
CS322 Lecture Notes: Statistics of least squares

fitting

Steve Marschner
Cornell University

18-30 April 2007

We discussed least squares fitting, mainly in the linear case, earlier in the
course. We used a problem statement like

yi ≈ fi(x1, . . . , xn) ; i = 1, . . . ,m.

Often what’s really going on is we are fitting some kind of model to some data.
In this case we have some function y(x) in mind, the shape of which is controlled
by some parameters a1, . . . , an, and our measure of goodness of fit is how well
the function y predicts the yis from the xis. You can think of y like a box with
a bunch of knobs on it, and we’re trying to adjust the knobs until the function
passes plausibly close to the observed data.

So we can write the goal as

yi ≈ y(xi; a1, . . . , an) ; i = 1, . . . ,m.

This is m equations in n unknowns and we need m > n to have a fitting problem.
In the next few lectures we will look at statistical methods we can use to

figure out what, if anything, the results of these fitting calculations are worth.
The overall presentation here follows the two chapters of Numerical Recipes

fairly closely, with some of the figures shamelessly redrawn from the figures
there.

1 Example problems

Fitting polynomials If the assumption is that y is a polynomial of order n
in x, the model is:

y(x; a1, . . . , an) = a1x
n−1 + a2x

n−2 + · · ·+ an

This leads to a linear system with a Vandermonde matrix (mij = xn−ij).

1

Harmonic series If we think the unknown function is periodic with period
(w.l.o.g.) 2π, we could use a harmonic series of n sinusoids to represent it. Each
sinusoid might be represented by an amplitude α and a phase φ:

y(x;α0, α1, φ1, . . . , αn, φn) = α0 +
n∑
k=0

αk cos(kx− φk)

At first blush this seems like it’s not linear—and in fact with these parameters
it’s not: the result is linear in the amplitudes αk, but if we add together two
sinusoids the phases φk do not add.

However, this problem can easily be made linear by using different parame-
ters. Look at one term in the sum, and apply a trig identity:

αk cos(kx− φk) = αk cos kx cosφk + αk sin kx sinφk
= (αk cosφk) cos kx+ (αk sinφk) sin kx
= αck cos kx+ αsk sin kx

With the parameters αck and αsk it’s a linear problem, with matrix rows[
cosxj · · · cosnxj sinxj · · · sinnxj 1

]
·
[
αc1 · · · αcn αs1 · · · αsn α0

]
≈ yj .

Exponential decay Here’s another example. We might think we’re looking
at a process of exponential decay:

y(x; a, b) = aebx.

Again the parameter b appears nonlinearly but we can make this into a linear
problem by a suitable transformation. This time the transformation is on y
rather than a: we just take the log of both sides.

ln y = ln a+ bx

Now using the parameters ln a and b we are just fitting a straight line. However,
it’s important to note that when we reparameterize the right hand side in this
way we are changing the fitting criteria: two errors that were equal before the
transform to log space will no longer be equal in general. If we look at small
errors in the ys we can use the derivative d ln y/dy = 1/y to estimate that if yj
has uncertainty σj then ln yj has uncertainty σj/yj .

These few examples serve to illustrate that more problems can be handled
by linear least squares than you might think. Of course, many problems are
irrevocably nonlinear.

2 Goals of statistical analysis

The two basic questions about fitting results that we’ll look for ways to answer
are

2

• How well does the model fit the data?

• What is the accuracy of the parameters found by the fitting process?

The best way to go about answering these questions is armed with estimates of
the uncertainties in the data values yi. (For this course we’ll assume the xis are
accurate.) Then we can think of fitting problems as statistical problems: we
know the system is overdetermined and we won’t expect an exact match. We
would like to attribute the error to noise: we assume we have the correct mode
and that the residual is simply caused by random errors in the data. In this
framework we can rephrase the two questions as:

• Can the residual be plausibly explained by random error?

• What range of parameter values could have resulted from different random
errors in the data?

