
LEAST SQUARES: FITTING A CURVE TO DATA POINTS

1. An example to illustrate the motivation

We illustrate the method of the least squares fitting of a curve (here a straight line) to a
set of data points by considering a classic experiment from introductory physics, in which
a spring is hung from a rigid support, and a mass M is hung on the spring. If the mass is
pulled down and released, the system will oscillate with a period T given by the expression

T = 2π(M/k)1/2

where k is the spring constant. The formula is correct if the spring has negligible mass. If
the spring mass is not negligible, we can revise the simple formula to take the mass of the
spring into account:

T = 2π[(M + m)/k]1/2 (1)

where m is the “effective” mass of the spring. A somewhat questionable theoretical
calculation predicts that m should be one third of Ms, the actual mass of the spring.

We now think of doing an experiment to test this hypothesis, and so load the
spring with a number (say N) of different masses, M1,M2, . . . ,MN , and measure the
associated periods T1, T2, . . . , TN .1 We may use these N data points to test the theoretical
relationship given by Eq. 1.

We could plot our experimental points on a graph of T vs M , but if Eq. 1 holds, our
experimental points would fall on a curved line, and it would be difficult to tell whether
or not the functional form suggested by Eq. 1 actually describes the data. However if we
plot our points on a graph of T 2 vs M , they should fall on a straight line if Eq. 1 is a good
description of the system:

T 2 =
4π2

k
M +

4π2m

k
= αM + β (2)

where α = 4π2/k is the slope of the line and β = 4π2m/k is its intercept with the T 2 axis.
If the data do in fact fall on a straight line for this plot, we can estimate the slope and
intercept of the line to provide estimates for the two parameters m and k. Note that for

1 We number our points from 1 to N , because it is traditional, natural, and notationally elegant. Such
a vector is called a unit-offset vector. However in the C language, which we use to do the calculations
we shall soon describe, a vector such as M [i] is traditionally zero-offset, that is, i would run from 0 to
N − 1. If you allocate memory for a nine-dimensional vector it will have components M [0] . . . M [8], and
you may well get garbage, or perhaps a “segmentation fault”, if you ask for M [9]. While it is possible
to twiddle the C code to handle unit-offset vectors and matrices, we do not do so. In referring to our
programs you will just have to make the mental adjustment to shift the offset. We trust this will cause
no confusion.
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3 – 2 Least squares curve-fitting

our example, the ratio of the intercept to the slope of the line should equal m if the theory
is correct.

The table below and the associated plots of Fig. 1 show the data from an actual
experiment, in which a spring is suspended from a support and the oscillation period is
measured for each of 9 different masses, ranging from 55 to 455 grams, which are hung on
the spring. The mass of the spring itself was measured to be approximately 48.2 grams.

M (grams) 55 105 155 205 255 305 355 405 455

T (sec) .496 .645 .761 .867 .957 1.037 1.113 1.194 1.254

T 2 (sec2) .246 .416 .579 .752 .916 1.075 1.239 1.426 1.573

Figure 1 — The straight line is to be preferred where possible.

Note that when we plot Ti versus Mi, the experimental points fall on a curve, but
that when we plot T 2

i versus Mi, the points appear to fall on a straight line, as we might
expect from the theoretical hypothesis represented by Eq. 2. As we have mentioned, this
straight line is much easier to analyze than the curve.

Now the question arises: What are the “best” values of m and k that can be
determined from the data? Furthermore, once we have determined the “best” values for
m and k, can we say that the data are consistent with the hypothesis that m = Ms/3?
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We can make some initial estimates by hand, just by drawing, by eye, a straight line
through the data points (as shown on the graph of T 2 versus M), and reading off the slope
and the intercept of this straight line. Thus, we can read an intercept of about 0.063 sec2,
and a slope of about (1.390 − 0.063)/400 = 3.318 × 10−3 sec2/gram, and hence a ratio of
the intercept to the slope (this will be m) of about 19 grams. The theoretically predicted
value of m is about 16.1 grams—one third of the actual spring mass. To say whether
these two values agree with each other, we need to estimate the uncertainty associated
with our 19-gram result. We can make a rough estimate of this uncertainty by shifting the
straight edge on the graph while estimating (subjectively) whether the straight edge still
goes through the points, and thus deduce that m is accurate to within a few grams.

We can, however, be still more quantitative, by making a least squares straight line fit
to the data. Such a fit is also called a linear regression by the statisticians.

In the following section we discuss the general methods for fitting a straight line
to a set of data points. Later on, we’ll discuss the more general problem of fitting any

hypothesized function to a set of data points. We include details of the derivations, since
they are not readily accessible elsewhere. For further reading, consult the references listed
at the end of the chapter.

2. General discussion of the least squares method: Fitting a straight line

We consider the general problem of fitting a straight line, of the form f(x) = αx + β, to
a set of N data points (xi, yi), where i goes from 1 to N . Our hope is that yi will be well
approximated by f(xi). (In our example, xi = Mi, and yi = T 2

i , so we hope that T 2
i will

be well approximated by αMi + β).

We assume that the xi are known exactly, and that for each xi there is a normally
distributed population of observations yi, whose mean is αxi + β, and whose variance
is σ2

i .
2

If the xi are not known exactly, but the yi are known exactly, we can just reverse
the roles of xi and yi. If neither xi nor yi are known exactly, a unique straight line fit is
considerably more difficult.3 In practice, we choose the independent variable xi to be the
most precisely measured quantity. Thus in our example of the previous section, we shall
take the masses Mi to be known exactly.

