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Figure 2.16 The lower energy levels in a Coulomb potential, shown for Z=1
{hydrogen atorn). The stales are labeled with {m, £); the degeneracies are indicated
on the left and the energy values on the nght.

nuclear models in Chapter 3. The: behavior of angular momentum N guantum
theary is discussed in the next section.

[%QQ&&:. L cnen Gwod )

2.5 QUANTUM ORY OF ANGULAR MOMENTUM

In solutions of the Schridinger equation for three-dimensional problems, the
gquantum number ¢ plays a prominent role, In atome physics, for example, it
serves 1o label different electron wave functions and to tell us sometiung about
the spatial behavior of the wave functions. This angular momentun quanium
wumber has the same function in all three-dimensional problems involving central
potentials, where I = ¥ir).

Tn classical physics. the angular momentum ¢ of a particle moving with linear ¢
momentum p at a location r from a reference point is defined as

f=rxp (2.66)

In quantum mechames, we can eviluate the expectation value of the angular
momentum by analogy with Equation 2.10. We first consider the magnitude of
the anpular momentum, and for this purpose it is simplest to caleulate: % We
must ficst find 2 guantum mechanical operator for 7, as we discussed m Section
22 This can be done simply by replacing the components of p with their
operator equivalents: p, = —ih d/dx, p, = —ih d/dy, p. = —ih i/ @z, Evalual-
ing the cross product then gives lerms. of the form £, = yp. = 2p,. and finally
computing (¢ 7y = {£2 + €} + £7) gives the remarkably simple resull, which is

-
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Figure 2.17 Radial probability distributions for @ particle in a Goulomb patential
(hydrogenic atom). The probability vanishes at r = 0, but as before the ¢~ 0 wave
funclions do nof, This property becomes especially impartani for phenomena that
depend on the overlap of atomic wave functions with the nueleus —only #= 0
states contribute substantially to such phenomena (electron capture, hyperfine
structure, ete.). Why doesn't the “centrifugal repulsion” appear 1o ocour in this
case?

independent of the form of Rir),
(2 = he(d+ 1) (2.67)

That 1s. whenever we have a central potential, which gives a wave function
Rir)Y,, (8. ¢). the magnitude of the angular momentum i fixed at the value
given by Bquation 2.67; the angular momentum iy a constani of the motion (as it is
in classical physics for central potentials), The atomic substates with a given ¢
value ‘are labeled using spectrascopic netation; we use the same spectroscopic
notation in nuclear physics: s for /= (0, p for =1, and 50 on.. These are
summarteed in Tible 2.6

When we now try to find the direction of £ we run into o barmier imposed by
the uncertainty principle: quantum mechanics permits us to know exactly only

Table 2.6 Spectroscopic Notalion

& value 0 I 2 3 4 ] 6
Symbol % o d f £ h i
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Figure 2.18 The vecior ¢ precesses rapidly about the z awxis, so that . slays
caonstant, but ¢ and ¢, are variable,

one component of £at a time. Onee we determine the value of one component,
the other two componerts are completely indeterminate. (This is @ fundumental
limitation, and no amount of trickery can get us around it It is the very aet of
measuring one component that makey the other two indetermmate. When we
measure £, we force £, and £ into indeterminacy; when we then mensure ¢

¥
for the sume system, our previous knowledse of ¢, is destroved as £, 15 now

X

forced inlo indeterminacy.} By convention, we usually choose the = eomponent of
¢ to be determined, and computing (£, ) as described above,

) = hm, (2.68)

where m, =0, £1, 4£2,..., +£ Notice that [(£3] < |€] = k//(¢+ 1) —the =
component of the vector is always less than its length. II [{£)] = || were
permitted, then we would have exact knowledge of all three components of £ (£,
and ¢, would be zero if ¢ were permitted to align with the z axish. The
conventional vector representation of this indeterminacy is shown in Figure 2,18
— rotates or precesses about the = axis keeping ¢, fixed but varyving £, and ¢,

The complete description of an electronic state in an atom requires the
ntroduction of a new quantum number, the intrisic angular momentum or spin.
For the electron; the spin quantum number is 5 = L. The spm can be treated ag
an angular momentum {although it cannot be represented in terms of classical
variables, because it has no classical analsg). Thus

{8y = Ms(s + 1) (2.69)

fagh =ho, {HI, = 4 H {(2.70)

1t 1s often uselul to imagine the spin as a vector & with possible = components
+ 3h.

Nucleons, like electrons, have spin quantum numbers of 4. A nucleon moving

in a central potential with orbital angulir momentum ¢ and spin s has a ol
anguiar momentm

=t (271)
The total angolar momentum § behaves in o manner similar 1o ©and s
(Fy=Hji+1) (2.72)

(1.0 = (€. 49y = hm, (2.73)

Figure 2
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tal 1)
Figure 2.18 The coupling of orbital angular momentum # 1o spin angular
momenium s giving total angular momentum j. (2) Coupling giving | — ¢ + 1 The
veclors-7and s have definite lengths, as does j. The combined ¢ and s vectars
rotate or precess about the direction of f; in this coupling the z components £ and
5. thus do not have definite values. The vector j precesses aboul the = direction so
that j, has a definite value. (b) The similar case of f=¢ — & Ininterpreting both
figures, keep in mind that all such representations of vectors governed by the rules
ol guanium mechanics are at best symbolic and at warst misleading.

wherem, = —j, —j+1,.._, J =1, j and where j is the 1otal anguliar momen-
tum quantum number. From Equations 2.68, 2.70, and 2.73 it is apparent that
ty=mtytoan, =m,+ 3 (2:74)

Sinee m, is always an integer, fm, must be half-integral (4 L 4 2 4 2.0 )and
thus j must be half-integral, The vector coupling of Equation 2.71 suggests only
two possible values for j: ¢4 1 or #— 1, which are illustrated in Figure 2.19,

Usually, we indicate the j value as a subscript in spectroscopic notation. Thus,
for ¢ = 1 (p states), there are two possible 7 values: £+ t=3und - 1= L We
would indicate these states as p,,, and Pis. When there 1s an additonal
quantum number, such 4s 4 principal quantum number n (or perhiips just an
index which counts the states in order of increasing enerizy), we indicate il as
25 5= 3py 5. and 50 on,

In atoms, it is often useful for us w picture the electrons s moving in well
defined orbits with definite # and j. It is not at all obvious that 4 similar picture
15 useful for nucleons inside the nucleus, and thus it is not clear that ¢ and 7 will
be uselul labels. We discuss this topic in detail when we consider the nuclear shell
maodel in Chaprer 5,

2.6 PARITY

The parity operation causes a refiection of all of the coordinates through the
origin: ¢ — —r. In Cartesian coordinatés, this meins v — —X, ¥ — .z
—z; n spherical coordinates, r— r, § = 7 - f, o — &+ 7 If a system is lefi
unchanged by the parity operation. then we expect that none of the observable
properties should change as a resull of the refieetion. Since the valies We mesure
for the abservable quantities depend on |7, then we have the following
reasonuble dssertion:

I r)= ¥F{—r), then .HHFH_I =|9{=r)[.

|
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This assertion. whose reverse 15 also true, has two important consequences for our
work in nuelear physics:

if |4 (r)* = (~r)|" then §{—r) = +¢(r). That is, the parity operation
has either of two effects on a wave function. The case $(—r)= +if(r) is
known as posiice or epen party, while the case (—r) = —l{r) is negative
or pdd panty, IT the potential F(r) is left unchanged by the parity operation,
then the resulting stutionary-state wave functions must be ol cither even or
odd parity, Mixed-parity wave functions are not permitted. Recall our
solutions for the one-dimensional harmenic oscillator, The potential Lkx™ is
certainly invariant with respect to the parity operation x — —x. The wave
functions listed in Table 2.1 have either only odd powers of v, and therefore
odd parity, or only even powers of x. and therefore even panty. Polynomials
mixing odd and even powers do not occur. Also: review the solutions for the
finite potential well. Since the well lies between x = +a,/2and x = —a/L
the potential 15 symmetric with respect to the panty operation: F{x) =

VF{—x). Notice the solutions illustratéd in Figure 2.8. For some of the

solutions, Y(—x) = (x) and their parity is even; the other solutions have
P —x)= —¢(x) and odd party.

In three dimensions, the parity operation applied to the ¥, gives'a phase
(—1)%

Yok — 8.6+ 1) = (=1) ¥, (0. 4) (2.75)
Central potentials, which depend only en the magnitude of r. are thus
invariant with respect to parity. and their wave [unctions have definite parity,
odd il ¢ 15 odd and even if £ 15 even.

The wave lunetion for a system of many partcles 15 formed from: the

product of the wave lunctons [or the individual particles. The parity of the
combined wave [unction will be even il the combined wave function repre-
sents any number of even-panty particles or an even number of odd-party
partictes; it will he odd if there is an odd number of odd-panty particles.
Thus nuclear states can be asstgned a defime parity. odd or even. This is
usually indicated along with the total angular momentum for that state, as
for example, % or 27 In Chapter 10 we will discuss how the parity of a
state cin be determined experimentally.
The second consequenee of the parity rule is based on its converse. [T we lind
a system for which [ (r)|* # |4 ( ~ ) |". then we must conclude that F(r) #
¥{ —r¥; that is, the system i mor invariant with réspect to panty. In 1957 ot
was discovered (hat certain nuclear processes (i decays) gave observable
guantities whose measured values did not respect the parity svmmety. On the
other hand, no evidence has yet been obtained that either the strong nuclear
interaction or the electromagnetic interaction violate parity, The estiabiish-
ment of parity violaton in f decay was one of the most dramatic discoveries
in nuclear physics and has had profound influences on the development of
theories of fundamental interactions between particles. A deseriplion of Lhese
experiments is given n Sechion 9.9
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2.7 QUANTUM STATISTICS

When we group several pargicles logether to make a larger guantum system
(severdl nucleons in a nucles, several electrons in an atom, several atoms in a
molecule) 2 new guantum effect arises if the particles are indistinguishable from
one ancther. Let us consider the case of two particles, for example, the two
electrons in a helium atom. Suppose one electron is deseribed by coordinates ry
and is in the state &, while the other electron is described by coordinates r, and
is in the state ¢, The combined wave function is the preduct of the two
COMPONEn! Wave functions; thus ¢ = § (r)d,(n ). Now suppose the two elec-
trons arc interchanged so that the new wave function is " = (e W (n). Is
there any measurement we could do to detect whether this interchange had taken
place?

[T the electrons are lruly indistinguishable, the answer Lo this question must he
no. There is no observational seheme (or distinguishing the ™ first ¢lectron™ [rom
the “second electron.” Thues we have a result that 15 somewhal similar to eur
result for the parity operation: Probability densities pust be tnoariant with respect
to exchange of identical particles. That is, the exchanged wave Tunction ., can at
maost differ only in sign from the orginal wave function ;.. We therelore have
Lwo cases, IT the sign does not chanpge upon exchange ol the particles, we have a
symtmetric wave function; for symmetnic. wave [unctions, . = @ 10 the ex-
change changes the sign, we have an anfisymmetric wave lunction, for which
boy = — g AN combined wave functions representing identical particles must be
cither completely symumetric or completely anitspmmetric. Mo “mixed symmetry™
wave Tunctions are allowed.