The two approaches to finding the answer that we’ll explore are

• Monte Carlo simulation. This simple brute force approach works for all
kinds of problems and is easy to understand but slow and limited in some
ways.

• Statistics of χ2 distributions. Some results in traditional statistics can be
used to directly compute quality and confidence measures, as long as the
fitting process is linear and the errors are Gaussian.

3 Continuous probability primer

We’ll be using continuous probability to talk about the distributions of data and
parameter values. Since only discrete probability is included in the prerequisites,
a quick briefing/review is in order. We won’t be doing any heavy-duty compu-
tations with continuous probabilities but you should know the basic definitions
to fully make sense of what the numbers mean.

[This section to be expanded.]

4 Least squares as maximum likelihood estima-
tion

3

Some parameter values are ”likely” to be right, because the model passes
plausibly close to the data points, relative to the error in the data. Others
aren’t: they are so far away from some points that it’s extremely unlikely that
the data is off by that much.

Notice I didn’t say some parameter values are ”probable” and others aren’t.
Fundamentally it doesn’t really make sense to talk about probabilities of differ-
ent parameter values, because it’s not the parameters that are uncertain. The
real system has some (fixed) parameter values—it’s just that we don’t know
them. The randomness is in the data values, which are contaminated by noise
that we assume comes from some random process.

In other words the probability space of the problem is the data values, or
more specifically the noise in the data.

We can still formulate the idea of some models being statistically preferable
over others. Rather than the probability of the model given the data, we talk
about probability of the data given the model. Instead of asking the question
“which parameters are most probable?” we ash the question

Which values of the parameters, if they were the true parameters,
would lead to the highest probability of having observed the data
that we did?

Remember that we’re assuming we know what the random noise-generating
process is. That is, for any set of parameters, there is some probability distri-
bution that describes the data that we would measure from a system with those
parameters. If we evaluate that distribution for the data yj that we actually
did observe, we get a probability of observing that data. If the probability is
low, it’s not likely we have the right parameters. So we call this ”backwards”
probability the ”likelihood” of the parameters.

Finding the parameters by maximizing the likelihood is called maximum
likelihood estimation, and leads to the maximum likelihood estimate.
Both are abbreviated MLE.

Maximum likelihood estimation has a close connection to least squares fitting—
in fact, the two methods are the same for independent Gaussian errors. This is
a prime statistical excuse (er, I mean motivation) for using the mathematically
convenient least squares fitting method.

The connection is simple to see. Suppose the errors are independent and
normally distributed with identical variance. This means the probability for
one data point is:

p(yj) = exp

[
−1

2

(
yj − y(xj)

σ

)2
]

and the probabilities of the data points multiply (since they’re independent):

p(y) =
∏
j=1

m exp

[
−1

2

(
yj − y(xj)

σ

)2
]

4

To get the MLE we need the y that maximizes p(y). This is equivalent to
minimizing

− ln p(y) =
1

2σ2

m∑
j=1

(
yj − y(xj)

)2
The sum on the right hand side is just the familiar least-squares residual. So the
y that maximizes likelihood is the y that minimizes the least-squares residual.

If the errors are independent and Gaussian but each has its own standard
deviation σj , we end up in nearly the same place. Losing the constant factor of
one-half, we get a standard formula that gets the fancy name “chi squared”:

χ2 =
m∑
j=1

(
yj − y(xj ; a)

σj

)2

[Caution: Are the errors in your measurements really normally distributed?
A couple of examples: image intensities in digital cameras come from a counting
process and are distributed according to a Poisson, not Gaussian, distribution.
Measurements made using a scale like a ruler are very unlikely to be off by more
than the space between tics: the error is more uniform that Gaussian. Also, you
might have outliers: points that are mixed in that are generated by a different
process (for example, caused by human error, static discharge, automatically
detecting and measuring the wrong feature, etc.).