2 In the ideal situation, independent estimates for σ2

i would be obtained from the data. For an
experiment such as the one we describe here, this would require that several values of yi be measured for
each xi, so that a sample variance in y may be calculated for each xi. For some kinds of experiments,
especially in particle physics, the yi are numbers of counts, as registered, say, by a Geiger counter. If
we make the reasonable assumption that such yi obey Poisson statistics, an estimate of σi is available:
σi ≈ √

yi, since for a Poisson distribution the variance is equal to the mean. More commonly, an
estimate of σi is not available, in which case we must make some assumption about its value. Often
it is assumed that all the σi are equal, so that each data point is considered to be weighted equally.

3 See Reference 3 at the end of this chapter.
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The overall situation may be shown graphically:

Figure 2 — Graphical representation of the model for linear regression.

Now we hypothesize a straight line of the form

f(x) = ax + b (3)

Our job is to determine values for a and b that are best estimates for the unknown
population parameters α and β. To do this, we form the quantity Φ, the weighted sum
of the squares of the residuals. It will be a function of a and b:

Φ(a, b) =
N
∑

i=1

wir
2
i =

N
∑

i=1

wi[f(xi) − yi]
2 =

N
∑

i=1

wi(axi + b − yi)
2 (4)

Here ri ≡ f(xi) − yi is the residual for the ith data point. The concept of a residual may
be illustrated with a graph:

Figure 3 — Graphical representation of residuals.
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There are N such residuals.

wi is the weight to be given to the ith data point. It will be proportional to the
inverse of the variance (i.e., proportional to 1/σ2

i ) for that point. If wi is taken to be equal

to 1/σ2
i , where σ2

i is independently estimated for each point, the quantity Φ becomes equal
to χ2 (chi-square), a useful statistical quantity. For this reason a “least-squares fit” is
sometimes called a “chi-square fit”.

In practice, we shall often know only the relative weights, not having available
independent estimates of the σ2

i . If we know only that all σi are equal, we may take wi = 1
for each point.

Note that Φ is a function of a and b, the parameters to be determined. The best
values for these parameters will be those for which Φ is a minimum. This is the meaning
of least squares. Moreover, the smaller Φmin is, the better the fit.4

To minimize Φ, we differentiate Φ with respect to a and b, and set each of those
derivatives equal to zero. That is, we set

∂Φ

∂a
= 0 ;

∂Φ

∂b
= 0

Working out the derivatives, we find

X2 a + X1 b = P

X1 a + W b = Y1

(5)

where we represent relevant sums like this:

W ≡
∑

wi ;

X2 ≡∑wix
2
i ;

X1 ≡
∑

wixi ;

Y2 ≡∑wiy
2
i ;

Y1 ≡
∑

wiyi

P ≡∑wixiyi

with all sums running from i = 1 to N .

Equations 5 may be solved5 for a and b :

a =
1

∆
(W · P − X1 · Y1) b =

1

∆
(X2 · Y1 − X1 · P ) (6)

where ∆ is the determinant of the coefficients:

∆ ≡ W · X2 − X2
1

4 The reasoning leading to the statement that the best fit is obtained by the method of “least
squares” (e.g., by minimizing chi-square) stems from the consideration of maximum likelihood estimators.
Chapter 15 of Numerical Recipes and Appendix 5A of the book by Bennett and Franklin contain good
discussions of this topic.

5 As an exercise, try deriving Eqs. 5 and solving them to get Eq. 6.
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With these values of a and b, Φ assumes its minimum value:6

Φmin = Y2 − aP − bY1 (7)

We have thus determined values for a and b, the best estimates of the slope and
intercept. We must now estimate the statistical uncertainties, or confidence limits for each
parameter. Without confidence limits our results are meaningless.

The idea is this: a and b are each functions of the yi. Hence statistical fluctuations in
the yi will lead to statistical fluctuations in a and b. Later on (see Fig. 4 on page 3 – 20) we
shall provide a concrete illustration of such fluctuations. For now, we simply note that if
σ2

i is the variance of yi, the variances of a and b will be, according to the theory described
for the propagation of uncertainty in the preceding chapter,7

σ2
a =

∑

(

∂a

∂yi

)2

σ2
i and σ2

b =
∑

(

∂b

∂yi

)2

σ2
i (8)

Now σ2
i = C/wi, where C is some constant, and

∂a

∂yi
=

wi

∆
(Wxi − X1) ;

∂b

∂yi
=

wi

∆
(X2 − X1xi)

This leads to

σ2
a = C

W

∆
; σ2

b = C
X2

∆
(9)

What is C? If we are fortunate enough to have available independent estimates s2
i of

the y-variances σ2
i , then wi ≈ 1/s2

i , that is, C ≈ 1. In that case our best estimates for σ2
a

and σ2
b are just

s2
a =

W

∆
; s2

b =
X2

∆
(10)

The square roots of these quantities are estimates of the standard deviations of each
of the parameters, providing confidence limits of approximately 68 per cent.

Furthermore, since it is known that C ≈ 1, the value of Φmin is equal to a sample
value of χ2, a statistical quantity that may be used to test “goodness of fit”, that is,

6 This compact expression for the minimum value of Φ can be deduced by writing Φ in the form

Φ =
∑

wi(axi + b − yi)ri = a
∑

wixiri + b
∑

wiri −
∑

wiyiri

The first two sums on the right side of this equation will vanish by virtue of Eqs. 5, leaving only the last
sum, which is the right side of Eq. 7.

7 Estimates of the variances σ2

a and σ2

b lead to “one-parameter” confidence limits—those discussed
here. Such confidence limits ignore any correlation between a and b. Later on in this chapter (see page
3 – 18) we discuss the consequences of taking into account such correlations.
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whether the data may be appropriately described by a straight line. For more details on
the use of χ2, see the following chapter (Chapter 4).