When we turn to our laboratory expeniments to verify these assertions, we find
a [urther classification o which there are no known exceptions: all parnctes with
inteeral spins (0, 1,2, ..) have symmetne combined wave functions, while all
particles with hall-integral spins (£, . 3, ... ) have antsymmetne combined wave
functions.

The above two-particle functions ¢ and ° will not do for combined wave
functions because they are neither symmetric nor antisymmetne, That is, &7 does
not at all look like either & or —d. Instead, consider the following combined
wave function:

1
b= 9 r)va(r) £ 4u(n)dn)] (2.76)

Il we choose the plus sign, then the combined wave function is L-:}'mme!ric‘:wilh
respect 1o mterchange of the particles. 1 we choose the minus sign then the result
is an antisymmetric wave function, The factor of 1/ 2 ensures that the resulting
combination is normalized (assuming that each of the component wave functions
is itsell normalized).

A gpecial case arises when we have identical guantum states 4 and B. (We can
regard A and B ds representing i set ol quantm numbers.) When A is the same
as B the antisymmetne combimation wave function vamshes identically, and so
ity probability density is alwavs zero. The probabifity t find twe identical particles
of Talf-iniegral spin in e same quuantunl state st adways panish: Thas s ol course




'?.

Just the Pauli exclusion prineiple, which determines why atomic subshells fill in a
certain way. This vanishing of the antisymmetric wave Tunction is the mathemuti-
cal basis of the Pauli principle. No such vanishing occurs for the symmetric
combination, so there is nothing to prevent identical particles of miegral spin
from oecupying the same quantum state,

Later in this text, weé apply the Paulj principle to nucleons and show its
importance in understanding the nuclear shell model. We also construct some
simple antisymmetric wave functions for the quarks that make up nucleons and
other similar particles.
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2.8 TRANSITIONS BETWEEN STATES

A true stationary state lives forever, The expectation values of physical observ-
ables, computed from the wave function of 7 stationary state, do not change witl
time. In particular, the expectation value of the energy is constant in time. The
energy of the state is precisely determined, and the uncertainty in the energy,

AE = (E*) —(EY (2.77)

vanishes, because (E£°) = (E)* for this case, The Heisenberg relutionship,
AEAr= hy2, then implies that Ar = oo, Thus a state with an exact energy lives
forever; its lifetime against decay (1o lower excited states, for example) 15 infinite,

Now suppose our system is subject 1o a weak perturbing potential F, in
addiuon to the original potential ¥, In the ahsence of I’ we can solve: the
Schridinger equation for the potential V and find a sel of eigenstates ¢, and
corresponding eigenvalues £ If we now include the weak additional potential
V', we find that the states are approximately, but not exactly, the previous
eigenstates o, of V. This weak additional potential permits the systemn to make
transitions between the “approximate”™ eigenstates Y- Thus, under the interac-
tiwon with a weak clectromagnetic field, o hydrogen atom can make transitions,
such as 2p — 1s or 3d -+ 2p. We still describe the various levels as if they were
cigenstates of the system,

Even though a system may make a transition [rom an inigal cnergy state £, 1o
a final state £ energy must be conserved. Thus the total decay cnergy must he
constant. If the final state £, is of lower energy than £, the enerzy difference
E, — E, must appear as radiation emitted in the decay. In transitions between
atomic or nuclear excited states, a photon is emitted to carry the energy £, — E,.

A nonstationary state has a nonzero enerpy uncertainty AE. This quantity is
often called the *“width” of the state and is usually represented by I, The (iferime
7 of this state (the mean or average time it lives before making a transition 10 2
lower stale) can be estimated from the uncertainty principle by associating v with
the time A¢ during which we are permitied to carry out a measarement of the
encrgy of the state. Thus r = h/T. The decay probability or wransition profability
A (the number of decays per unit time) 15 inversely related to the mican lifetime +

1

A= — (2.78)
¥

It would be very useful 10 have a way to calculate A or 7 directly from the
nuclear wave functions. We can do this if we have knowledge of (1) the tnital
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and final wave functions o, and &, which we regard as approximate stationary
states of the potential ¥ and (2) the interaction V' that causes the transition
between the states, The calculation of & is o detailed [or this text, but can be
found in any advanced 4ext on guantum mechanics. We will merely state the
result, which 15 known as Fermi"s Golden Rule:

2x p .
A= ViFa(E) (2:79)

The quantity ¥/ has the form of an expectation vulue:

K f*h‘ V7 do (2.80)

Notice again the ordering of the states [ and i in the integral, The integral V' is
sometimes called the matrix elemeny of the transition operator ¥, This terminol-
ogy comes from an alternative formulation of guantum mechanics based on
matrices mstead of differential equations, Be sure to take special notice that he
decay probehility depends on the square of the transition matrix element.

The quantity p( £;) is known as the denyity of final states. 1t is the number aof
states per unit energy interval at Ey, and it must be included for the following
reason: if the final state £, is a single solated state, then the decay probability
will Be much smaller than it would be in the case that there are many, many
states in a narrow bund near E, 17 there is a large density of states near £, there
are more possible final states that can be reached by the transition and thus a
larger transition probability. The density of fmal states must be computed based
on the type of decay that occurs, and we shall consider examples when we discuss
£ decay, ¥ decay, and scatlering c1oss sections,

REFERENCES FOR ADDITIONAL READING

The following introductory (sophomore-junior) modern physics texts provide
hackground material necessary for the study of quantum mechanics: A. Beiser,
Cancepts of Modern Physies, 3rd ed. (New York: MeGraw-Hill, 1981); K. 5.
Krane, Modern Physics (New York: Wiley, 1983): P. A, Tipler, Modern Physics
{(New York: Worth, 1978); R.T. Weidner and R. L. Sells, Elemeniary Modern
Physicy, 3rd ed. (Boston: Allyn and Bacon, 1980).

Quantum mechanics references at aboul the same level as the present text are
listed below: R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules,
Solidy. Nuetei, and Particles, 20d ed. (New York: Wiley, 1985); A. P. French and
E. F. Tavior, An Introduction to Quantwm Physics (New York: Norton, 1978):
R. B. Leighton, Principles of Modern Physics (New York: McGraw-Hill, 1969);
D. 8. Saxon, Elementary Quantion Mechanies {(San Francisco: Holden-Dray,
19681

Advanced guantum texis, which can be consulted to find more detailed
discussions of topics discussed only briefly m this text, are the following: C.
Cohen-Tannoudii, B. Din, and F. Lalof, Quantum Mechanies (MNew York:
Wiley-Interscience, 1977); D. Park, Tntroduction to the Quantum Theory, 2nd ed.
(Mew York: McGraw-Hill, 1974); £ Merzbacher, Quantum Mechanics, 2nd ed.
(New York: Wiley, T970).
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Fig, 5 shows ohserved nuelides, For small numbers of nucleons. the band
ig nearly diagonal, Le, Z = N, As the size grows, the band bends and is
helow the diagonal: 2 < N. Using the empircal mass formula. the existence
of the band is easy to understind. As vou go away from the band. the
svinmetry termn hecomes nnportant and the mass of the nuelens grows, What
it means it that such anuclide, if exists, decavs immediately by glecting excess
neutrons or protons until the svmmetry term becomes small enough to make
it energetically impossible to ejecl free neutrons or protons. For large nuclei,
Coaulomb term is important and smaller number of protons s prefecred. That
s why the band bends downwards. Even within the band, the number of
atable nuelides is not so laree, All the colored ones decay either by F-decay
(M. 2y — (NN —1, 2L e 5, or anti-A-decay (N, Z) = (N + L Z = LeTin
to approach the narrow band of stability moving along —45° line. Unstable
nuclei can also emit an a-particle, a unusually tightly bound "He nucleus, to
lower the mass number, approaching the maxunum binding energy of A = 56,

———

3 Nuclear Force

Protons and neutrons are bound inside nuelei, despite the Coulomb repulsion

among protons. Therefore Lhere must be a different and much stronger force

acting among nucleons to bind them together. This foree is called nuclear b,
force, nuelear binding foree, or in more modern settings, the strong inferne- iuktra c ool
tion. (Here, we are not talking about a strong interaction, This is the name f‘v"f(

ol the force.) Here are notable properties of the nuclear binding force.

L. It is much stranger than the electromagnetic force. In the empirical
mass formula, we saw that the coeflicient of the Coulomb term is more
than an order of magnitude smaller thian the other terms in the binding
energy.

Il is an attractive force, otherwise nucleons wouldn’t hind. e

b

[

It is short-ranged, acts only up to 1-2 fm.

4. It has the saturation property, giving nearly constant B/A ~ 8.5 MeV
This is in stark contrast to the electromagnetic force. For instance,
the Thomas—Fermi model of atoms pives F = 15.7327/% V¥ that EIOWS
with a very high power in the number of particles.
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5. The force depends on spin and charge states of the nucleon. To under-
stand nuelei and nucleon-nucleon seatiering data, we need not only a
potential Vir) between mucleons in che Hammltanian huE alse the spin-
spinl term o dy - @2V (), the spin-orbit term (@ + @2) - LV (¢}, and the
tensor term [3(d - ©F)(Fe - 7 — #7732V (1),

6. It can exchange charge. [ you do neatron-proton scattering exper-
ment, you not only see a forward peak hut also a backward peak. Note
that a forward peak is analogous to a large impact parameter in the
classical mechanics where there i3 little deflection (recall Rutherford
scattering), and exists for pretty much any scattering processes. Bt
a backward peak i3 quite unusual, The interpretation is that when

¥+ ihe proton appears to be backscattered, it is actually a neutron which
converted to a praton because of the nuclear reaction. In other words,
the neutron is seattered to the forward angle, but has converted to
proton by the scattering and we are [ooled to see the proton scabtered
backward. This is the charge-exchange reaction.

7. Even though the nuclear foree is attractive to bind nucleons, there is
a repulsive core when they approach too closely, around 0.5 fm. They
basically cannot go closer,

8. The nuclear force has “charge svimrpetry” which means that we can
make an overall switch hetween protons and neutrons without chang-
ing forces among them. For mstance, nn and pp scattering are the
same (except for the obvious difference due to the electric charge). For
example, *mirror nuclet,” which are related by switching protons and
neutrons, have very similar excitation spectra. Examples inelude C
and N, Y0 and 'F, eic

9. A stronger version of the charge symmetry is “charge independence.”
Not only nn and pp scattering are the same, bul also np scattering is
also the same under the “same configuration™ whick 1 specify helow
using the conecept of wospin,

The last item needs some more explanations. There is & new symmetry
in the nuclear force called isospin, proposed originally by Heisenberg. The
idea is very simple: regard protons and neutrons as identical particles. But of
course, you can't; they are different particles, right? They even have different

10
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masses! Well, the trick s to mtreduce a new quantum auimber, isospin. which
takes values +1/2 and —1/2 just like the ordinary spin. We say a proton
is a nucleon with I, = +1/2, while a neutron with 7. = —1/2. At this
point, it s just semantics. But the important statement is thas: the nuelear
lorce 18 invariant under-the isospin rotation, just like the Hamiltonian of a
ferromagnet is invariant under the rotation of spin. Then you can classify
states according to the isospin guantum numbers because the nuclear force
preserves isospin. Bul what abont the mass difference, then? The point is
that their masses are actually quite similar: m, = 938.3 MeV/c® and m, =
939.6 MeV/c". To the extent that we ignore the small mass difference; we
can treat them identical. Another question is the obvious difference in their
electric charges +|e| and 0. Again, the Conlomb foree is not the dominant

*force in nuclei, as we have seen in the empirical mass formula. We ean
ignore the difference in the electric charge and put it back in as a “small”
perturbation.