With this in mind we’ll happily forge ahead anyway. In many (most?) prob-
lems the normal error assumption in practice leads to useful estimates of pa-
rameters and uncertainties; we just need to remember to keep the (in)validity
of this assumption in the backs of our minds when interpreting the results.]

We can answer our quality and certainty questions by looking at the sta-
tistical distribution of χ2: quality of fit is related to the distribution of the
residual χ2, and confidence in the parameters is related to the distribution of
fitted parameters.

For quality of fit: suppose we have a good model (that is, it fits the un-
derlying “true” data before it was corrupted by noise). The residual of the fit
depends on what noise was added to the data (in fact, it depends only on the
component of the noise that lies in the range complement of A), so the proba-
bility distribution of the noise induces a probability distribution on the residual.
Using this distribution we can ask, “what is the probability that our residual
would be this high just by chance?” If the answer is extremely low, it’s unlikely
that our model really fits the data—that is, random error alone can’t explain
why we are so far off. Alternatively one can ask “what is the probability that
our residual would be this low just by chance?” (This is one minus the other
probability.) If the answer is extremely low, it suggests something is wrong:
probably we overestimated the uncertainties.

For confidence in parameters: The fitted parameters also depend on the noise
in the data (in fact, they depend only on the component of noise that lies in
the range of A). We can express the degree of certainty by quoting a confidence
region: “There’s a 90% probability that the parameters lie in this region.” That

5

is to say, if we repeated the experiment many times, with different noise each
time, the parameters would be in the confidence region 9 times out of 10. You
can replace the probability 0.9 with any number that makes sense for a given
application.

5 Monte Carlo approach

Here is our mental model for where the data comes from:

The {ai} have some distribution, and that distribution answers questions
about how certain the parameters are.

What we really want is the distribution of ai−atrue because that is the error
that actually matters. Unfortunately we don’t have access to atrue. A principle
that lets us continue is that the distribution of errors in the real problem is the
same as the distribution of errors that would result if our parameter estimate
a0 was the true value. That is, the effects of errors aren’t changing so fast that
errors added to the true model have noticeably different behavior than errors
added to our estimated model.

This leads to a simple brute force approach: pretend that the parameters a0

describe the real system, and generate N synthetic data sets by adding randomly
generated noise according to our model of the uncertainty:

ySi = y(x,a0) + ηi

where the noise ηi is generated from some model of the uncertainty. We might
use N = 105 or more, if the fitting process is pretty fast. Then we fit parameters
to all those synthetic datasets and look at the distribution of the resulting
parameter vectors aSi :

6

The idea is that {aSi } is distributed around a0 in the same way as {ai} is
distributed around atrue, so we can answer our questions about the distribution
of a0 over all possible datasets by instead asking questions about the distribution
of ai that we computed.

Following the previous section, we can compute the distribution of residuals
that we need to evaluate fit quality just by counting:

Pr{χ2 < x} ≈ #(χ2(aSi) < x)
N

and from these numbers we can estimate whether our fit is improbably good or
bad.

Also following the previous section, we can estimate parameter confidence by
simply looking at the actual distribution of the aSi . For example, we can generate
single-parameter confidence intervals simply by finding an interval that contains
the requisite fraction of the total points. For example, you could find a 90%
confidence interval by reporting the 5th and 95th percentile of that parameter’s
values.

When correlations between parameters are important, it’s often more useful
to quote a confidence ellipse (or ellipsoid for more than 2 variables) rather than
separate confidence intervals. In this case our job is to find an ellipse that
contains, say, 90% of the points. We’d like the ellipse to fit the distribution so
that it is as small as possible; we can do this using principal components. Just
find the SVD of the point cloud (don’t forget to subtract the mean first) and
the singular vectors and values give you axis directions and axis length ratios
for ellipses that fit the shape of the distribution. Expressing the points in terms
of the singular vectors, so that your ellipses are circles, makes it easy to define
the ellipse that contains the required fraction of the points.