More frequently, estimates of only the relative weights are available, in which case the
best we can do is to estimate the value of C. We do this by assuming that our data are
well-fit by the straight line, that is, we assume that χ2 is equal to its mean value, which
turns out to be the number of “degrees of freedom”, or N − 2.8 Since Φmin = Cχ2, we
simply replace C by Φmin/(N − 2), so that our best estimates for σ2

a and σ2
b become

s2
a =

W

∆

Φmin

(N − 2)
and s2

b =
X2

∆

Φmin

(N − 2)
(11)

The square roots of the quantities given by either Eqs. 10 or 11 are estimates of
the standard deviations of each of the parameters, which provide confidence limits of
approximately 68 per cent.

Thus our results may be stated succinctly:9

SLOPE = a ± sa ; INTERCEPT = b ± sb (12)

3. About the use of standard “Linear Regression” statistics routines

The usual “statistics” software routines available for use on personal computers do not
usually calculate the standard deviations sa and sb of the slope and intercept of the
straight line resulting from a “linear regression” calculation. Instead, they provide a
calculation of either the covariance sxy and/or the correlation coefficient r = sxy/sxsy,
where10

s2
x =

1

N − 1

∑

(xi − x)2 ; s2
y =

1

N − 1

∑

(yi − y)2

and

sxy =
1

N − 1

∑

(xi − x)(yi − y)

Such a procedure is more general than that we have been considering, in that the
covariance and the correlation coefficient may be calculated (and have meaning) even if
the xi are not known exactly.

8 The number is N−2 and not N because 2 degrees of freedom have been used up in the determination
of a and b.

9 The expressions given by Eq. 12 are not quite correct, for reasons similar to those noted in the
footnote on page 2 – 10. To be correct, we should include the appropriate “Student” t-factor tN−2, which
depends on the number of data points and the confidence level chosen. Hence the correct forms for
Eqs. 12 are:

SLOPE = a ± tN−2sa ; INTERCEPT = b ± tN−2sb (12a)

The least-squares program fitline described in Chapter 5 incorporates “Student” t-factors in this way.
A table of “Student” t-factors appears on page 2 – 13.

10 Weighting of points is implicit in these expressions.
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However, if the xi are assumed to be known exactly, sa and sb may be expressed in
terms of the correlation coefficient r. Here are the appropriate equations:

s2
a =

a2

N − 2

(

1

r2
− 1

)

; s2
b =

X2

W
s2
a (13)

with the correlation coefficient being

r ≡ sxy

sxsy
=

W · P − X1 · Y1

(W · X2 − X2
1 )1/2(W · Y2 − Y 2

1 )1/2

Note that as r → ±1, the correlation becomes exact, and both sa and sb → 0. On the
other hand, as r → 0, yi becomes uncorrelated with xi, and both sa/a and sb/a increase
without bound, as expected.

4. Continuing with our example, involving the mass on the spring

We start with the raw data, given in the table on page 3 – 2. We assume that σ2
T , the

variance in T , is independent of T , i.e., the same for all the data points. Hence the
variance in T 2 will not be the same for all data points, and if we want to perform a proper
least-squares fit to the straight line of T 2 versus M , we should weight each point with its
appropriate weight wi.

(Actually, in the majority of cases any physicist will encounter, the fit obtained,
assuming that all points are equally weighted, will not be very different from that in which
correct weights are included. We do this example, however, including the correct weighting
factors, to illustrate the method in detail).

To determine the wi, let y = T 2. Then

σ2
y =

(

∂y

∂T

)2

σ2
T

as described on page 2 – 14. Now ∂y/∂T = 2T , so that

σ2
y = 4T 2σ2

T and
1

σ2
y

=
1

4T 2

1

σ2
T

Now since wi is proportional to 1/σ2
y , wi will be proportional to 1/T 2

i , and in fact may be
taken equal to 1/T 2

i , since for these data an estimate of σ2
T is not available.
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With a simple computer program11 we may calculate the sums

W =
∑

wi , X1 =
∑

wixi , Y1 =
∑

wiyi , X2 =
∑

wix
2
i , and P =

∑

wixiyi

and then, using Eqs. 6 and 11, calculate the values of a, b, sa and sb. The results, using
the measured data from page 3 – 2, are

a = SLOPE =
4π2

k
= (3.331 ± 0.015) × 10−3 sec2/gm

and

b = INTERCEPT =
4π2m

k
= 0.0642 ± 0.0032 sec2

These expressions for the slope and intercept, complete with the standard deviations
sa and sb, imply that the “true” values of the slope and intercept have about a 68 per cent
chance of falling within the specified limits, assuming that the experiments were carried
out without any systematic error such as a miscalibration of a stopwatch.

Now, what do these values of a and b imply for k and m? We note that k = 4π2/a.
What is δk, the uncertainty in k, in terms of sa?

Again we propagate uncertainty through the functional relationship to find

(δk)2 =

(

∂k

∂a

)2

s2
a

so

δk =
4π2

a2
sa

Hence we obtain the result for our measured spring constant:

k ± δk = (1.1852 ± 0.0053) × 104 dynes/cm

Similarly, since m = b/a,

(δm)2 =

(

∂m

∂a

)2

s2
a +

(

∂m

∂b

)2

s2
b =

b2

a4
s2
a +

1

a2
s2
b

leading to a measured effective mass for the spring of

m ± δm = 19.27 ± 0.97 grams

Finally we ask, are the data consistent with the hypothesis that m = Ms/3? Since
the measured Ms ≈ 48.2 grams, Ms/3 ≈ 16.07 grams. This value is not bracketed by the
uncertainty in our experimentally deduced value of m, and in fact is less than our deduced
value of m by over three standard deviations. Therefore, we conclude that the value of m
derived from the data is inconsistent with the hypothesis that m = Ms/3.