The charge symmetry is a limited example of the isespin invariance. It
corrésponds to the overall reversal of all isosping. If you reverse all spins 5.,
that is basically the 180° rotation around the y-axis, and you obtain another
state with degenerate energy. Likewise, il you reverse all isospins, by rotal-
ing the isospin around the “isespin y-axis" by 1807, you interchange protons
with neutrons, just like interchanging spin up and spin down states. If the
nuclear force is indeed invariant under the isospin rotation, it must also be
invariant under the isospin reversal. Fig. 7) shows that indeed the nuclear
spectra approximately respect this invariance, OF course, isospin is not an
exact symmetry because protons and neutrons have different electric charges.
But the isospin invariance goes even further (“charge independence” ). It says
that @@ not only the interaction betwoen pp and nn are the same (“charge
symmetry” ), also np s, except that you have to carefully-select the confiz-
uration. Here is what is required, Because proton and neutron both carry
T = 1/2 (and opposite T, = £1/2), two micleon states would have bothT= 1
and T = 0 components. Both pp and nn states are sk ks in the T = 1
state. On the othér hand, the np stale can either be in the 7= LorT =10
states, But the fermion wave function must be anti-symmetric while 7= |
(T = 0) isospin wave function is symmetric (anti-symmetric). Therefore, if
the space and spin wave function of a np state is symmetric (anti-symmetric),
it selects T = 0 (T = 1) isospin wave function. This Way, you Can separate
purely T = 1 part of the np wave function, and compare the interaction to
that of the nn and pp states. And they are indeed the same up to corrections
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from Coulomb interaction. On the other hand, the force in the T = 0 state
can he different. For instance. the only two-nucleon bound state is the deu-
terium. an np state WhatHs sugoests 15 that the bound state is in the [ =0
state, and anti-symnictric isospin wave function. Then the rest of the wave
function must be symmetric. For a given potential, the S-wave is alwayvs
more binding than the P-wave just because it lacks the centrifugal barrier.
Therefore the deuterium is likelv to be in the S-wave, a symmetric spatial
wave function, Then the spin wave function must be svimmetric, 5 = L
[ndeed demterium does have spin one. A more quantitative test can be seen
in Fig. 8. “'F, *1Ar, “'Na, and *'Mg all have the mass number 21. Assuming
1§£ 15 in the T = 0 state, all four nuclei can be obtained by adding three
n&t@' : o it; which can be imeither 7= 3/2 or 7= 1/2 states. The nuclear
dxeitation spectra show states common only between 2 Ar and 2*Na, which
are in the T = 1/2 state, or states commeon to all four of them, which are in
the 7= 3/2 state. Similarfe check can be done among 'C, "N, "0, which
show states common to all of them (T = 1) or states special to YN [T =0).

4 Yukawa Theory and Two-nucleon System

Civen the properties of the nuclear force described in the previous section,
what, after all, is 1t I briefly go through the explanations in a quasi-historic
way, but this is by no means rigotous or exhaustive. But hopefully [ can
give you an idea on how we came up with the current understanding, namely
Guantum ChromoDynamics (QCD).

The obvious oddity with the nuclear force was its short-rangedness. Peo-
ple knew gravity and electromagnetism: both of them are long-ranged, with
therr potential decreasing as 1/r. On the other hand, the nuclear force is
practically zero beyond a few fim. As we will discuss in the *QQuantization of
Radiation Field,” the electromagnetic interaction 15 described by photons in
the fully quantum theory. Likewise, the nuelear foree must also involve a par-
ticle that is responsible for the force. Such a particle is often called a “force
carrier.” The idea of the foree carmer is simple: quantum mechanies allows
you to “borrow” energy AF violating its conservition law as long as vou give
it back within time At ~ B/AE allowed by the uncertainty principle. Take
the case of an electromagnetic reaction, say electron proton scattering. An
electron cannot emit a photon by itsell because thal would violate energy
and momentum conservation. But it can do so by “horrowing” energy as

14
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FIG. b.1. Encrgy level diagrams for the mermbers af the mass: 21 50spin quartet showing
the positions of the T = 3/2 levels in each nucleus. Far clarity, the ground state cnergies
of mirrar-nuclel have been equated. and miany of the excited levels of Ne and Na betow
10-Ma¥ excitation have been deleted [Butler, Cerny,-and Melarthy, (68)].

Figure #: Comparison of excitation spectrum of four nuclet with the same
mass number, showing states with™T = 1/2 and 7T = 3/2 nultiplet struc-
ture. From “Theoretical Buclear Physics,” by Amos deShalit and Herman
Feshbach, New York, Wiley, 1974,
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long as the ereated photon is absorbed by the proton within Ad allowed by
the uneertainty principle. Then the *viptual photon” has propagated from
the electron to the proton, causing a scattering process, becase of its kick
when emitted by the electron and when absorbed by the proton, Since the
photon is a massless particle with £ = ep. its energy can be arbilrarily small
for small momenta, and hence Ad ean be arbitranly long. 'The distanee the
“virtual photon” can propagate can also be arbitrarily long d = eAd. This
is why the electromagnetic interaction is long-ranged. 1f, on the other hand,
the force carrier had a finite mass m, there 15 a minimum energy required
to create the force carrier particle £y = me®. Thevefore the time to pay
back the debt is limited: At = hfme®. The distance the force carrier can go
within the allowed time limil is then also limited: o = cAt = i/me. There-
[bre the force carrier cannot go bevond this distance and the force becomes
short=ranged. This distance determined by the mass of the particle is called
“Compton wavelength.” Yukawa suggested back in 30°s that the foree carrier
of the nuclear foree must therefore be massive. Judging from the range of the
nuclear force of abont two fm, he suggested that the force carrier must weigh
about 200 times electron, or 100 MEV;’E".' . The short-ranpedness 18 then an
immediate consequence of the finite mass.

The presence of the charge exchange reaction suggests that the force
carrier i5 (or at least ean be) elestrically charged. This particle s ealled
charged pion == or 7% in the modern terminology. The charge exchange
reaction. producing the backward peak in the np seatiering is caused by the
following process. When the neutron comes clase to the proton, the neutron
emits the force carrier 7, and it becomes a proten (!}, Even though (from
the nentren point of view) she is still going pretty much straight ahead, we
see Lhe proton coming along the original direction of the nentron, namely the
“hackscattered proton.” The emitted 7 is then absorbed within the time
allowed by the uncertainty principle and the proton becomes a neutron.

By 40" there was discovered a particle that weighs 200 times electron in
eosmic rays (or more precisely, 1057 MeV/¢?). This of course raised hope
that the discovered particle may be the force camer for the nuclear force
After intensive research, however, especially that carried out by Ialiins hid-
ing (literally) underground in Rome under Nazi's occupation in 1945, it was
shown that the new particle does not show any sign to feel the nuclesr foree.
This particle is what is now called muon p=. Indeed, underground is a good
place to study muons! Later on people speculated that there may be two new
particles weighing 200 times electron, and this is indeed what happened. By
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going to higher altitudes on the Andes in cosmic rav studies, people have
found that the charged plons exist in c¢osmic rays, which guickly (within
aboiut 107 sec) decay to muons which live longer {about 107° sec) and reach
the surface of the Earth, (Of course therr life s.stretched by the relativistic
time dilation effect. Otherwise we didn't have a chaiice to detect them even
on the Andes.) Only at higher allitudes, pions had chance to enter the de-
tector (photographic films). Later on, a neutral pion 7" was also discovered
that decays into two photons. They are later determined to have no spin
and odd parity. Once found, it seemed to conbirm Yukawa's suggestion. The
potential between nucleons caused by the exchange of a “virtual pion” was
caleulated to have the following form
o " . - o

tv=L B ) [{a. @)+ (1 R L) 51-.:] . ®

’
pr (pr)? pr

3 hedmi;

Here yu = m.¢/h with m, with the small difference between mq e = 139.6 MeV/ &

and mqe = 135.0 MeV ignored m the same spirit as we ignore the proton-
neuntron mass difference and call it my. The factor

Sip = r%,lata W2 - F) — (&1 - Fo)rt) (7)

ig the form for the phenomenologically required tensor force. The matrices
7 = JT are the analogs of Pauli matrices for the sospmi. The mnportant
poim, with the potential is that it is indeed invariant under the rotation of
the isospin space becaunse of the form (7 - 7).

The OPE (one-pian-exchange) exchange Eq; (6) works well in the wi-
nucleon systent, We have seen that there is only one bound state in two-
mucleon system, namely deuteron, with™T=0, L =0, § = 1. Let us see if
this is consistent with the OPE potential. We focus on the s-wave (L = D)
which doesn’t have the centrifugal barrier and presumably binds the most.
WhenT = 1 ({7, - 72) = +1), the Fermi statistics requires S = 0 (g = —a;
and hence (&, - @2) = —3). Then the tensor force is pmpgrtiuna! Lo

Sia = (36 - A@2 -7 = @1 ar] = 5[-8a DG D+ 3 @)

At the lowest order in the potential in perturbation theory, using the fact
that the s-wave is isotropic, we find (r'r/) = 3{r"}, and hence the tensor
force vanishes identically. Therefore, the OPE potential is

g* m? G -

= hic A m.,,r:r——#_r ’ (9)
v 7 1z ¥
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This potential is attractive, of finite range, and may or may not have a bound
state depending on the size of the coupling ¢*/fic and m.. For the actual
values, there is no bound state

On the other hand, for the 7= 0, L =0, § = 1 eage, we have (7-7) = =3
and (J; - d2) = +1. Let us take 8. = +1 state as an example. Then the
tensor force does not vanish, and il,h/&.'?-;[;ll;_.‘{ft?j,r.]u]]. value 15 pr(_;pt)rt,ir_:rml Lo L

(5=18 = +]|T—12[3(r?1 -z -7) — (61 - o) ]| = 1.8 = +1)41.—;*\?- :

1 - v = e ,1,
= (S =1, 8. = +1]5[3{z2)052) — IS = 1,5, = +1 2

{ - = H[5[3{iz)(0z }\;H LS =+) &%

232 —_‘,:2 —_ y":
% = — & I"!" 1‘_ ’c? (10)

F L
Therefore, the OFE potential 15 v
*mg ] e
— _g_ mir a ) o B - y e
W= hedmi, T [IT 2 J T (11)

The cocficient of the potential i the same as the™T = 1 case, except Lhat
there is an addition of the quadrupole moment rYy = \/l%(?:? —g? =
y*). If the quadrupole moment is positive, which means a cigar-like shape,
as opposed to negative, which means a pancake like shape, the quadrupole
moment. adds Lo the attractive force and can lead to a bound state even
if the T = 1 case doesn't. Experimentally, the quadmpole moment of the
deuteron is confirmed and has the value Q(d) = 2,78 % 107% cm®. The
deuteron indeed has a cigar-like shape where Lhe spins are lined up along the
elongated direction,

In order for the quadrupole moment to be non-vanishing, however, a pure
S-wave would not do the job beécause it is completely isotropic. However,
the state with total J =1 with § = | can also arise from L = 2. In fact,
the deteron has a mixture of [ = 2 state that is responsible for-the finite
quadrupaole moment.

