2.4: Rejection sampling from the N(0, 1)
distribution using a Cauchy proposal (1)

@ Recall the following densities:

N(0, 1 _ ! -
0.0 J6)= e (-%)

(1 + 22?)

o For M = /27 - exp(—1/2) we have that f(z) < Mg(z).
~> We can use rejection sampling to sample from f using g as
proposal.

Cauchy g(z) =
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Example 2.4: Rejection sampling from the N(0, 1)
distribution using a Cauchy proposal (2)

e We cannot sample from a Cauchy distribution (g) using a
Gaussian (f) as instrumental distribution.

@ Whe Cauchy distribution has heavier tails than the Gaussian
distribution: there is no M € R such that

1 1 z?
—— < M- —— .
7T(1 + .5[72) 27'('0'2 P < 2 >
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