Either (a) the hypothesis is incorrect, or (b) there is a systematic error in the
measurements. We might want to check the accuracy of our apparatus, or try the
experiment again, or rethink the theoretical analysis.

11 See, for example, the program fitline described in Chapter 5.



3 – 10 Least squares curve-fitting

5. Fitting curves nonlinear in the parameters: the Marquardt algorithm12

The least-squares method is not limited to fitting a straight line, that is, a linear
combination of 1 and x, to a set of data points. The method may be generalized to fit
either (a) a linear combination of any K specified functions of x, or (b) any function of x

and a specified number of parameters, even one nonlinear in those parameters. The former
may be accomplished in one step through the simple inversion of a K × K square matrix,
while the latter requires an iterative technique, one that we describe below.

In practice, an iterative method may be used for both (a) and (b), and the particular
method we shall describe—the Marquardt algorithm—is widely used as a technique for
modeling data in a broad range of situations.

For example, when silver is irradiated with neutrons, the resulting intensity of
radioactivity I(t) decreases with time according to the expression

I(t) = β1 + β2e
−β3t + β4e

−β5t (14)

Although I(t) is linear in β1, β2 and β4, it is nonlinear in both β3 and β5, and there is
no way to transform this function into any two-parameter straight line. It is possible,
however, to use the least squares technique to provide estimates for each of the five
parameters, along with estimates for the uncertainty in each.

Other examples encountered in the advanced laboratory include the transient
oscillatory decay that arises in the Cavendish experiment, and the determination of
resonance curves or line shapes that may be encountered in other experiments.

The method we describe is used in a computer program called fit that we wrote a
few years ago in an effort to improve a Bell Labs program called nllsq (nllsq: “nonlinear
least squares). Further discussion of the fit program may be found in Chapter 5.

The general idea

Suppose we have a set of N data points with coordinates (xi, yi), that we wish to describe
using a function

y = f(x, β1, β2, . . . , βK)

an expression we’ll often write as
y = f(x, β) (15)

Here x is the independent variable whose values are presumed precisely known,
and the βj are the K parameters whose values we desire. β can be thought of as a

12 An understanding of the material in this final section is not necessary for work in the Intermediate
Laboratory course. It will, however, be needed in the Advanced Laboratory course, where several
experiments involve the fitting of data by nonlinear mathematical functions.

In general, the reader who takes the time to understand the nonlinear curve-fitting algorithm
will be well-rewarded. It is nothing short of astonishing to watch a data set from the Mössbauer
experiment—one with six spectral lines buried in lots of noise—be fit by a 19-parameter mathematical
function, with each of the parameters homing in on its optimum value.
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K-dimensional vector. (In the example of Eq. 14, x is replaced by t, y is replaced by I,
and K = 5, so that β is a five-dimensional vector.)

Our goal is to adjust the values of the parameters so that yi is well-approximated by
f(xi,b), where b is our best estimate of the desired parameter vector β.

To do this we minimize the quantity Φ—the weighted sum of the squares of the
residuals—just as we did in fitting a straight line to a set of data points. Φ will be a
function of the bj :

Φ(b) =
N
∑

i=1

wir
2
i =

N
∑

i=1

wi[f(xi,b) − yi]
2 =

N
∑

i=1

wi(fi − yi)
2 (16)

Here fi is an abbreviation for f(xi,b). As with our fitting of a straight line,
ri ≡ fi − yi is the ith residual, and wi is the weight of the ith point, a number that is
ideally equal to, or at least proportional to 1/σ2

i , the inverse of the observed y-variance
of that data point.

The best values of the bj will be obtained when we have found the minimum value for
Φ(b).12 This will happen when

∂Φ

∂bj
= 0 (17)

for each bj . If f is a linear function of the parameters bj , the problem of minimizing Φ
is straightforward. For example, in fitting a straight line to a set of data points there are
two parameters, the intercept and the slope (b1 and b2). That is, f(x,b) = b1 + b2x. As
described earlier, Φ may be minimized to find the best straight line by solving the two
simultaneous equations represented by Eq. 17. For this case, Φ, plotted as a function of b1

and b2, will have the shape of a paraboloid, and contours of constant Φ will be ellipses. If
we take ε1 and ε2 to be the excursions of b1 and b2 from their best values, Φ has this form:

Φ = Φmin + (
∑

wi)ε
2
1 + 2(

∑

wixi)ε1ε2 + (
∑

wix
2
i )ε

2
2

In the general case, where f(x,b) is a nonlinear function of the bj , we can expect that
near the minimum, Φ will also be at least approximately parabolic, that is, that Φ will
have the approximate form

Φ = Φmin +
∑

j

∑

k

Ajkεjεk (18)

where the Ajk are constants—the elements of a K by K matrix called the curvature

matrix:

Ajk =
1

2

∂2Φ

∂bj∂bk
(evaluated at Φmin) (19)

The main problem is to find the values of the bj that will minimize Φ. There are a
number of methods for doing this; we’ll describe three. They are called (a) the Taylor

12 There is no guarantee that Φ will have only one minimum. Our solution may not be unique.
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expansion, or Newton method, (b) the gradient, or steepest descent method, and (c) the
Marquardt method, which combines the Taylor expansion and gradient methods, making
use of the best features of each.