5 TFundamental Description of Nuclear Force

Now the world looked simple: there are protons and neutrons in muclei,
bound together by the foree mediated by the exchange of pions. But the
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With &, = 0.72 MeV and %\, = 23 MeV, it followgfthat the first two terms in be the o
the numemlnr are neglizible, in that
particles

ZIHI:II e {3_‘{]) may be
C ﬂl_.fﬂ“.m each com
. One i
For small 4. Z,_ .. = A,’E as expected, WL for large A, Z . < 4 /2. For heavy N the poss
nuclei, Equation 331 mives Z/4 = A1\ consistent with observed valucs [or ¥ g e
Ilca\_ry smfr_&le nuclei. _ . i 11{‘: compon:
Figtire 318 shows o typical odff-4 decay Wam for 4 = 125, leading to the g ] numbes
stable nucleus at £ = 52, The giistable nucler apgroach stability by converting a g with: the
neutron into a proton or a pgfon into a neutron My Jadumuw:. B decay. Notice < This:req

how the decay energy (th

N5, the mass difference ]:H_. VD nejglllwnng 1‘:(1"]41'5} W tolal 2 ¢
increases as we go furth y

rom stability. For even A, (g pairing term gives two

]
parabolas; dispkl(:ﬂd b & This permils two unusual effedg, nol séen in odd-4 e
decays: (1) some oddfl, odd-N auclei can decay in eitlier dirbelion, converting a i
neutron 1o 4 protgl or a proton Lo a peutron; (2) certain double fi decavs can 2
become: energetighlly possible, in which the decay may change 2 pratons 1o 2 s
neutrons. Both 8 these effects are discussed in Chapter 9. i & THE B
i B nuclear =
3.4 NUCLEAR ANGULAR MOMENTUM AND PARITY shie ‘;‘T‘r'
.
In Section 2.5 we discussed the coupling of orbital angular momentum £and spin h together
s 1o give total angular momentum 7. To the extent that the nuclear potential is spin of o
central. #and x (and therefore §) will be constams of the motion. Tn the quantum o We dise
mechanical sense, we can therefore label every nucleon with the corresponding Chapiter
quantum aumbers ¢, s and . The total angular momentum of a nucleus o Along
containing A nucleons would then be the vector sum of the angular momenia of B parity ¢
all the nucleons. This total angular momentum 15 wsnally called the nuelear spin of every
and is represented by the symbol 1o The angular momentum [ has all of the the parit
usual propertics of gquantum mechanical angular momentum veetors: 17 = T =amT
BT+ 1) and {.=mh (m= —1 .. +{) For many applications involving senerally
angular momentum, the nucleas behaves as if it were a single entity with an nucleon,
mtrinsic angelar momentum of 1. In ordinary magnetic fields, for example, we whaole i
citn observe the nuclear Zeeman effect, as the state I splits up into its 27 + | nucleur ¢
individunl substates m = —I =1+ 1, I — L, [ These substates are egually the nuci
spaced, as in the atomic normal Zeeman effect. If we could apply an meredibly i theoretic
strong magnetic field, so strong that the coupling between the nucleons were either =
broken, ‘we would see cach individual ;7 osplitting into its 27+ 1 substates,
Atomic physics also has an analogy here: when we apply laree magnetic fields we
can break the coupling between the electronic £ and s and separate the 2¢+ 1 3.5 NU
components of £and the 25 + 1 components of 5. No fields of sufficient strength
to break the coupling af the nucleons ean be produced. We therefore observe the rigf Much of
behaviar of I as if the nucleus were only a single “spinning™ particle. For this 1 strong my
reason, the spin (total angnlar momentum) J and the corresponding spin quan- 4 weaker ele
tum number J are used 10 describe nuclear states. 3 lishes the
To avoid confusion, we will always use { to denote the nuclear spin; we ‘will fit: distrihutio
use j 1o represent the total angelar momentum of a single nueleon, It will often i electromi
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be the case that a single valence particle determines all of the nuelear properties;
in that case, [ = j. In other cases, it may be necessary to consrder two valence
particles, in which case I =j, + jo. and several different resultant values of [
may be possible. Sometimes the odd particle and the.semaining core of nucleons
each contnbute to the-angular momentum, with £ = Faiie i

One mportant restriction en the allowed values of I comes from considenng
the possible z components of the total angular momentum of the individual
nucleons: Each j must be half-imtegral (L, 3. 5. .0 ) and thus its only possible 2
components are likewise hall-integral (414, 230, +3h. ... ). Il we have dn even
number of nucleons, there”will be an even number of hall-integral components,
with the result thiat the = component of the total ! can take only integral values,
This requires that [ itsell be an integer. If the number of nucleons is odd. the
total z component must be hali-integral and so must the tolal 1. We therefore
require the following rules:

odd-A nucler: I = hall-integral
even-+4 nuclei: = inteégral

The measured values of the nuclear spin can tell us a great deal about the
nuclegr structure. For example, of the humdreds of known (stable and radioac-
tive) even-Z_ even-N nucler, all have spin-0 ground states. This is evidence [or the
nuclear pairing force we discussed in the previous section; the nucleons couple
together in spin-0 pairs, giving a totul 7 of zero. As a corollary, the ground state
spin of an odd-4 nucleus must be equal 10 the § of the odd proton or neatron.
We discass this poinl foarther when we consider the nuclear shell model in
Chapter 5.

Along with the nuclear spin, the parity 1% also used 10 Libel nuclear states, The
parity can take either + (even) or — (odd) values. IT we knew the wave {unction
of every nucleon, we could determune the nuclear pariey by multiplying together
the paritics of each of the 4 nucleons, ending with a result = either + or —:
7 = myws o @y Heowever, m practice no such procedure 1s possible. for we
generally cannot assipn a definite wave function of knewn paniy to every
nucleon. Like the spin f, we regard the panty o as an “overall” property of the
whole nucleus, It can be directly measured usmg a vanety of technigues of
nuclear decavs and reactions. The parity 1s denoted by a + or — superserpl to
the nuelear spin, ‘as [7, Examples are 0%, 27 17 1 There is no direct
thearetical relationship between [ and = for any value of I, it is possible to have i
either # = + or o = —,

3.5 NUCLEAR ELECTROMAGNETIC MOMENTS

Much of what we know ihout nuclear Structure comes from studving not the
strong nuclear ideraction of nuclei with their surroundings, but istead the much
weaker eleciromagnetic interaction. That is, the strong nuclear interaction estab-
ht“hﬂs the diseribution and motion of nucleons in the nuclens, and we probe that
distnbution with the electromagnetic interaction. In doing so, we can use
electromagnetic fields that have less effeet on the motion of nucleons than the
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where |£] is the classical angular momentum mer. In quantum mechanics, we
operationally define. the observable magnetic moment - 1o correspond to the
direction of greatest component ol £;-thus we can luke Equation 3.32 directly
into the quantum regime by replacing,# with the expectation valué relative to the
axis where it has maximum projection, which is m fowith m,= +¢. Thus

el
= —+ {3.33)

2m

where now ¢ is the angular momentum guantum number of the orbit.

The quantity e/ 2m is ealled a magreton. For atomic motion we use the
electron mass and obtain the Sehr magneton py = 57884 % 10 "eV/T. Putting
in the proton mass we have the muclear magneton o= 31525 % 10~ % eV /T,
MNote that py = up owing to the difference in the masses; thus under most
circumstances atomic magnetism has much larger effects than nuclear magnetism.
Ordinary magnetic interactions of matter (ferromagnetism, for mstance) are
determined by atemic magneusm; only in very special circumstances can we
observe the elfects of nuclear magnetism (see Chapter 16).

We can rewrite Equation 3.33 in a more useful form:

b= gl (3.34)

whire g, is the g facor associated with the orhital angolar momentum £, For
protons g.= 1; because neutrons have no cleetric charge, we can use Equation
3.34 o desenibe the vrbital motion of neutrons if we put g.= (.

We have thus far been considering only the orbital motion of nucleans,
Protons and neutrons, like clectrons, also have intrinsic or spin magnetic mo-
ments, which have no classical analog but which we write in the same form as
Equation 3.34:

fe= g3y (3.35)

where s = § for protons, neutrons, and electrons, The quantity g i3 known as
the spin g facror and is cileolated by solving 4 relativistic quantum mechanical
equation. For a spin- | point particle such as the electron, the Dirac equation
gives g =1, and measurement 5 quite consistent with that wvalue for (he
cleetron: g, = 2.0023. The difference between g, and 2 is quite small and can be
very accurately computed using the higher order corrections of quantum elec-
trodynamics. On the other hand. for free nucleons, the expenmental values are
far from the expected value for point particles:

5.5836912 + 0.0000022
— 38260437 £ 00000018

pralon: £

neutron; £,

(The measured magnetic moments, in nucléar magnetons, are just half the g,
factors.) Not only is the proton value far from the expected value of 2 for a point
particle. but the uncharged neutron has a nonzéro magnetic moment! Here is
perhaps our first evidence that the nucleons are not elementary point particles
like the electron, bul have an internal structure: the mmternal structure of the
nucleons must be due 1o charged partcles in motion, whose resulting currents
give the observed spin magnetic moments. [t is interesting to note that g, for the
Proton is greater than its expected value by about 3.6, while &, for the neutron is




72 BASIC NUCLEAR STRUCTURE

strong force of the nuclear environment; thus our measure e not seriously
distort the object we are trying to measure,

Any distribution of electric charges and currents produces electric and mag-
netic fields that vary with distance in a characterisue fashion. It 15 customary to
assign to the charge and current distribution an electromagnetic multipole mo-
ment associated with each characteristic spatial dependence—the 1/r7 electric
field arises from the nel charge, which we can assign as the zeroth or monopale
moment; the l,”r} electric field arises from the first or dipofe moment; the 177
cleciric field arises from the second or guadrupole moment, and so on, The
magnelic mulupole moments behave similarly, with the exception of the mono-
pole moment; as far as we know, magnetic monopoles either do nol exist or are
exceedingly ture, and thus the magnetic monopole field (=< 1/r%) does not
contribute. Electromagnetic theory gives us a recipe [or caleulating the vanous
electnic and magnetic multipole moments, and the same recipe can be carried
over into the nuclear regime using quantum mechanics, by treating the multipole
moments in operator form and calculating their expectavon values for vanous
nuclear states. These expectation vilues can then be directly compared with the
experimental values we measure in the laboratory. Technigues for mensuring the
nuclear moments are discussed in Chapter L6,

The simplest distributions of charges and corrents give only the lowest order
multipole fields, A spherical charge distribution gives only a monopole (Coulomb)
Geld; the higher order frelds all vanish, A eicolar current loop gives only 4
magnetc dipole field. Nature has not been arbitrary in the consteuction of nuclei;
il a simple, symmetiic structure (consistent with the nuclear interaction) is
possible, then nucler tend to acquire that structure. 1t is thercfore usunlly
necessary to measure or calculate only the lowest order multipole moments to
charactenze the eleciromagnetic properties of the nucleus.

