Some things they don't tell
you about least squares
f1tti

“A mathematical procedure for finding the best-
fitting curve to a given set of points by minimizing
the sum of the squares of the offsets ("the
residuals") of the points from the curve.”
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Non Linear Least Squares Fitting
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[Linear LLeast Squares
Fitting (review)



[Line Fitting
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*Exact solution

Implemented in scientific
calculators

*Can even easily get the errors
on the parameters



Polynomial Fitting

o i[-‘*’!’ . *Really just a generalization
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*Exact solution
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(General Linear Fitting

y(z) = Z ap X5 (z) Xi(x), ... X,(x) are arbitrary fixed
=1 functions of x (can be nonlinear), called the
ba SIS fun ctions
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normal equations of the least squares
problem

Can be put in matrix form and solved



Exponential Fitting
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hyr=mh4d+5=x Linearize the equation and apply the fit to a straig
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[Logarithmic Fitting
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Power Law Fitting
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Summary of LLinear least squares
fitting

 “The linearleast squares fitting technique is the
simplest and most commonly applied form of linear
regression and provides a solution to the problem of
finding the best fitting straight line through a set of
points. In fact, if the functional relationship between
the two quantities being graphed 1s known to within
additive or multiplicative constants, it 1S common
practice to transform the data in such a way that the
resulting line 7s a straight line. For this reason,
standard forms for exponential, logarithmic, and
power laws are often explicitly computed. The
formulas for linear least squares fitting were
independently derived by Gauss and Legendre.”
Mathworld



Non Linear Least Squares
Fitting




Non linear fitting

“For nonlinear least squares fitting to a number of unknown
parameters, linear least squares fitting may be applied
iteratively to a linearized form of the function until
convergence 1s achieved. However, it is often also possible to
linearize a nonlinear function at the outset and still use linear
methods for determining fit parameters without resorting to
iterative procedures. This approach does commonly violate
the implicit assumption that the distribution of errors is
normal, but often still gives acceptable results using normal
equations, a pseudoinverse, etc. Depending on the type of fit
and initial parameters chosen, the nonlinear fit may have good
or poor convergence properties.” Mathworld.

“We use the same approach as in previous sections, namely to
define a x2 merit function and determine best—{it parameters
by its minimization. With nonlinear dependences, however, the
minimization must proceed iteratively. Given trial values for
the parameters, we develop a procedure that improves the
trial solution. The procedure is then repeated until x2 stops
(or effectively stops) decreasing.” Numerical Recipes



Treat chi—squared as a
continuous fct of the m
parameters and search
the m—dimensional
space for the
appropriate minimum
value of chi—squared

Apply to the m
equations
approximation methods
for finding roots of
coupled, nonlinear
equations

Use a combination of
both methods




*Grid Search: Vary each parameter in
turn, minimizing chi—squared wrt each
parameter independently. Many
successive Iterations are required to
locate the minimum of chi—squared
unless the parameters are independent.

*Gradient Search: Vary all parameters
simultaneously, adjusting relative
magnitudes of the variations so that the
direction of propagation in parameter
space is along the direction of steepest
descent of chi—squared

*Expansion Methods: Find an
approximate analytical function that
describes the chi—squared hypersurface
and use this function to locate the
minimum, with methods developed for
linear least—-squares fitting. Number of
computed points is less, but
computations are considerably more
complicated.

*Marquardt Method: Gradient—Expansion
combination

From Bevington and Robinson



MINUI'T

« “What Minuit is intended to do.

Minuit 1s conceived as a tool to find the minimum value of a
multi—parameter function and analyze the shape of the function
around the minimum. The principal application is foreseen for
statistical analysis, working on chisquare or log-likelihood
functions, to compute the best—fit parameter values and
uncertainties, including correlations between the parameters.
[t 1s especially suited to handle difficult problems, including
th(l)se which may require guidance in order to find the correct
solution.

« What Minuit is not intended to do

Although Minuit will of course solve easy problems faster than
complicated ones, it is not intended for the repeated solution
of identically parametrized problems (such as track fitting in a
detector) where a specialized program will in general be much
more efficient. ”,

MINUIT documentation

« Careful with error estimation using MINUIT: Read their
documentation.

« Also see “How to perform a linear fit” in ROOT documentation



Why do we minimize the
chi—square?



Other minimization schemes

Merit function:= fct that measures the agreement between data and
the fitting model for a particular choice of the parameters. By
convention, this 1s small when agreement 1s good.