Useful references include a Bell Labs memo describing the nllsq program by
Kornblit,13 Marquardt’s original paper,14 and the more general references listed at the
end of the chapter.

The Taylor expansion method

The Taylor expansion or Newton method is similar to the Newton method for finding the
roots of a function. If we expand the function f(xi) in the vicinity of an arbitrary point b

in parameter space, we obtain a linear approximation to f :

f(xi,b + δ) ≈ f(xi,b) +
K
∑

j=1

∂fi

∂bj
δj = f(xi,b) +

K
∑

j=1

pijδj (20)

Here δ is simply a small increment in the parameter vector. The derivatives ∂fi/∂bj ,
which we abbreviate by pij , are evaluated at the point b. If the chosen point b is
sufficiently close to the desired final b vector, the right side of Eq. 20 will be a reasonable
approximation to f near the minimum of Φ.

Using this linear approximation, we can proceed to minimize Φ using straightforward
methods:

∂Φ

∂δj
=

∂

∂δj

∑

wir
2
i = 2

∑

wiri
∂ri

∂δj
= 2

∑

wiripij (21)

since ∂ri/∂δj = ∂fi/∂δj = ∂fi/∂bj = pij .

Hence we have, since we want ∂Φ/∂δj = 0,

∑

i

wiripij =
∑

i

wi(fi +
∑

k

pikδk − yi)pij = 0

or
∑

i

∑

k

wipijpikδk = −
∑

i

wi(fi − yi)pij (22)

13 A. Kornblit, nllsq—Non Linear Least Square Fit in C, Bell Laboratories Technical Memorandum
(1979). This is not officially published, but a copy is available in the lab.

14 D. W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, J. Soc.
Indust. Appl. Math. 11 431 (1963).
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Equation 22 represents a set of K linear equations that may be solved for the
increments δj . The left side of this equation may be put in simple form by writing

Ajk =
∑

i

wipijpik

Note that

Ajk =
1

2

∂2Φ

∂δk∂δj

as can be seen by differentiating Eq. 21 with respect to δk.
15 The curvature matrix Ajk is

descriptive of the shape of Φ, particularly near Φmin.

As can be seen from Eq. 16, the right side of Eq. 22 is −(1/2)(∂Φ/∂bj), that is, half
of the negative gradient vector component of the Φ surface, calculated at δ = 0. Denoting
this quantity by −gj , we see that Eq. 22 may be written

∑

k

Ajkδk = −gj (23)

or in truly shorthand notation,

Aδ = −g

Here the square symmetric curvature matrix A is of dimension K by K, while δ and g

are K-dimensional vectors. If A is nonsingular we can solve for δ by inverting A:

δ = −A−1g (24)

With luck, the δj , when added to the initial values of the parameters bj , will produce
a new set of parameters that lie closer to the point in b-space where Φ is a minimum. If
this is the case, the process can be repeated (iterated) until a desired accuracy is achieved.
If our starting point in parameter space is close to the point where Φ takes on its minimum
value, this process will converge rapidly to the desired solution. On the other hand, if
our initial guesses for the parameters are too far from the minimum of Φ, we may be led
off to a never-never land, and the process will fail, leading to new points that actually
increase the value of Φ. An alternative method, one that ensures that we find a new point
for which Φ decreases, is the gradient method, which we describe next.

15 We neglect the term 2
∑

i

wiri(∂
2ri/∂δk∂δj). It vanishes when fi is linear in the δj , as it surely will

be near Φmin.
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The gradient method

In the gradient method, we simply use a correction vector whose components are
proportional to the components of the negative gradient vector:

δk = −αkgk

where αk is a constant of proportionality. Note that αk will depend on which parameter is
being corrected, that is, on k. How large should αk be? If it’s too large, the correction will
overshoot the minimum of Φ. If it’s too small, the approach to Φmin is slow. Here’s one
way to think about what “too large” or “too small” mean: Note that δk has dimensions of
bk whereas gk has dimensions of 1/bk. Therefore αk has dimensions of b2

k. The dimensions
of 1/Akk are also b2

k, so we are led to write

δk = − 1

λAkk
gk (25)

Here λ is a dimensionless factor, independent of k. (The reason for putting λ in the
denominator will become clear shortly.)

Now Akk is the curvature of the Φ surface in the k direction. If Akk is small, we
take a big step, whereas if it’s big, we take a small step, which is what we want. The
dimensionless parameter λ can be adjusted to achieve the optimum step length, that is,
optimum convergence.

The gradient method will work well if we are so far from Φmin that the Taylor
expansion method fails. Near Φmin, however, the gradient method generally converges
much more slowly than the Taylor expansion method since g, and hence the correction
vector that’s proportional to it, become vanishingly small there.

The Marquardt method

The Marquardt method combines the best features of each of the above methods,
emphasizing the gradient method at first if necessary, then switching to the Taylor
expansion method as the minimum of Φ is approached. In what follows, we will explain
in detail how Marquardt combines the two methods. As we shall see, the factor λ will play
a key role.

Equation 25 may be written

λAkkδk = −gk or λ
∑

k

Ajkδjkδk = −gk (26)

where δjk (not to be confused with δk) is 1 if j = k and 0 otherwise.