Another restniction on the multipole moments comes about from the symmetry
of the nueleus, and 15 directly related to the parity of the nuclear states. Each
clectromagnetic multipole moment has o panty, determined by the behaviar of
the multipale operator when r— —r. The parity of eleciric moments 15 { — 1)%,
where I is the order of the moment (L = 0 for menopole, L =1 for dipaole,
L = 2 for quadrupole, etc.); for magnetic moments the panty is ( 15, When
we compute the expectation value of 4 moment, we must evaluate an integral of
the form [ *@Y do, where & 15 the appropnate eleciromagnete operator. The
parity of o itself is not important; because o appears twice in the integral,
whether s — + 4 or = =i does not change the integrand. If, however, & has
odd party, then the integrand is an odd function of the ¢oordinates and must
vanish identically. Thus all add-parity static multipole moments nuss vanish—clec-
tric dipole, magnetic quadrupole, electric octupole (L = 3), and so on.

The monopole electric moment 15 just the net nuclear charge Ze. The next
nonvamshing moment is the magretic dipale moment . A arcalar loop carrying
carrent 1 and enclosing area A has a magnetic moment of magnitude |p| = id: if
the current 15 caused by a charge e, moving with speed poin a4 cirele of radiug ¢
(with period 2=r/v), then

[ eur {4

fu| = mfrrﬁ il (3.32)
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Table 3.2 Sample Values of Muclear Magnetic ,2 L{
Dipole Moments

Muclide . lpen )

= 19130418

p I 2. T928456

HA{D) FO.85T4376

L5 - 189379

Ly = + (L0906 293
LI +4.733

RE NN 61705

Al values refer 1o the nuclear pround $lates; uncertamties
are Lypically o few parts in the last digit. For a complete
tabulation, see V. 5 Shirdey, in Talde of iotoper (Wiley: New
York, 1978), Appendix VIL

less than its expected value (zero) by roughly the same amount. Formerly these
differences between the expected and measured g, values were aseribed to the
clouds of « mesons that surround nucleens, with positive and  neutral
% mesons in the proton’s clowd, and negative and neutral = mesons 1 the
neutron’s clowd. The equal and opposite contributions of the meson cloud are
therefore not surprising. In present theenies we consider the nucleons as com-
posed of three guarks: adding the magnetic moments of the quarks gives the
nucleon magnetic moments direetly (see Chapler 18),

In nuelet, the pairing force favors the coupling of nucleons so that ther orhital
angular momentum and spin anpular momentum each add o zere, Thus the
paired nucleons do not contribute to the magnetic moment, and we need only
consider a [ew wvalence nucleons, If this were not 50, we might expect on
statistical grounds alone to see a few heavy nucler wath very laree magnetie
moments, perhaps tens of nuclear magnetons, However, no nucleus has been
observed with a magnetic dipole moment larger than about 6y,

Table 3.2 gives some tepresentative values of nuclear magnetic dipole mo-
ments, Because of the painng force, we can analvze these mugnetic momenis o
learn about the nuclear structure. In Chapler 4, we discuss the magnetic moment
of the deuteron; and in Chapter > we consider how nuclear models predict the
magnetic moments of heavier nuelet

The next nonvanishing moment 15 the elecoine guadrupole: prement: The
quadrupole moment ¢ of a classical point charge e is of the form (327 — 7).
I the particle movies with spherical svmmetry, then (on the average) =27 = 7 =
1P =73 and the guadrupole moment vamshes. I the particle moves m a
classical flat orbit, say in the x plane, then z =0 and @ = —¢”. The quadru-
pole moment in gquantum mechanics is

ef) = a.'jly';“{.’;:: — Y dn (3.36)

symimetnie, then & =10, 1T 1:;-|: is concentrated in the v plane (= = 0} then

for a single proton: for an erbiling neatron, @ =0 If || is spherically
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Table 3.3 Some Values of Muclear Electric
Quadrupole Moments 2 T
Nuchide Ok
‘H () | 000288
i P - (.02578
®Co b .40
o 0204
i L0043
1 Py +24
'T'f']'_u FB.0
ekl 037

Al valwes refer ta o nuchear ground stiies; uncertainties
are typically o few parts in the last dight. Fora complets
hulation, we V. S, Shirley, in Tl af Fioioper (Wiley;
New York, 1978), Appendix VI,

O~ = (r*), while it [{|* is concentrated along the = axis (z = rf we might
have ) ~ + l{rl}. 'Hem-(rz} is the mean-square radius of the orbit, Onee again
the pairing force is helpful, for il the paired nucleons move n spherically
symmetric orbits, they do not contribule to . We might therefore expect that for
many nuclei, the quadrupole moment can be estimated from the valence nuecleon,
which we can assume 10 orbit near the surface. 50 r = K 4", We therefore
estimate |eQ| < eR3A*?, which ranges from about 6 % 107" em’ for light
nucler to 500 % 107" em?® for heavy nuclei. The unit of 10 m?® i vsed

| frequently in nuclear reaction studies for cross sections, and is known as a harn
4 (b). This unit is also comvenient for measuring quadrupole: moments: thus the
| expected maximum is from 006 to 0.5 eb. As you can sec [rom Table 3.3 many
| nuclet do fall within that range, but Several, cspeciaily in the rare-carth
] region, are far outside. Here the quadrupole moment is giving important informa-

tion — the model of the single particle cunnot explain the large observed quadru-
pole moments. Most or all of the protons must samehow collectively contribute
to have such & large @. The assumption of a spherically symmetric core of paired
nucleans 15 not valid for these nuclei. The core in certain nuclei can take on o
static nonspherical shape that can give a large guadrupole moment. The proper-
ties of such strongly deformed nucler are discussed in Chapter 5.

Just as we learn a
structure: in part throd
atonuc exciled stiates, the
the zround state]) In g
clectrons (o higher gfersy orbits, an
nucleons; thus thgfescited siates can reMygl something about the orbits aof
imdividual nuclegs, We have already several g in this chapler referred to the
complementary Single-particle and collecuve strudture of nuclei— we ¢an also

properties of nuclear excited stales. (And like
excited states are unstable and deciy rapidly o

wie can do the same for individual




I.EI
J1 GL J contribu
where ([
matter «
vegtar I
Equan
coupling
In analyzing and interpreting nuelear level schemes in this text, we have re- : W Ean
pedtedly used the spin quantum number / 10 Fabel the individual levels. In e
Chapter 5 we discussed how important it is (o0 have an established set of these f : angular
Spin quantum numbers o compare the observed level scheme with the predie- " Hons to
tions of a patticular nuclear model. The measurement of nuclear spin assizn- a0t suffi
ments s one of the goals of experimental nuclear physics. and in this chapter we nucleon:
explore some of the lechniques that are used to obtam this information. i For th
Nuclear magnetic dipole’ and electric quadrupole moments have a similar angular 1
importance in helping us to interpret nuclear structure. We have already dis-
cussed in Chapter 4 the clues to the deuteron structure deduced from its
moments, In Chapter 5 we have seen the systematic behavior of shell-model
magnetic moments, and we have also seen how [he unusuilly large guadrupole ; where th
moments of certain nuclei suggest a new feature of nuclear structure, the stuhle nuclesr ¢
deformation. T TEprEsen:
The experimental techniques that are responsible for the determination of o Finall
these spins and moments span a considerable range, from those involving nuclear if; = nuelear|
radiations (angulur distributions and correlations,. Misshauer effect), to those E‘
involving atomic and molecular beams (the Stern-Geerlach expenment, for - S The Vst
stance} and radiations in the optical. microwave, and radio regions. of the ) s
spectrum. In this chapler we introduce and review many of these techniques and 3 'I'EhE_ i
give examples ol their applications, ; T
A
16.1 NUCLEAR SPIN Eve
Each nuclear state 15 assigned a unique “spin” guantum number [, representing Bdd
the total angular momentom (orbital plus intrinsic) of all the nucleons in the
nucleus, The vector £ can be considered the sum of the orhital and intrinsic Ever
3 Odd
%
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contributions 1o the angular momentum:

i= ifﬂ';+.:r.}l (16.1)
fi=]

=i 45 (16.24)
4

a T (16.25)

1=1
where the decomposition according 1o either Equation 16.2a or 16.25 is largely a
mutter of convenience. The quarium mimber 1 has the usual connection with the
vecior I Z

HERTVESTY (16.3)
Li=wh Amy=doF—Y., —1+1 =) (16.4)

Equation 16.1 represents what could in principle be a very complicated
coupling of many vectors o a single resultant, and it may not be apparent why
we can neglect this internal structure and treat the nucleus as if it were an
elementary particle with a single spin quantum number. representing the miringic
angular momentum of the “particle.” This is possible only because the interic-
tions 10 which we subject the nucleus, such as static electromagnetic felds, are
not sufficiently sirong to change the internal structure or breuk the coupling of
nuclenns that is responsible for Equation 16.1.

For the electronic motion in atoms, we can similarly define the total électronic
angular momentum:

=

J= T (£ + 5#) (16.5)
=]
where the ¢ and 5 vectors now refer ta (he electronic states. In analogy with the
nuclear case, we can often (bul not always) treat the electrons as if they were
represented by a single angular momentum J,
Finally, there are cases in which it is mest appropriate to deal with the total
nuclear plus electronic angular momentum, usually called F:
F=1+7 (16.6)

The vectars J and Fobey all the usual quantom rules for angular momentom. as
in Equations 163 and 16,4,

The quantum numbers / and J may be either integral or half-integral us the
number of nucleons or electrons is even or odd:

A z I s F
Even Ewen Integer Intepir Integer -
Ould Ewven Half-intezer Inteper Hall-integer
Even Odd Integer Hall-intcger Hallinieger

Chlid Odd Hall-integer Hall-inteper Inteper
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Proton Nestafran Toaal
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foe
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Figure 16.1 Proton-neutron angular momentum couplings in *Cl and 5%8¢.

For nuclear ground states, there are several mles for determining the spins:

All éven-Z, evin-N nuelei have £ = 0. This results from: the strong tendency
of nucleons to couple pairwise L0 wcro spin,

In odd-4 nuclei, the net-spin is almost always determimed by the j of the last
odd particle; with the remaimng 4 — 1 nucleons (having even numbers of
protons and neutrons) pairing to zero spin as above.