MmMa.X problem {IL (az. + b
Requires advanc zte niques
Absolute deviation: — (az, + b)

absolute value fct not differentiable at zero! “although the unsquared
sum of distances might seem a more appropriate quantity to
minimize, use of the absolute value results in discontinuous
derivatives which cannot be treated analytically. ” Mathworld

Least squares: > [y, — (az, + D)}

Most convenient. “Thisi allows the merit fct to be treated as a
continuous differentiable quantity. However, because squares of the
offsets are used, outlying points can have a disproportionate effect
on the fit, a property which may or may not be desirable depending
on the problem at hand.” Mathworld.

Least median squares, Maple



Connection with Maximum
[Likelithood principle

“Given a particular set of

parameters, what is the probability

that this data set could have probability of the data set is the product of
occurred?” . the probabilities of eac}; point,

*Intuition tells us t.hat the data set P oo 1—[ {e:-:p [_l (m — _uli.r:-ll) ] ﬂw}

should not be too improbable for ;

the correct choice of parameters.

*[dentify the probability of the data

given the parameters (which is a [y — vl _

mathematically computable {Z 5,7 ] — Nlog Ay

number), as the /likelihood of the =

parameters given the data.

*IFind those values that maximize J

the likelihood MUMINNZE OVET 1] ... a5z - Z [vi — y(zi;ar...apr) 2
*least—squares fitting 7s a '
maximum likelihood estimation of

the fitted parameters if the
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distributed with constant standard
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Vertical vs Perpendicular offsets
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“In practice, the vertical
offsets from a line
(polynomial, surface,
hyperplane, etc.) are
almost always minimized
instead of the
perpendicular offsets.

This provides a much
simpler analytic form for
the fitting parameters.
Minimizing RZ .., for a
second— or higher-order
polynomial leads to
polynomial equations
having Aigher order, so
this formulation cannot be
extended.

In any case, for a
reasonable number of
noisy data points, the
difference between
vertical and perpendicular
fits is quite small.”
Mathworld



< xponential Fitting Revisited
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Robust

“Insensitive to small
departures from the
idealized assumptions

for which the
o cental ek estimator 1s
optimized.”

 Fractionally large
o departures for a small
..... oo number of data points

@ e (Can occur when
measurement errors
> are not normally
least squares ﬁr)

distributed

* General idea is that
the weight given

S robust straight-line fit ].n d 1 V]. du al p O lnt S
o should first increase
T Smprmememe e e o2 WIth deviation, then
of the position of the central peak. (b) A distributio: ] ﬁrted to a straight line; non-robust
technique: sucl. 1 st-squares fitting can have de red sensitivity to outlying points. d e C r e a S e

* decide which estimate
you want, that is, p

« Ex:!if the errors are

distributed as a double

or two-sided
exponential, namely
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What about errors in the
inputs?



Weighting errors in y

 If the uncertainties i
are known, weight the 2 i( i —ylraag ... anr) j
distances with them — s

 What if the _
uncertainties are N
unknown? Use the 7= z[“' —¥
chi—square to
estimate them. But
then, can’'t use the
chi—square to
estimate goodness of
fit

2 /(N — M)



What to do with the errors 1n
X7

Trick: switch the x— and y—axis when the x errors
are bigger than the y errors.
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true parameters
“‘tl.'.;E

Figure 15.6.1. A statistical universe of data sets from an underlying model. True parameters ayrue are
realized in a data set, from which fitted (cbserved) parameters ag are obtained. If the experiment were

How to calculate them?

actual data set

min

hypothetical
data set

hypothetical
data zet

hypothetical
data set

fitted
paramﬂtera
ap

a

ag

repeated many tumes, new data sets and new values of the fitted parameters would be obtained.

a) — Qe - 1 We knew this
distribution, we would know
everything that there is to
know about the quantitative
uncertainties in our
experimental measurement
a.)- ©0 the name of the game
1S to find some way of
estimating or approximating
this probability distribution
without knowing a,,,, and
without having available to us
an infinite universe of
hypothetical data sets.



— oo Let us assume — that
raser 1 o] P the shape of the
probability distribution
syathecic |0 ay — 3 In the

data set 2 =

L J

cnal || s fictitious world 1s the
B peic || o same, or very nearly
data set 3 a3
the same, as the shape
of the probability
synthetic (s
data set 4 — a4

distribution a, —a,,. in
the real world.