Marquardt combines Eq. 23 with Eq. 26 by adding the two together and ignoring the
factor of 2:

∑

k

(1 + λδjk)Ajkδk = −gj (27)

Given a value of λ, Eq. 27 may be solved for a correction vector δ.
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As λ is decreased to 0 from a value much larger than 1, this δ changes smoothly from
a gradient-type to a Taylor expansion-type correction vector, since for λ � 1, Eq. 27
reduces to Eq. 26, while for λ = 0, Eq. 27 reduces to Eq. 23. Thus we may use a large
value of λ to start if we are far from Φmin, then reduce λ with each iteration, expecting
Φ to decrease as we approach Φmin. That is, with each iteration we solve for a correction
vector δ, add it to b to produce a new vector b that is closer (we hope) to the desired
parameter vector, then decrease λ and repeat the process. Eventually we hope that λ will
be decreased to such a small value that we are in the Taylor expansion regime, so that
convergence will be rapid. We continue this iterative process until the application of a
suitable convergence test shows that we have achieved the optimum set of parameters.

In the following sections we describe the finer details of the Marquardt algorithm—
scaling, testing for convergence, determining confidence limits for the parameters, and
determining to what extent the parameters are correlated with each other.

The finer details
(a) Scaling

In performing the computation it is useful to scale Eq. 27 so as to eliminate the
dimensions. As we noted above in our discussion of the gradient method, the diagonal
elements of the curvature matrix provide a natural scale for this problem. Thus we are led
to define a scaled matrix element A∗

jk:

A∗

jk ≡ Ajk
√

Ajj

√

Akk

(28)

Note that the diagonal elements of the scaled curvature matrix A∗ are each equal to 1.

Substituting Eq. 28 into Eq. 27 we obtain
∑

k

√

Ajj

√

Akk(1 + λδjk)A
∗

jkδk = −gj

or, dividing both sides by
√

Ajj :
∑

k

(1 + λδjk)A
∗

jkδ
∗

k =
∑

k

(A∗

jk + λδjk)δ
∗

k = −g∗j (29)

Here the δ∗k =
√

Akk δk form the scaled correction vector, while g∗j = gj/
√

Ajj is the scaled
gradient vector. Equation 29, which may also be written in compact form as

(A∗ + λI)δ∗ = −g∗ (30)

may be solved for the scaled correction vector δ∗ by inverting the matrix A∗ + λI. Then
each component of the correction vector is unscaled :

δk =
δ∗k√
Akk

(31)
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δk is then added to the appropriate component of the parameter vector at the nth

iteration to obtain a new value for this component:

b
(n+1)
k = bn

k + δk (32)

We expect this new set of parameters to be one for which the fit is improved, i.e., one
yielding a smaller value for Φ.

Given an initial guess for the parameter vector b, we may summarize the steps of the
algorithm so far as follows:

(1) Compute the initial Φ(b).

(2) Pick a modest value for λ, say λ = 10−4.

(3) Solve Eq. 30 and use Eq. 31 to obtain the correction vector δ and compute
Φ(b + δ).

(4) If Φ(b + δ) ≥ Φ(b), increase λ by a factor of 10 (or any other substantial factor)
and return to step 3.

(5) If Φ(b + δ) < Φ(b), test for convergence (see below). If convergence is not yet
achieved, decrease λ by a factor of 10, calculate a new (scaled) A matrix, and
return to step 3.

(6) If convergence is achieved, set λ = 0 and recalculate the (scaled) A matrix, which
will be useful in determining the uncertainties in the final parameter estimates,
along with correlations among the parameters, as described below.

(b) Testing for convergence

At each iteration, it is necessary to test whether convergence has been achieved. In general
it is inadvisable to iterate until the machine roundoff limit is reached, since this would lead
to results containing more significant figures than are implied by ordinary data.

Furthermore, it is fairly common, as one nears the minimum of Φ, to find parameters
wandering around in small steps, searching for an ill-defined minimum in a flat valley of
complicated topology. This is particularly likely when there are large correlations among
the parameters.

Thus it is necessary to establish appropriate criteria for stopping. The simplest
(and crudest) is just to stop after some preset number of iterations. Of course then we
won’t know, except by monitoring how the parameters change at each iteration, whether
convergence has been achieved. Nevertheless it is advisable to set some maximum number
of iterations, just in case no ordinary convergence is reached. An appropriate number
will depend on the particular problem at hand, but a number on the order of 20 or 30
is usually suitable.
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In normal situations, we should stop when the changes in the parameters (the δj) are
smaller than some specified value. Marquardt suggests stopping whenever

|δ∗j | < ε(τ + |b∗j |) for all j (33)

where ε and τ are constants. Suitable values might be ε = 10−5 and τ = 1.0. The constant
τ is there to take care of situations where a final parameter value might be close to zero.
Kornblit calls this the “epsilon test”. Scaled values of δj and bj are used because they are
dimensionless and likely to be of comparable magnitude.

Sometimes, particularly when the parameters are highly correlated so that the Φ
surface in the vicinity of the minimum is quite flat, it may be found that λ will increase
to values larger than would seem necessary to ensure a decreasing Φ. It is possible then
that the correction vector is too large. In such situations it is helpful to monitor the angle
γ between the scaled correction vector δ∗ and the scaled gradient vector g∗. This angle can
be calculated:

γ = cos−1

(

g∗ · δ∗

| g∗|| δ∗|

)

The technique is to increase λ until γ is less than some chosen value (typically 45
degrees). This can always be achieved since γ will decrease monotonically toward zero as
λ increases. Then we do not increase λ further, but halve the correction vector, replacing
Eq. 32 by

b(n+1) = b(n) +
1

2
δ(n) (34)

We continue to halve the correction vector until either the epsilon test is passed or Φ
decreases. Kornblit calls this the “gamma-epsilon” test.