In 0dd-Z, odd-N nuclei, the spin is determined by the vector coupling of the
J ol the odd proton and neutron, I = j. + 7 and thus any of several values
are possible. To determine which of these possible couplings will be the
ground state, we use the empirical rule that the ground state ts usually the
coupling with the neutron and proton intrinsic spins s and s, paraliel. As
an example, consider **Cl, which consists of a d, , proton coupled 1o an f
neutron. For the proton, ¢ = 2 and thus s_ is opposite to j. For the
neutron, ¢, = 3 and s, 15 parallel to g Arranging the coupling so that s,
and s, are parallel, as in Figure 161 we gt [ = i — | or I = 2, which is
in fact the ground-state spin of *CL (The fitst excited state is /= 5.
corresponding to [ = j, + ) 'On the other hand, consider *'Se, resulting

from an [, proton coupled 10 a p,, neutron. Here making ¥, and =,

HWESRREAL e SRR R -
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£
parallel also makes Jp 4nd j, parallel, and thus / ~ Jp + o= 5 inagreement
with observation. (The state f = Vs = J,l = 2 is a low excited state of B8e.)
Other couplings with f between Jo + Jo and | Jp — du| may he found among
other low-Tying excited stales, .

16.2 NUCLEAR MOMENTS ﬂ l
-
Magnetic Dipole Moments (‘w ’
Classically, the magnetic dipole moment p anises from the motion of charged
particles, and we can regard I as a means (o characterize a distribution of

currents whose effect on the surroundings (that is, on other moving charpes) we
call “magnetic.”” When we go over 1o the quantum limit we find 4 similar
relationship, with one distinctly nonclyssical addition: the intrinsic angular
momentum (spin) contributes to the magnetic moment also.

Let's briefly review the classical electromagnetism that leads 1o magnitic dipole
moments. We consider some currents distributed over 4 sample that occupies a
certain volume in space (Figure 16.2). The distribution of currents is specified by
the current density j(r'). The vector ¢ locates 4 specific point of the sample
relative to the origing the pector funetion j(r') then gives the magmtude and
direction of the electric current per unit volume dp” at that point. The recipe for
caleulating the magnetc ficld B resulling from the currents is straightforward:
first caleulate the vector potentiyl A(r) at the observation point by integrating
{summing} over all the currents in the sample: '

Afr) = —

o fle") dv
_:‘Wf-’( ) (16.7)

=~

and then the: magnetic field follows directly from 8{r) = W xdir). Following
some mathematical manipulations, which can be found in standard texts on

Obsereation
P

Charge anil
current distribution

Origin
Figure 16.2 The current element jiryav gives a contribution to the vector
potential at the observation paint, The total potential is found from the integral over
the entire current distribution,
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electromagnetism, we can rewrite the vector potental as

fg 1 g 1 iF A e
A(r} = a‘;)‘}[r Yeddr' F-"}{r :H:r‘ ' do + “4} tlﬁ,H}
which can be written
_ By p¥r
A{r} N dgz  #7

i (16.9)

where

i
= Hj'r’ ¥ jlr) et {16.10)

The leading nopvanishing term is characterized by the mapnetic dipole mament p
of the current distribution. Whal we have done, in effect, is a multipole expansion
of the current distribution: the lowest-order term (dipale) is Tlikely to be the most
rmportant. The argument of thie integral for p includes the charee density and the
vector product £ ¥ ¢, which in the case of a particle with mass m is just ¢/nr,
where ¢ is the angular momentum. Going over Lo the quantum limit, the charge
density is e|3(r)|”. and it is entirely consistent with our previous cxperience
with quantum mechanics to write this us

Tefe
b= o fereeur) a {16:11)

If the wave function corresponds to a state of definite £.. then only the :
component of the integral is nonvamishing, and

@
. —— ® '3 i i Coyey
w5 W) () de (16.12)
e
= (16.13)
with £ = myh. ' —

What we observe in an experiment a5 the magnetic moment is dﬂ.'mm" 10 he
the value of p_ corresponding to the maximum possible vilue of the = COMPOnen
of the angular momentum. The guantum number i, has & maximum value of

+¢, and thus the magnetic moment p is

h=—+¢ (16.14)

2m
The quantity eh/2m has the dimensiofNeomn o mignelic moment (¢ 1 a dimen-
sionless quantum number) and is called a magneron. Putting in the proton mass
for m, we get a nuclear RIIZNEION Ly

eh
= = x
= T = HASHS X 1077 eV/T ,/
and using the electron mass gives the Bokr magneton

eh c
Hg= 35— = 578838 X 10°* eV /T /
”]r

Considering the intrinsic spin, which has no classical analog. we make a simple
extension of Equation 16.] <
b (gl 485000/ n (16.15)

T
e
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where the g factors g, and g, accoumt for the orbital and intrinsic contributions
to . Their values can be adjusted as needed for individual particless g, = | for
protons and g must be measured for “free protons” in which ¢ does not
contribute to p. As we discuss later in (his chapter, £, s megsured to be

5.5856912 for protons. For neutrons, which ar¢ uncharged, we can set =10,

and g, is measured o be — 3 8260837,
In real nuclei, we must make a modification 1o allow for the effects of all the
nucheons:
A 3
= %[3{.;4 g lma/h (16,16)

which s similar to Equation 161 for T,

There is nio single theory that allows us 1o evaluate Equation 16.16 1o caleulate
# because the interactions belween the nucleons are strong and the relative spin
orientations are- not sufficiently well known. In certain cases, we can make
simplifying assumptions, based on nuclear models. For example, in the indepen-
dent particle shell model, we couple 4 ~ 1 nucleons pairwise: 1o zero-spin
combinations that do not contribute to p. For the remaining odd nucleon, the
shell-model theory gives the coupling of £und s to form I, which permits p 10 be:

calculated, as we did in Section 5.1, In many other cases, we cannol ignore the

effect of the “core”™ nucleons; and we assign them a “collective” g factor usuafly
designated g, so that

= [g,{a + Tt e zr;..rrJ]fnx/ﬁ (16.17)

where 1, refers 1o the core and the sum is carried out over a few nucleons outside
the core. I we consider “pure” collective states, with no odd nucleons, the
collective model gives g, = Z/4, the ratio of the nuclear charge to its mass.
Figure 5.16a showed that this was 1 good approximation for 2° states of many
even-Z, even-N nuclei,

Electric Quadrupole Moments ( M)

We now consider the distribution of chisrges, rather than currents, within the
nueleus. From an external point, the electric potentinl F(r) appears to be

¥ir) = L M I:].'ﬁ__li{»}

dae, 4 |r—r

which is analogous to the expression (16.7) for the magnelc vector potential,
Classically. we can assign ta g charge distribution a monopole (Coulomb) feld,
which is proportional to the total charge. If we construet a charge distribution in
which the total charge vanishes, we can easily study the next highest multipole;
the dipole field, the standard for which is charges of +¢ located at, respectively,
2= +ayland z = —g/2.In general, any charge distribution that lacks spheri-
cal symmetry will have a dipole field, possibly in addition to the monopole ficld.
(One way w distinguish the two contributions 10 the total field is that the
monopole electric ficld variesias r— while the dipale field varies as 7, 3 Just as

.
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adding equal and opposite charges at different locations gives a dipole field,
adding equal and apposite dipoles causes the vanishing of the dipole field and
gives the next higher multipole, the quadrupole ficld, For example, we could add

the dipole with charges —g at the originand +4 4l = = u 0 the opposite dipole

with charges —g at the origin and g at = = —a The characteristic dependence
of the electric quadrupole field is as » %,

Expanding the factor of |r— #'| in Equation 16,18 sives immediately the
mathematical details of the multipele expansion of the electric field:

T i —1/%
r !
IF=r"V= r“[i + = —2:-'9'15.6‘] (16.19)
i r
Ill' 1 JJJ r! _1 r-l ra . X
Sl =l = —2—cosl | +=| — —2—eps]| & ..
r | g e F 5 r
(16.20)

where  is the angle between r and ', and where we have assumed r = ', (That
15, the observation point is far from the nucleus. For the imteraction with atomic
electrons, which dominates the hyperfine structure; this is a good approximation.)
Thus

| 1 2 1
" " tme |l E: i =3 G i
(r) 4-:ch rfP{r}.u': + rzfp{r}r cos # i

1
|-Ffp{r'1r*’§:3msw— 17 (16.21)

The integral in the first term gives (he total charge Ze, which from the point of
view of nuclear structure is uninteresting. The second term vanishes for nucher
under ordinary circumstances hecause nucleiar states are, to a very good ap-
proximation of the order of one part in 107, states of definite parity. Going over
to the guantum limit and replacing p(r') by 45 (), the integral vanishes
because the integrand s an odd function of the coordinates. (Simplify the

geometry somewhat by choosing the origin at the center of the nuclear charge

distnbution, and let r define the = axis. Then r'cos ff is ', and under the party
aperation ' — —=” while [§(r)| = | (- r')|". The integrand is therefore odd
and the integral vanishes,) The first “interesting” term in the multipole expansion
is the quadrupole term, and we define the nuclear quadrupole moment as-

20 = fpfr'}r"t{'ii cos? " — 1) (16.22)

where, is in the case of the magnetic dipale moment, we refer to a specific choice
of reference axis—we measure &' from the axis corresponding to the maximum
projection of the nuclear spin.

The nuclear quadrupole mement tells us whether muclei are spherical (for
which & = () or nonspherical. If Q = 0. the nuclet are profute deformed—in the
expression (16.22). the quantity r' (3cos” 8" — 1) = 3: —+** is on the average
positive, That is, there is more of the nuclear charge density along the #* axis than
within the average radius. Figure 1634 illustrites thal case. If 3+°2 — Fe o
negative, the =* axis comaing less of the nuelear charge density and there is a

correspongd
(Figure 16.
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Figure 16.3 Prolate and oblaie charge distributions,

corresponding flattening. In this case Q<0 and the deformation is eblare
(Figure 16,35 ).