6 Gaussian distributions

Before I talk about the analytic methods for finding the distributions of residuals
and of parameter values, I will review Gaussians and their convenient properties.

I’ll talk about Gaussians in the linear-transformation oriented way: Start
with a unit (by which I mean unit variance, which is the same as unit standard

7

deviation) Gaussian in IRm:

g(x) = exp
(
−
∑
i

x2
i

2

)
= exp

(
− x · x

2

)
= exp(−‖x‖2/2)

This function is both separable (it is the product of a function of each variable)
and radially symmetric (it is a function of radius; that is, of the norm of x).

Note that if I hold n of the m xs constant and look at the distribution as
a function of the other m − n variables, I see an m-n dimensional Gaussian.
In probability-speak, all the conditional distributions of the Gaussian are also
Gaussians. Also, if I integrate along any axis, thereby eliminating one of the
variables:

gm(x2, . . . , xm) =
∫ ∞
−∞

g(x) dx1

the resulting function gm is an (m − 1)-dimensional Gaussian. That is, all the
marginal distributions of the Gaussian are also Gaussians.

Now suppose we draw points from this distribution and map them through
a linear transformation X:

y = Xx

The probability density of y is g′(y) = g(X−1y)/|det X|. It’s easy to come up
with confidence regions: find a (circular) confidence region for the distribution
of x, and map it through X to get an ellipse:

The SVD of X, UΣVT , can give us the principal axes of the ellipse (or
ellipsoid). If the confidence region for g(x) has radius r, then the confidence
region for y has axes {rσiui} where the σs and us are the singular values and
left singular vectors of X.

These are all straightforward properties of the Gaussian distribution that
follow from its algebraic form.

The one final mathematical tool we’ll need is one to tell us how large a
confidence region we need to use. It’s sufficient to be able to find these regions
for a unit Gaussian, since we can always transform them to deal with other
Gaussians.

The question we need to answer is: “What is the probability that a point
drawn from a unit Gaussian is within a distance r from the origin?” The answer
to this question tells us what confidence we can quote for a sphere of radius r
around the origin.

There’s a standard probability distribution designed to answer this question,
called the χ2 distribution because of its association with χ2 fitting. I actually
wish it had a different name, because it’s really a simple idea that makes perfect
sense separately from the model-fitting context.

If we draw points randomly from a ν-dimensional Gaussian distribution,
and look at the distribution of the squared norms of the points (that is, look at
the distribution of the random variable X = ‖x‖2 over a Gaussian probability
space), the distribution is the χ2 distribution for ν degrees of freedom. Another
way of saying the same thing is that the χ2 distribution is the distribution of
the sum of ν independent gaussian-distributed random variables.

8

0 1 2 3 4 5 6 7 8 9 10
0

1

ν = 1

ν = 2

ν = 3

ν = 10

ν = 1

ν = 2
ν = 3

ν = 10

pr
ob

ab
ili

ty
pr

ob
ab

ili
ty

 d
en

si
ty

distance from mean

0

0.4
χ2 pdf

χ2 cdf

Figure 1: The probability density function pχ2(r|ν) (top) and cumulative distri-
bution function Pχ2(r|ν) (bottom) for the χ2 distribution, for degrees of freedom
ν ranging from 1 to 10.

9

We can explore the χ2 distribution using Monte Carlo very simply by adding
up ν gaussian random numbers a million times and making a histogram. Here
is a Matlab transcript of this demo:

figure
N = 1e6;
dx = 0.1; xs = (0:dx:10) + dx/2;
plot(xs, histc(randn(1,N).^2, 0:dx:10)/N/dx, ’-’)
hold on
plot(xs, histc(sum(randn(2,N).^2), 0:dx:10)/N/dx, ’-’)
axis([0 10 0 0.4])
plot(xs, histc(sum(randn(3,N).^2), 0:dx:10)/N/dx, ’-’)
plot(xs, histc(sum(randn(4,N).^2), 0:dx:10)/N/dx, ’-’)
plot(xs, histc(sum(randn(5,N).^2), 0:dx:10)/N/dx, ’-’)
plot(xs, histc(sum(randn(6,N).^2), 0:dx:10)/N/dx, ’-’)
plot(xs, histc(sum(randn(7,N).^2), 0:dx:10)/N/dx, ’-’)
plot(xs, histc(sum(randn(8,N).^2), 0:dx:10)/N/dx, ’-’)