Finally there are two tests for non-convergence. The first is an attempt to deal with
a singular Marquardt matrix A∗ + λI. If λ is too small and the parameters are too highly
correlated this matrix may be judged singular by the fit program. If this is found, λ is
automatically increased by a factor of 10 and the matrix recalculated. This will happen
up to five times (resulting in a possible increase in λ by a factor of up to 105) before the
program gives up in disgust.

The second is called the “gamma-lambda” test, which causes the program to stop if
γ cannot be reduced to less than 90 degrees even with a λ of 10. The completion of this
test is also an indication that the parameters are too highly correlated for a solution to be
found.

It is not uncommon to find that the parameter values just grow larger without bound,
as Φ decreases (usually slowly) toward an imagined minimum in outer space. If this is
the case the searching will probably continue until the maximum number of iterations is
reached, but with no meaningful results. The most likely cause for such behavior is that
poor initial guesses have been made for the parameters.



3 – 18 Least squares curve-fitting

(c) Confidence limits

The simplest and most often used method for estimating confidence limits for the
parameters—the one-parameter confidence limits—is identical to that outlined earlier for
the fitting of a straight line. Thus to estimate the variance in the j th parameter we start
with an expression analogous to Eq. 8:

σ2
bj

=
∑

i

(

∂bj

∂yi

)2

σ2
i (35)

where bj is the optimum value of the jth parameter, and σ2
i is, as before, the y-variance

at the ith point, with σ2
i being inversely proportional to wi: σ2

i = C/wi, where C is a
constant.

We need to calculate ∂bj/∂yi at the point where Φ is a minimum, that is, where
g = 0, or where for each m

gm =
∑

k

wk(fk − yk)pkm = 0

To find ∂bj/∂yi we differentiate this equation with respect to yi to get
∑

k

wkpkm

∑

n

∂fk

∂bn

∂bn

∂yi
− wipim = 0

Thus
∑

n

(

∑

k

wkpknpkm

)

∂bn

∂yi
= wipim

or
∑

n

Anm
∂bn

∂yi
= wipim

which may be solved for ∂bj/∂yi by inverting (once again) the curvature matrix A:

∂bj

∂yi
= wi

∑

m

A−1
jmpim

where A−1
jm is the jmth element of A−1. Squaring this expression, multiplying by C/wi,

and summing over i yields
σ2

bj
= CA−1

jj (36)

If independent estimates s2
i of the y-variances σ2

i are available,16 then wi ≈ 1/s2
i and

C ≈ 1, so s2
bj

= A−1
jj is a good estimate for the variance of the jth parameter bj , and

16 For many measurement situations such estimates are not available. However if the yi consist of
counts drawn from a Poisson distribution, such as might be obtained using a Geiger counter, yi itself
is an estimate of σ2

i , so that 1/yi is an absolute estimate of wi. For the least-squares theory described
in this chapter, which assumes the yi are drawn from a normal, or Gaussian distribution, yi must be
large enough so that the Poisson distribution may be assumed Gaussian. A common rule-of-thumb is to
ensure that yi is greater than or equal to 10.
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sbj
= (A−1

jj )1/2 is a good estimate of the standard deviation of the jth parameter.

In addition, if estimates of the y-variances are available, the obtained value of Φmin

becomes a sample value of χ2 and may be used to test “goodness of fit”, as described in
Chapter 4.

If estimates of the σ2
i are not available (a frequent situation), then we are reduced, as

described earlier for the fitting of a straight line to a set of points, to assuming that the
fit is ideal, so that χ2 is assumed to equal its mean value of N−K, the number of degrees
of freedom. (In this case, any desire to test “goodness of fit” must be abandoned, since a
sample χ2 is not available.) Thus we use Φmin/(N−K) as an estimate for C, so that our
estimate of the standard deviation of the jth parameter becomes

sbj
=

(

Φmin

N−K
A−1

jj

)1/2

(37)

To estimate the uncertainty in bj , we multiply sbj
by the appropriate “Student”

t-factor, as explained earlier for the fitting of a straight line. Thus, if we have bj as an
estimate of the parameter whose “true” value is βj , we expect that with a probability of
the chosen confidence level,

bj − tN−Ksbj
≤ βj ≤ bj + tN−Ksbj

(38)

where tN−K is the appropriate “Student” t-factor for N −K degrees of freedom and the
chosen confidence level, such as shown on page 2 – 11. For a 68.3 per cent confidence level,
this factor is approximately 1, and so is often omitted.17

A different kind of confidence limit is one that defines the joint confidence region, that
is, the region in parameter space within which all of the parameters will lie with some
probability, say 68.3 per cent. Such a region will have a shape that is approximated by a
K-dimensional ellipsoid, a surface of constant Φ > Φmin.

To envision why this is appropriate, imagine that the experiment yielding our data
sample is repeated many, many times, so that we have a very large number of data
samples. Each sample will produce a distinct parameter set, and hence a distinct point
in parameter space. Thus the collection of repeated experiments will produce a cluster
of points, one that we expect will be roughly ellipsoidal in shape, and we can arrange
an ellipsoidal surface that will contain some specified fraction of the points. Its size will
depend on the number of degrees of freedom and the desired confidence level. The interior
of the ellipsoid so chosen is the joint confidence region. Statistics wizard G. E. P. Box has
shown18 that if the fit is assumed ideal (so that χ2 is assumed equal to its mean value) the

17 Our computer programs fit and fitline do take into account appropriate “Student” t-factors,
however. See Chapter 5.

18 G. E. P. Box, in the two-volume set, The Collected Works of George E. P. Box, edited by George
C. Tiao (Wadsworth, Inc., Belmont, Calif., 1985). See especially The Experimental Study of Physical

Mechanisms Vol. I, pp. 137–156, and Application of Digital Computers in the Exploration of Functional

Relationships, Vol. II, pp. 381–388.
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best estimate of the boundary of the joint confidence region is given by

Φ = Φmin

[

1 +
K

N−K
Fp(K,N−K)

]

(39)

where Fp(K,N−K) is the upper p per cent point of the F -distribution with K and N−K

degrees of freedom. p is the desired confidence level, say 68.3 per cent or 95 per cent. Thus
if there are 2 parameters and 9 data points and we choose a 68.3 per cent confidence level,
the boundary in parameter space of the joint confidence region is obtained by increasing Φ
to [1 + 2

7F0.683(2, 7)] ≈ 1.39 times its minimum value.