The energy of interaction of the nuclear charge distribution with an externally
supplied (perhaps from the atomic clectrons) potential 1, is

E= [o(r)Va(r) d (16.23)

agam integrated over the nuclear volume. (Consider how 1his reduces 1o the
lamiliar expression for a point charge in an external field when V_, = constant.)
If we expund V,,, in a Taylor series about the center of the nucleus, then there is
4 constant term depending on F._(0), which is of no interest, i dipole term which
involves integrals such us

Ly ap::n f ¢
fﬂ{r]— (_3":,_):.-”.‘"
which vanishes by the same parity argument presented above, and 4 nonvanish-
ng guudrupole term, proportional o integrals of the form

a3V, )
(2]

: C?: ath
In all there are nine possible terms (involving ¥, x'y", etc.). If the external fictd
has eylindrical Symmetry (as in many cases of interest for atoms), then we can
reduce the electric quadrupole conteibution to the energy to the following form:

o v,
EQ=$(EQ'JE%G'US.-‘5'*%J( 7% ) (16.24)
Cd =)

where 6 is now the angle between the symmetry axis (now the z axis) of V.., and
the nuclear symmetry axis. The quadrupole moment () is caleulated with Tespect
1o the = axis (the symmetry direction of F_,). while Q of Equation 16.22 is

caleulated with respect to the nuclear symmetry directon =7 In evaluating:
Equation 16.24, we must take into account the directional relationships among
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these different reference systems. The nuclear angular momentum has component

1. relative to the chosen z axis, and thus 3 ”I’ '
& o= i (16.25) '
sl = — = - g I
] 11 +1)
_1 |—

Evaluating: the expression eQ'(3 cos’ @ — ), with @ defined as always with
respect o the axis of maximum projection of 7. the result is

3mi — HI+1) [ a%,, . _al
Eg=teQ——— [ "= 162
L Ty dz? )___., oty

In Section 16.3 we consider the case in which the angle # is determined by the &
relationship between the nuclear spin I and atomic spin J. B sl

o

16.3 HYPERFINE STRUCTURE

= -

ture was arigmally taken to include thogt dtomic effects {much
smaller than e fine structure) that arise from the ¢ ipling between the elec-
tronic and nucleNy angular momenta. It is thus an “iglernal” cifect in atoms, and
we cannot switch Mol or modify it except by chagBing the guelear or electronic
structure (going o edgjted stales, for instance), ThHest ellects were first studied by =¥ [
optical speetroscopists\who observed them asgmall perturbations in the struc-
Asing lasers have extended these

Hyperfine shyg

In recent years, hyperfiny structure bfis come to include all effects that i Figure 1¢
originate with the coupling of s and moments with their environment. its eléctra
including the atomic electrons. gtonment is often under the direct contral atomic stz

af the expenimenter, who can 2 he hyperfine structure by for example, wn =+
changing an externally applied magglje field. In this section we adopt this broad particular
] 2 decrease

mterpretation of hyperline interacfons,
Atomic states are lnbeled using

:
g,
o
e
2
=
=
=
=
Rl
>
s
1
iy
a
e
=
1Y
=
s

i indicated by the usual desig F.... corresponding to L =10, 1,2, oy J=F 4+
Jowaw o For atomic states wi rom, such as the alkali atoms, the fr', can be m
amrnir:_ spectroscopic nodatgn is similar o theNconventional notation used o £ the electrc
designate individual electghn states: Thus the sodivhy ground state. with its 3s, ., 1R magnetic
clectron, would be reprgfented as 3%S; . The princhal quantum number # is = the spin 1
often not indicated, : to the fin
We will use 7 1o gfpresent the total nuclear angular ndqentum (the nuclear without 1l
spm). Similarly, Jfwill represent the total (intrinsic plus™sgrbital) electrome always
angular momentyM. In ideal hydrogenic atoms, the electron modgs in the nuclear apparent
Coulomb potengfil in quantum states of well defined orbital angudyr momentum (which i ¢

L. Including e electron spin gives a second label 8. In principle,
matter whether we label the electronic sties of this deal atom by
quantum numbers L, m .. 8, mgor the set L, 8, J. m,. However, the 3
interaction, which produces the fine struciure of electronic levels, couples B and e where f{r
S in such a way that m, and mg are no longer well-defined, and the couNne E permits s
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e function for f = 2.1 fm. Note how the exponential
joms smoothly to the singe at £, so that both u(r) and du/dr are continuous
the wave function did not “t over” inside r= A, it would not be possi
connect smoothly to a decaynd, exponential (negative slope) and there
no bound state.

Figure 4.2 The deuteron

function finite for r — oo we mustave D = 0, and to keep il Anigflar r — 0 we
must have # = (. (¢ depends on
Applyving the continuity conditions

(4.5)

This transcendental equation gives 2 1 lationship Joween ¥, and R. From
eleciron scattering experiments. the rms ¢ s of the deuteron s known
to be ahout 2.0 fm, which provides o reNonabf first estimiate for . Solving
Equation 4.5 numerically (see Problem 6 o end of this chapier) the result is
Vi = 35 MeV. Thas 15 actually quite a reds le esumate of the strength of the
nucleon-nucleon potential, even in mo lex nucler, (Note, however. that
the proton and neutron are very likel | at separations greater than &;
see Problem 4.)
We can see from Figure 4.1 h 1is to the top of the well. If
the nucleon—nucleon force wefe Just o bit weakerNthe deuteron bound state
would not exist (see Problegf3). We are fortunare thalt does. however. hecanse
the formation of devtegMm from hydrogen is the fir step mot only in the
proton-proton cycle offusion by which our sun makes irs erzy, but also in the
formation of stablgfmatter from the primordial hydrosen Yoat filled the early
universe, If no sghle two-nucleon bound state existed, we wolld not be here 1o
more on the cosmological consequences of (he formation of
the early universe, se Chapler 19}
The dgffteron wave function is shown in Figure 4.2, The weak binding means
) as just barely able 10 “turn over™ in the well 50 a8 1o conncetat r — R
e negative stope of the decayine exponential, #

.. DEVTEROD

The total angular momentum f of the deuteron should have: three COMponents:
the individual sping s, and s, of the neutron and proten (cach equal 1o L) and
the orbital angolar momentum ¢ of the nucleons as they move about their
common center of miss:

F=g 45, +7 (4.6)
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When we solved the Schridinger equation for the deuteron, we assumed €= 0 in
analogy with the lowest bound state (the 1s swate) in atomic hydrogen. The
measured spin of the deuteron is = 1 (how this is mepsured s discussed in
Chapter 16). Sinee the neutron and proton spins ean be cither parallel (for a ol
of 1) orantiparallel (for a total of zero), there are four ways 10 couple 8 and
£ o petatotal JFof 1:

84 BASIC NUCLEAR STRUCTURE

(1) s, and 5, parallel with =0,
(b} s, and s antiparallel with £= 1,
{¢} s, and 5, parallel with &= 1,
{d) s, and 5 parallel with £= 2.

Another property of the deuteron that we can delermine is its parity (even ar
odd), the behavior of its wave function when r— —r (sec Section 2.6). By
studying the reactions nvolving deuterons and the property of the photon
emitted durmg the formation of dewterons, we know that its parity is even. In
Section 2.6 we discussed that the parity associated with orbital motion is { — 1},
even panty for £ = 0 (s states) and £~ 2 (d states) and odd parity for =1 (p
states). The ohserved even parity allows us to eliminate the combinations of spins
that include ¢= 1, leaving #= 0 and £= 2 a5 possibilities. The spin dind parity of
the deuteron are therelore consistent with ¢ = () as we assumed, but of course we
canncl yet exclude the possibility of = 2.

Magnetic Dipole Moment

In Section 3.5 we discussed the spin and orbital contributions 1o the magnetic
dipole moment, Tf the = 0 assumption is correct, there should be no orbital
contribution 1o the magnetic moment, and we can assume the total magnetic
moment to be simply the combination of the neutron and protwn magnetic
moments:

B=pgtp,
=7 Eonbn Rip_{'r'.‘i'
=== 7% (4.7

where gz = —3.826084 and E.p = 2385601 As we did in Section 3:5 we tuke
the ohserved magnetc moment to be the = component of g when the spins have
their maximum value { + Lh):

=g t &) (4.8
= (LBT9804 p

The observed value is 0.8574376 -+ 00000004 ¢y, in good but not quite exact
agreement with the calculated value: The small discrepancy can b useribed to
any of a number of factors; such as contributions lrom the mesois exchunged
between the newtron and proton; in the context of the present discussion, we can
assume the discrepancy to anse from 4 small mixture of d state (4= 2) in the
dewteron wave lunction:

f= a4 (f=0) +a,¢(r=2) (4.9)

Calculating
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Calculating the magnetic moment from this wave function sives

p=alp(é=0) + aip(f=12) (4.10)
where p(#'= 0) is the valve ealeulated in Equation 4.8 and a-j
— g Jp gy 15 the value calculated for a d state, The observ : : . : (_,86
ﬁ= 0.96, a3 = 0.04; that is, the deuteron is 96% = 0 and only 4% ¢= 2. Gﬂ-{/’
The assumption of the pure = 0 state. which we made in calculating the well 93 "'uﬂ_ﬂ
depth, is thus peetty grmrd hut not quite exact. ﬁ

Electric Quadrupoie Moment

The bare neutron and proton have no electric quadrupole moment, and so any
measured nonzerg value for the quatdrupole moment must be due to the orbital
motion. Thus the pure #= () wave function would have a vanishing guadrupole

moment. The observed quadrupole moment 1s
0 = 000288 + 0,00002 h

which, while small by comparison with many other nuclei, is certainly not Zero.

The mixed wave function of Equation 4.9, when used as in Equation 3,36 to
evaluate ), gives two contributions, one proportional o ¢ and another propor-
tional to-the cross-term a a4 . Performing the calculation we obtain

V2

{-) = 10 'a.\.ud<r1>.&d’ ) [J'd(f }le {4'] IJ1

where {r?j‘d = (PR ArYR (r)e7dr is the inlegral of r7 over the radial wive
funcuions; {r7},, is similarly defined. To caleulate © we must know the deuteron
d-state wave function, which is not directly measurible. Using the realistic
phenomenological potentials discussed later in this chapter gives reasonable
values for @ with d-state admixiures of several percent, consistent with the value
of 4% deduced Irom the magnetic moment.

This good agrecment between the d-state admixtures deduced from poand &
should be regarded as a happy accident and not taken too seriously. In the case
of the magnetic dipole moment, there is no reason o expeet that 1t 15 correet to
use the free-nucleon magnetic moments in nuclel, (In fact. in the next chapter we
see that there 1y strong evidence to the contrary.) Unfortunately, a nuscleon in a
deuteron lies somewhere hetween a free pucleon and a strongly bound nueleon in
a nucleus, and we have no firm cloes about what values 1o take for the magnetic
moments. Spin-orbit interactions, relativistic effects. and meson exchanses may i
have greater eflects on p than the d-state sdmixtore (but may cancel one
another’s eflects). For the quadrupole moment, the poor knowledge of the d-state
witve function makes the deduced d-state admixture uncertain. (11 would prob-
ably be more valid 1o regard the caleulation of @, using a known d-state mixture,
as a test of the d-state wave function.) Other expeériments, particularly scattering
experimenls using denterons as targets, also give d-state admixtures in the range
ol 4%. Thus our conclusions rom the magnetic dipole and electric qnadrupu]e
moments may be valid afier all!