Figure 15.6.2. Meonte Carlo simulation of an experiment. The fitted parameters from an actual experiment
are used as sumrogates for the true parameters. Computer-generated random numbers are used to simulate
many synthetic data sets. Each of these is analyzed to obtain its fitted parameters. The distribution of
these fitted parameters around the (known) surrogate true parameters is thus studied.



How to interpret them?

«“Rather than present all details of
the probability distribution of errors
In parameter estimation, it 1s
common practice to summarize the
distribution in the form of confidence
/imits.

*A confidence region (or confidence
interval) is just a region of thatM/~
dimensional space (hopefully a small
region) that contains a certain
(hopefully large) percentage of the
total probability distribution.

*The experimenter, get to pick both
the confidence level (99 percent in
the above example), and the shape
of the confidence region. The only
requirement is that your region does
include the stated percentage of
probability.”, Numerical Recipes
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Figure 15.6.3. Confidence intervals in 1 and 2 dimensions. The same fraction of measured points (here
68%) lies (1) between the two vertical lines, (ii) between the two horizontal lines, (iii) within the ellipse.



«“When the method used
to estimate the
parameters a(, 1s chi—
square minimization then
there 1s a natural choice
for the shape of
confidence intervals.
*The region within which
X2 Increases by no more
than a set amount AxZ2
defines some A/~
dimensional confidence
region around a(0)”,
Numerical Recipes

Figure 15.6.4. Confidence region ellipses corresponding to values of chi-square larger than the fitted
minimum. The solid curves, with Ax? = 1.00, 2.71,6.63 project onto cne-dimensional intervals A4,
BE', C'C'. These intervals — not the ellipses themselves — contain 68.3%, 90%, and 99% of normally
distributed data. The ellipse that contains 68.3% of normally distnbuted data 15 shown dashed, and has
Ax? = 2.30. For additional numerical values, see accompanying table.



The formal covariance matrix that
comes out of a y2 minimization has a
clear quantitative interpretation only if
(or to the extent that) the measurement
errors actually are normally
distributed. In the case of nonnormal
errors, you are “allowed”

e to fit for parameters by minimizing x2
*to use a contour of constantAxZ2 as
the boundary of your confidence region
e to use Monte Carlo simulation or
detailed analytic calculation in AT A TP Py I ey
determining which contour Ax2 is the st date The elipoe T contont 65 30 o aevenaly i deis s s dachod o b
correct one for your desired X 20 Forsadml el s, s acompeg e

C Onfldenc e 16\761 Ax? as a Function of Confidence Level and Degrees of Freedom
° to give the covariance matrix (jas v
the “formal covariance matrix of the P I 2 3 4 5 6
ft " 68.3% 1.00 2.30 3.53 472 589 7.04
1L. 90% 2.7 461 6.25 7.78 924 10.6
You are not allowed 954% | 400 617 802 970 11.3 12.8
. 99% 6.63 921 11.3 13.3 15.1 16.8
e to use formulas that we now give for oot | 500 118 14a 163 180 201
the case of normal errors, which 99.99% | 15.1 18.4 21.1 235 257 27.8
establish quantitative relationships
among Ax2, C;;, and the confidence L 2 ~
.rjf.!l = J..j!.LEI f_ 11

level.



Program comparisons

Maple

Matlab & MFEIT
Root

Origin

LSM
Kaleidagraph
Excel



Things I didn't talk about

Testing the fit
Singular Value

Decomposition for the
general linear least
squares fitting

Covariance matrix
Maximum likelithood

method

The method of Moments

Is there a package that
uses perpendicular offsets
and uses errors 1n all
dimensions?

Fit to non fcts.



Interesting readings and
references

McGill University, Lab Notes

Burden and Faires, Numerical Analysis

Eric W. Weisstein. "Least Squares Fitting." From Math World-

-A Wolfram Web Resource.
http://mathworld.wolfram.com/LeastSquaresFitting.html

Taylor, An Introduction to Error Analysis The Study of
Uncertainties in Physical Measurements

Bevington and Robinson, Data Reduction and Error Analysis
for the Physical Sciences

Frodesen, Skjeggestad and Tafte, Probability and Statistics in
Particle Physics

Numerical Recipes in C. The Art of Scientific Computing

Least Squares Method Curve Fitting Program,
http://www.prz.rzeszow.pl/~janand/

MINUIT Documentation,
http://wwwasdoc.web.cern.ch/wwwasdoc/minuit/minmain.html

ROOT Documentation, http://root.cern.ch/



