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The Problem

Given a function

f :Cs → �
,

with Cs = [0,1]s ⊂ � s denoting the s-dimensional unit

cube.

Calculate an approximation Qf for the multi-variate

integral

If :=

∫

Cs

f(x) dx.

Qf has to be based on f-evaluations at n points xi ∈
Cs which can be chosen arbitrarily by the integration

routine.

Therefore, Qf will be of the form

Qnf =
n
∑

i=1

wi f(xi).
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Monte Carlo Integration

Qnf :=
1

n

n
∑

i=1

f(xi)

with xi random samples uniformly distributed in Cs.

• |If − Qnf | ≈ σ(f)√
n

=

√

Var(f)
n = O(n−1/2)

• Independent of dimension s

• σ(f) behaves well for a huge class of integrands

• We can even estimate the accuracy:

|If − Qnf | ≈
√

Var(f)

n
≈

√

√

√

√

∑

f2(xi) − 1
n (
∑

f(xi))
2

n(n − 1)

• ⇒ MC integration is a pretty foolproof way to

estimate an integral
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Can we do better?
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• Random points are evenly distributed in any di-

mension

• However, random clusters and gaps appear

• Are there high-dimensional, evenly distributed, but

regular point sets?
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Quasi-Monte Carlo

• Instead of drawing random samples, use low dis-

crepancy point-sets like (t, m, s)-nets!
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The first 2048 points from the Sobol sequence

x1x3-projection (left), x37x40-projection (right)

5



Performance of Quasi-Monte Carlo

• Koksma-Hlawka inequality:

|If − Qnf | ≤ V (f) · D∗
n ≤ c

logs n

n

– Only an upper bound, no estimator

– V (f) = ∞ even for simple integrands

– No general method for estimating V (f)

– logs n is huge for affordable n

• However, it works quite well in practice:

|If − Qnf | ≈ O(n−1) is usually obtained!
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Monte Carlo

Quasi-Monte Carlo Adaptive Routines
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Adaptive Integration

Algorithm 1 Adaptive Integration

Put Cs into region collection

while estimated error too large do

Choose subregion with large error

Split region

Apply basic rule

Store new regions in region collection

end while
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Stratified Sampling

Taking n/2 samples from two halfs of Cs is always

better than sampling Cs with n points!

Q̃nf =
1

2

(

Qn/2fα + Qn/2fα

)

with fα and fβ denoting f restricted to the left and

right subcube.

Variance of this estimator:

Var(Q̃nf) =
1

4

(

Var

(

Qn/2fα

)

+ Var

(

Qn/2fβ

))

≈ 1

4

(

Var(fα)

n/2
+

Var(fβ)

n/2

)

=
1

2n

(

Var(fα) + Var(fβ)
)

=
1

n
·
Var(fα) + Var(fβ)

2

≤ 1

n
· Var(f) = Var(Qnf)
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Recursive Stratified Sampling

Stratification can be done recursively, leading to n

subcubes with one random point in each of them.
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This comes close to a grid.

However, randomization performs much better!
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MISER – Adaptive Stratification

Stratification improves performance whenever

σ(fα) 6= σ(fβ).

The optimal performance can be achieved by allocat-

ing points such that

nα/nβ = σ(fα)/σ(fβ).

This lead directly to the following adaptive algorithm:

Algorithm 2 MISER

1: Allocate points for presampling

2: Estimate σαi and σβi for all i = 1, . . . , s halfs

3: Choose split dimension

4: Assign point budgets Nα and Nβ

5: Apply MISER to both subcubes

6: Calculate final estimate
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Importance Sampling

• Integration error depends on Var(f)

• What if

– We have positive-valued function p with
∫

Cs

p(x) dx = 1,

i. e. p is a probability density function

– p mimics f such that p ' |f |

• Then

– f/p has a very low variance

–
∫

Cs

f(x) dx =

∫

Cs

f(x)

p(x)
dP (x),

i. e. the sample mean of f/p with density p

equals sample mean of f with density 1.
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Recipe:

Find a pdf p with

• p ' |f |

• We can generate p-distributed random numbers

Adaptive Importance Sampling

Algorithm 3 Adaptive Importance Sampling

Start with p ≡ 1/ volCs

for i = 1, . . . , m do

Sample f/p to refine p

end for

Use remaining points to sample f/p with density p

Algorithms differ by the available functions p and by

the way they are estimated.

VEGAS

VEGAS uses a product of piecewise constant, one-

dimensional functions.
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Control Variates

Break f into two parts ϕ and (f − ϕ) such that

• Iϕ can be calculated analytically

• Var(f − ϕ) is small

•

Qnf = Iϕ +
1

n

n
∑

i=1

(f − ϕ)(xi)

= Iϕ +
1

n

n
∑

i=1

f(xi) +
1

n

n
∑

i=1

ϕ(xi)

= Iϕ + f̃ + ϕ̃

•

Var(Qnf) = Var(f̃) + Var(ϕ̃) − 2Cov(f̃ , ϕ̃)

How can be find ϕ?

• “Parallel Simulation”

• Adaptive?
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Results
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Monte Carlo

Quasi-Monte Carlo
Adaptive Routines
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Can we extend these results to QMC?

• Key Concept “Variance Reduction”

– Var(f) can be estimated easily. However, there

is no direct correlation between Var(f) and the

integration error.

– Knowing V (f) would give an upper bound. How-

ever, it can neither be estimated nor is the in-

equality sharp.

– There are empirical results suggesting that

|Qnf − If | ≈ Var(f)
n for many integrands

– Integration error can be estimated using ran-

domized QMC (e. g.: Owen Scrambling)

• Generating arbitrary distributions is possible, at

least if an explicit transformation function is avail-

able.

• Applying two nets of size n/2 to two halfs of Cs

definitely decreases performance

• QMC integration has a high rate of convergence

by itself. Therefore, improving on it will be harder.
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