I’ll denote the χ2 probability density function by pχ2 and its cumulative
distribution function Pχ2 :

pχ2(r2|ν) = pdf for ‖x‖2 at r2

Pχ2(r2|ν) = Pr{‖x‖2 < r2}

}
for Gaussian-distributed x in IRν .

These functions don’t really have closed forms, but there are standard func-
tions available for computing their values (in Matlab, they are chi2pdf and
chi2cdf). They compute the same thing as the Monte Carlo experiment but
much more quickly and accurately:

for j = 1:8
fplot(@(x) chi2pdf(x, j), [0 10], ’r-’)

end

The χ2 distribution and its cumulative probability (the probability of χ2 being
less than a given value) are shown in Figure 1.

The cumulative probability Pχ2 is exactly what we need to answer questions
about probability of having residuals or parameter values in certain ranges,
which I’ll explore in the next section.

7 Fitting statistics for Gaussian errors

In the section on Monte Carlo, we explored what probabilistic questions we
need to answer in order to evaluate the meaningfulness of fitting results. In the
section on Gaussians, we developed tools we can use to answer these questions
for the special case of errors that happen to come in a Gaussian distribution.
The reasoning is exactly the same as before, so I’ll just explain how we compute
the relevant statistics for Gaussians.

10

The first statistic we examined was the distribution of residual errors over the
distribution of noise in the data. The data is distributed about the (unknown)
ytrue in an m-dimensional Gaussian, and the squared magnitude of the noise
is distributed according to χ2 with m degrees of freedom. There’s a subtlety
here, though: the residual has fewer degrees of freedom, because, unlike the real
answer, the fitted model Aa0 always matches the data y0 in all the directions
that are in the range of A. This means the residual is normally distributed in
the range complement of A, which has (m− n) dimensions. So the residual of
a χ2 fit is distributed according to the χ2 distribution with ν = m− n.

The second statistic was the distribution of parameter values around the
fitted parameters a0. In this case, the parameters are projected into the range of
A, which means the relevant χ2 distribution has n degrees of freedom. Using the
SVD A = UΣVT , we can think of the process that maps y to a as a projection
from m to n dimensions followed by a transformation in n dimensions:

a = VΣ−1
1 UT

1 y

= (VΣ−1
1)(UT

1 y) (1)

The projection by U1 throws out m−n dimensions, leaving UT
1 y distributed as

a Gaussian in n dimensions. (This is one of the special properties of Gaussians:
if you look at some of the variables, integrating the others out, you still see
a Gaussian.) We can compute (spherical) confidence intervals for UT

1 y using
Pχ2(·, n) and then transform them by VΣ−1

1 to get the confidence regions for a.
We also can compute confidence intervals for the parameters separately. In

the Monte Carlo technique we would just ignore the other parameters when
computing the confidence region. Now we have to be a little more careful to
keep track of what distribution we are looking at. Suppose we are interested
in the parameter ak. Looking at just the k-th row of (1), we see that it is the
product of the k-th row of VΣ−1

1 (call it v′k) with the normally distributed points
UT

1 y. This amounts to a scaled projection of that (unit variance) Gaussian
distribution onto a single axis, so we end up with the parameter distributed
according to a pχ2(·, 1), but scaled by the length ‖v′k‖.

Sources

• Press, Flannery, Teukolsky, and Vetterling, Numerical Recipes in C: The
Art of Scientific Computing, Second Edition. Cambridge University Press,
1992. Chapters 14–15.

11

