Adaptive Quasi-Monte Carlo Integration

June 4th, 2002

Rudolf Schrer

The Problem

Given a function

$$f:C_s\to\mathbb{R},$$

with $C_s = [0,1]^s \subset \mathbb{R}^s$ denoting the s-dimensional unit cube.

Calculate an approximation $\mathbf{Q}f$ for the multi-variate integral

$$If := \int_{C_s} f(x) \, dx.$$

Qf has to be based on f-evaluations at n points $\boldsymbol{x}_i \in C_s$ which can be chosen arbitrarily by the integration routine.

Therefore, Qf will be of the form

$$Q_n f = \sum_{i=1}^n w_i f(x_i).$$

Monte Carlo Integration

$$Q_n f := \frac{1}{n} \sum_{i=1}^n f(x_i)$$

with x_i random samples uniformly distributed in C_s .

•
$$|If - Q_n f| \approx \frac{\sigma(f)}{\sqrt{n}} = \sqrt{\frac{Var(f)}{n}} = \mathcal{O}(n^{-1/2})$$

- Independent of dimension s
- \bullet $\sigma(f)$ behaves well for a huge class of integrands
- We can even estimate the accuracy:

$$|\mathrm{I}f - \mathsf{Q}_n f| pprox \sqrt{rac{Var(f)}{n}} pprox \sqrt{rac{\sum f^2(oldsymbol{x}_i) - rac{1}{n}\left(\sum f(oldsymbol{x}_i)
ight)^2}{n(n-1)}}$$

ullet \Rightarrow MC integration is a pretty foolproof way to estimate an integral

Can we do better?

- Random points are evenly distributed in any dimension
- However, random clusters and gaps appear
- Are there high-dimensional, evenly distributed, but regular point sets?

Quasi-Monte Carlo

ullet Instead of drawing random samples, use low discrepancy point-sets like (t,m,s)-nets!

The first 2048 points from the Sobol sequence x_1x_3 -projection (left), $x_{37}x_{40}$ -projection (right)

Performance of Quasi-Monte Carlo

Koksma-Hlawka inequality:

$$|If - Q_n f| \le V(f) \cdot D_n^* \le c \frac{\log^s n}{n}$$

- Only an upper bound, no estimator
- $-V(f)=\infty$ even for simple integrands
- No general method for estimating V(f)
- $-\log^s n$ is huge for affordable n
- However, it works quite well in practice: $|If Q_n f| \approx \mathcal{O}(n^{-1})$ is usually obtained!

Adaptive Integration

Algorithm 1 Adaptive Integration

Put C_s into region collection

while estimated error too large do

Choose subregion with large error

Split region

Apply basic rule

Store new regions in region collection

end while

Stratified Sampling

Taking n/2 samples from two halfs of C_s is always better than sampling C_s with n points!

$$\tilde{Q}_n f = \frac{1}{2} \left(Q_{n/2} f_\alpha + Q_{n/2} f_\alpha \right)$$

with f_{α} and f_{β} denoting f restricted to the left and right subcube.

Variance of this estimator:

$$Var(\tilde{Q}_{n}f) = \frac{1}{4} \left(Var\left(Q_{n/2}f_{\alpha}\right) + Var\left(Q_{n/2}f_{\beta}\right) \right)$$

$$\approx \frac{1}{4} \left(\frac{Var(f_{\alpha})}{n/2} + \frac{Var(f_{\beta})}{n/2} \right)$$

$$= \frac{1}{2n} \left(Var(f_{\alpha}) + Var(f_{\beta}) \right)$$

$$= \frac{1}{n} \cdot \frac{Var(f_{\alpha}) + Var(f_{\beta})}{2}$$

$$\leq \frac{1}{n} \cdot Var(f) = Var(Q_{n}f)$$

Recursive Stratified Sampling

Stratification can be done recursively, leading to n subcubes with one random point in each of them.

This comes close to a grid. However, randomization performs much better!

MISER - Adaptive Stratification

Stratification improves performance whenever

$$\sigma(f_{\alpha}) \neq \sigma(f_{\beta}).$$

The optimal performance can be achieved by allocating points such that

$$n_{\alpha}/n_{\beta} = \sigma(f_{\alpha})/\sigma(f_{\beta}).$$

This lead directly to the following adaptive algorithm:

Algorithm 2 MISER

- 1: Allocate points for presampling
- 2: Estimate $\sigma_{\alpha i}$ and $\sigma_{\beta i}$ for all $i=1,\ldots,s$ halfs
- 3: Choose split dimension
- 4: Assign point budgets N_{lpha} and N_{eta}
- 5: Apply MISER to both subcubes
- 6: Calculate final estimate

Importance Sampling

- ullet Integration error depends on Var(f)
- What if
 - We have positive-valued function p with

$$\int_{C_s} p(x) \, dx = 1,$$

- i.e. p is a probability density function
- p mimics f such that $p \simeq |f|$
- Then
 - -f/p has a very low variance

$$\int_{C_s} f(x) dx = \int_{C_s} \frac{f(x)}{p(x)} dP(x),$$

i. e. the sample mean of f/p with density p equals sample mean of f with density 1.

Recipe:

Find a pdf p with

- $p \simeq |f|$
- We can generate p-distributed random numbers

Adaptive Importance Sampling

Algorithm 3 Adaptive Importance Sampling

```
Start with p \equiv 1/\operatorname{vol} C_s for i = 1, \dots, m do Sample f/p to refine p end for
```

Use remaining points to sample f/p with density p

Algorithms differ by the available functions p and by the way they are estimated.

VEGAS

VEGAS uses a product of piecewise constant, onedimensional functions.

Control Variates

Break f into two parts φ and $(f - \varphi)$ such that

- ullet Iarphi can be calculated analytically
- $Var(f-\varphi)$ is small

lacktriangle

$$Q_n f = I\varphi + \frac{1}{n} \sum_{i=1}^n (f - \varphi)(x_i)$$

$$= I\varphi + \frac{1}{n} \sum_{i=1}^n f(x_i) + \frac{1}{n} \sum_{i=1}^n \varphi(x_i)$$

$$= I\varphi + \tilde{f} + \tilde{\varphi}$$

$$Var(Q_n f) = Var(\tilde{f}) + Var(\tilde{\varphi}) - 2Cov(\tilde{f}, \tilde{\varphi})$$

How can be find φ ?

- "Parallel Simulation"
- Adaptive?

Results

Can we extend these results to QMC?

- Key Concept "Variance Reduction"
 - Var(f) can be estimated easily. However, there is no direct correlation between Var(f) and the integration error.
 - Knowing V(f) would give an upper bound. However, it can neither be estimated nor is the inequality sharp.
 - There are empirical results suggesting that $|Q_n f If| \approx \frac{Var(f)}{n}$ for many integrands
 - Integration error can be estimated using randomized QMC (e.g.: Owen Scrambling)
- Generating arbitrary distributions is possible, at least if an explicit transformation function is available.
- Applying two nets of size n/2 to two halfs of C_s definitely *decreases* performance
- QMC integration has a high rate of convergence by itself. Therefore, improving on it will be harder.