If the chosen function is linear in the parameters this boundary will have the shape
of a K-dimensional ellipsoid. If the chosen function is nonlinear in the parameters the
boundary will be only approximately ellipsoidal in shape; its actual form may be computed
if desired.

The projection of the joint confidence region onto each of the parameter axes defines
what is called the support plane. For an ellipsoidal region defined by Eq. 39, such a
projection is given by

∆bj = [K · Fp(K,N−K)]1/2sbj
(40)

and is called the support plane error for the jth parameter.

The diagram shown in Fig. 4 on the next page illustrates our discussion. To create
this figure we have simulated 200 repetitions of the experiment described at the beginning
of this chapter,19 using our best (non-independently determined) estimates for the σ2

i , the
variance in yi = T 2

i for the ith data point. Such a simulation is called a Monte Carlo

simulation. Each simulated repetition produces an intercept-slope pair (b1, b2), a point
in the two-dimensional parameter space. Note that the cluster of points has an elliptical
shape, as expected.20 The degree to which the ellipse is skewed depends on the correlation
between b1 and b2. If there were no correlation, the axes of the ellipse would coincide with
the b1 and b2 axes. In our example this would happen only if X1 =

∑

wixi were zero, that
is, if the curvature matrix A were diagonal.

Figure 5 (on page 3 – 22) shows a three-dimensional plot of Φ versus b1 and b2 in
the vicinity of Φmin, for the same example as that shown in Fig. 4. Regularly spaced
contours of constant Φ are shown projected onto the b1–b2 plane; the innermost ellipse
is approximately that shown in Fig. 4, giving the boundary of the joint confidence region.

It is helpful to realize that contours of constant χ2 play a definitive role in our
discussion. The 68.3 per cent one-parameter confidence limits are roughly determined

19 Of course the methods used for fitting nonlinear functions can also be used for fitting straight lines.
No generality is lost by using this simple example to illustrate confidence limits.

20 If there were three parameters, the cluster of points would have a three-dimensional ellipsoidal shape
(easily visualized in 3-space), while more parameters would result in an ellipsoidal cluster of still higher
dimensions, not so easy to visualize.
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by projecting the contour that results from increasing χ2 by 1.0 above χ2
min onto the

parameter axes, whereas the joint confidence region is roughly determined by the contour
resulting from an increase of χ2 by an amount depending on the number of parameters.
For two parameters this is approximately 2.70. Further discussion of this approach is
contained in the book of Numerical Recipes cited at the end of this chapter.

Figure 4—Confidence limits in parameter space, using the example of the straight
line fit described at the start of this chapter. The best estimates of b1 and b2 are
denoted here by b∗

1
and b∗

2
. The 200 points represent a Monte Carlo simulation of

the experiment. δb1 and δb2 are estimates of the one-parameter confidence limits (see
Eq. 38); approximately 68.3 per cent of the points will fall within either the horizontal
band or the vertical band delineated by these limits. The joint confidence region
(see Eq. 39), which contains about 68.3 per cent of the points, is delineated by the
ellipse; the projection of this ellipse onto the parameter axes, indicated by the dashed
rectangle, defines the support plane. The support plane will always extend beyond the
one-parameter limits.

(d) The correlation matrix

It is useful, when fitting functions nonlinear in the parameters to data, to know the degree
to which parameters are correlated with each other. Strong correlations are the rule rather
than the exception, and if the correlations are too strong the method will fail because the
curvature matrix A will be judged singular. Excess correlations frequently occur when
data are attempted to be fit by a function containing too many parameters, so that the
attempted fit is over-determined. In this case it is useful to know which parameters might
fruitfully be abandoned. If two parameters are completely correlated then one of them
may be eliminated with impunity.
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Just as the variance of the jth parameter is proportional to A−1
jj (Eq. 36), the

covariance σbjbk
relating the jth and kth parameters is proportional to A−1

jk .

Thus it is not surprising that a matrix of correlation coefficients results from a scaling
of the A−1 matrix. The diagonal elements of this scaled matrix will be 1.0 (each parameter
will be completely correlated with itself), while an off-diagonal element such as (A−1

jk )∗
will indicate the degree of correlation between the jth and kth parameter. Off-diagonal
elements close to ±1 indicate a high degree of correlation, while those close to 0 indicate
hardly any correlation at all.

Figure 5—A plot of Φ vs b1 and b2 for the same example as that shown in Fig. 4.
Equally spaced contours of Φ are shown projected onto the b1–b2 plane, with the
innermost ellipse being approximately that shown in Fig. 4, giving the boundary of
the joint confidence region. If you look carefully you can also see the dashed lines
that show the one-parameter confidence limits. A gradient correction vector −g would
be perpendicular to the contours of Φ, whereas a Taylor correction vector δ would
normally point toward the minimum in Φ. Note the hammock-shaped minimum, a
commonly encountered situation.
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