It is importumt that we have un accurate knowledse of the destate wave
function becaose the mixing of ¢ values in the deateron is the best evidence we
have for the noncentral (tensor) character of the nuclear [oree.
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incorreet, to explain the nonexistence of Lhe di-proton as arising from Coulomhb in that
repulsion. No such temptation exists for the di-neutron, the nongristence of | pokar v
which must arise from the spin dependence of the nuclear interaction. Reviewing Thus ol
the evidence, we first learned that the deuteron ground state is a spin triplet and of a spi
that no hound spin singlet state exists, We then argued that, because wentical. linear
fermions must have total antisymmetric wave functions and because the lowest linear ¢
state is expecied to be a spaually symmetric £= 0 state, the di-proton und ance an
di-neutron systems must have antisymmetric, or singlel. spin states which are arg invi
unbound. ) teTms o

~ ; .E;m*aﬂm'r = e
AR FORCE

4.4 PROPERTIES OF THE NUCL

Based on the low-energy propertics deseribed in the previous sections, we can
learn many details about the nuclear force. Whien we include results from higher

energy experiments, still more details emerge. In this section we summarize the Thus

main features of the internucleon force and in the next section we discuss a

particular representation for the force that reproduces many of these details. T ]
LRLIR =

J : % squared

The Interaction between Two Nucieons Consists to Lowest Order Eguatia
of an Attractive Central Potentizl

In this chapter we have used for this poténtial a square-well form, which With au
simplifies the caleulations and reproduces the observed data fairly well, Other

more realistic forms could just us well have been chosen, bul the essential shates

conclusions would not change (in fact. the effective range ApproXimalien s

virtually independent of the shape assumed for the potential). The common it Bt

characteristic of these potentials is that they depend only on the internucleon

distance r. We therefore represent this central term as Fr). The experimental

program to study F.(r) would be to measure the energy  dependence of Thuga «

nucleon—nucleon parameters such as seattering phase shifts, and then to try 1o potentia

choose the form for F(r) that best reproduces those parameters., singlet &
different

The Nucleon — Nucleon Interaction is Strongly Spin Dependent de:;’ff &

i S

This abservation follows rom the failure to observe o singlet bound state of the

deuteron and also from the measured differences hetween the singlet and triplet

cross sections. What is the form of an additional term that must be added 1o the

potential to account for this effect? Obviously the term must depend on the spins : wheze |

of the two nucleons, s, and s, but not all possible combinations of sy and 5, are triplet b

permitted, The nuclear force must satisfy certain symmetries, which restrict the

passible forms that the potential could have. Examples of these symmetries are The Int.

parity (r — —r)and time reversal (¢ — —t). Experiments indicale that, to a high a Tonse

degree of precision (one part in 107 for parity and one part in 107 for time

reversal). the mternucleon potential is invariant with respect 1o these operations, Evidence

Under the parity operator, which involves spatial reflection, angular momentum MOment o

vectors are unchanged. This statement may seem somewhat surprising, because sphericall

upon inverting 1 eoordinate system we would naturally expect all vectors defined with mixe
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in that coordinate system to invert. However. angular momentum is not a true or
polar veclor; it is a pseudo- or waal vector that does not invert when r— —r
This follows directly from the definition rx p orcan be inferred from a diagram
ol a spinning object. Under the time-reversul operation, all motions (including
linear and angular momentum) are reversed. Thus terms such as ¥ or ¥, or a
lincar combination As, + B, in the potential would violate time-reversal invari-
ance and cannot be part of the nuclear potential, terms such as 8], 51, or ¥, - 5,
arc invariant with respeet to time reversal and are theretore allowed. (All of these
terms are also invariant with respect to parity.) The simplest term involving hoth
nucleon §pins is & = 8. Les.consider the value of s, « %, Tor singlet ind triplet
states. To do this we evaluate the total spin § =5 + 5,

AR e I,'JI+\..\|I'[5|+.';I]
ok ad o+ Baypmss
Thus
-!‘l'ﬁ::é{s:_-ﬁz_"':z] ':444]

Teo evaluate this expression; we must remember that o quantum mechanics all
squared . angular momenta evaluate as 57 = (s + 1}; see Section 2.5 and
Equation 2.69,

(o5, = 4[8(5 + 1) —sls + 1) —xalss + 13| & (4.45)
With nucleon spins s, and 5, of 1, the value of 5 =5 15 for mplet (8 = 1)
Stutess
sy =110+ 1) -3+ 1) -3 £ )[R =4 (4.46) :

and far singlel (& = 0) states:
(s spy =400+ 1) — L+ 1) - YL+ T)]at = —nF  (447)

Thos a spm-dependent expression of the form §; - 5, V.(r) can be toncluded in the
potential and will have the effect of giving different calculated cross sections: for
singlet and triplet states. The magnitude of ¥, can be adjusted to give the correct
differences between the singlet and triplet cross sections and the radial depen-
dence can be adjusted to give the proper deépendence on energy.

We could also write the potential including V. and F, as

¥ L5 %5
o == (B = ur+ (S et
where V(r) and Vi(r) are potentials that separately give the proper singlet and
i triplet behaviors,
J The Internucleon Potentiial Includes a Moncentral Term, Known as

a Tensor Potential

Evidence [or the tensor force comes primarly from the observed quadrupole
moment of the ground state of the deuteron: An sstate (= 0) wave lunction is
spherically symmetnic; the electne quadrupole moment vanishes. Wave funclions
with mixed ¢ states must result fromr noncentral potentials. This tensor force
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must be of the form Fir), instead of ¥(r). For a singlé nueleon, the. choce of o
certain direction in space is obviously arbitrary; nueleons do not distinguish -
north from south or east from west, The only reference direction for 4 nucleon is
its spin. and thus anly terms of the form s - For 5.% r, which elate r 10 the
direetion of s, can contribute. To satisfy the requirements of panty invariance,
there must be an even number of factors of r, and so [or two nucleons the
potential must depend on terms such as (s, « r)(s, * r) or (5 2 r)= (5 %P}
Using veetor identities we can show that the second form can be writlen in terms
af the first and the additional term s, - 55, which we already included in 17(r).

Thus without loss of generality we can choose the tensor contribution to the fi?"gi
internucleon potential 1o be of the form Vi(r)5,.. where Fsir) gives the [orce sticins i
the proper radial dependence and magnitude, and
Siz = 3sy = r)(s 2 r) 0 = 5= 55 {4.49) ;:::
which gives the foree ifs proper tensor character and alsg averages Lo wera over all Thisen
angles. we add
Tl
o The Nucleon - Nucleon Force Is Charge Symmetric “m:d“'
scattern
This means that the proton-proton interiction is identical to the neutron—reu- shifts [
tron interaction, after we corréet for the Coulomb force in the proten-—prolon shilis It
system. Here “charge” refers to the character of the nucleon (proton or neutron)
100"

and not o electric charge: Evidence in support of this assertion comes from the
equality of the pp and nn scattering lengths and effective ranpes. OF course. the 1
Pp parameters must first be corrected for the Coulomb interaction, When this is
done, the resulting singlet pp parameters are

.
a=—170.14 0.2 fm o e
= 284 + 0:03 fm
These are in very good agreement with the measured un parameters {a = — 6.6 '
+ 0.5 fm, r, =266 4 0.15 fm). which strongly supports the notion of charge L
SVMmetry. %
£ O

U'n'le Nucleon - Nucleon Force Is Nearly Charge Independent

Fhis means that {in analogous spin stales) the theee nuelear Torces nn, pp, and
pu arc identical, again correcting for the pp Coulomb foree. Charge indepen-
dence is thus a sironger requirement than charge symmetry. Here the evidence is ) — 50—
not s conclusive; in fact, the singlet np scattering length ( —23.7 fm) seems to
differ substuntially from the pp and nn scattering lengths ( — 17 fm). However, we
se¢ [rom Figure 4.11 that large negative seatiering lensthe are extraordimarily

sensitive to the nuclear wave function near r = R, and a very smull change in Figure .
can give a large change in the scattening length, Thus the large difference between ergies. |
the scattering lengths may correspond Lo a very small dilference (of order 1%) MeV sho
between the patentials, which (as we see in the next section) is casily explaimed by in the nu
the exchange force model. ' etal. &
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Loee—e === |

a= —23im o= =17

|

Figure 4.11 Very small changes in the nucleon - nucleon wave function near
r = R can lead to substantial differences in the scattering length when the extrapo:
lation is made (compare Figure 4.7b).

The Nucleen —Nucleon Interaction Becomes Repulsive at
Short Distances

This conclusion follows from qualitative considerations of the nuelear density: as
we add more nucleons, the nucleus grows in such a way that its central density
remains roughly constant, and thus something 1s keeping the nuclepns from
crowding too closely together, More quantitatively, we can study nucleon—nuclean
scattering at higher energies: Figure 4.12 shows the deduced singlet s-wave phase
shifts for nucleon-nucleon scattering up 1o 500 MeV. (AL these energies, phase
shifts from higher partial waves, pand d for example, also contribute 1o the cross

100%5—

Triplat = wove

507

w2

Phace shift

200
Energy {Mav

Figure 4.12 The phase shifts from neutron-proton: seattering at medium en-
ergies. The change in the s-wave phase shift from posifive to negative at aboul 300
MeV shows that at these energies the incident nucleon is probing a repulsive core
in the nucleon- nuclesn interaction. 4, 8, @. 'S, 0. 'P,. Dala from M. MacGregaor
et al., Phys Rev. 182, 1714 (1969).

~
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Figure 5.6 Af the left are the energy levels calculated with 1he potential of Figure
5.5. To the right of gach level are shown its capacily and (he cumulative numbaer of
ucleons up 1o thal level The naht side of the figure shows Ihe affect of the
spin-arbil inderaction, which splits the levels with = O into two new levels. The
shell eftect is quite apparent, and the magic numbers are exactly reproduced.

-~ Spin-Orbit Potential ( mx) /‘1 %'!w:c"”“

How can we modify the potential te pive the proper magic numbers?
certamly cannot make a radical change in the potealial, because we do not want
to destroy the physical content of the model—Equation 5.1 is already o very
good guess at how the nuclear potential showld look. 1t is therefore necessary to
add various rms o Equation 5.7 to try o improve the sitvation. In the 1940s,
many unsuccessful attempts were made at finding the needed COFTECLION; SUCCESS
was [inally achieved by Mayer, Haxel, Suess, and Jensen who showed in 1949
that the inclusion of a spin-erbir potential could give the proper sepuration of the
subshells,

Onge agan, we are borrowing an 1dea (rom owr colleagues, the atomic
physicists. In atomme physics the spin-orbit interaction, which causes the observed
fine structure of spectral lines, comes about because of the electromagnens
iteraction of the cleciron’s magnetic moment with the magneue ficld generated
by its motion about the nucleus. The effects are typically very small. perhaps one
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part i 107 in the spacing of atomic levels, No such electromagnetic interaction
would be strong enough 1o give the substantial changes in the nuclear level
spacing needed to generate the observed mugic numbers: Nevertheless we adopt
the concept of a nuclear spin-orbit force of the same form as the atomic
spin-orbit force but certainly nor eleciromagnetic in origin. In fact, we know ffom
the scattering experiments discussed in Chapter 4 that there is strong evidence for
a nucleon- nucleon spin-orhit force.

The spin-orbit interaction is written as Violr )= 5. but the form of ¥, (r) is nol
particularly important. It is the =5 factor that causes the reordening of the
levels. As in atomic physics, in the presence of a spin-orbit interaction 1t is
appropriate to label the states with the toral angular momentum j = £+ 5. A

single nucleon has v = 1| so' the possible values of the total angular momentum
quantum number are j= £+ | or j= ¢~ 1 (exeept for £= 0. in which case
only f =} is allowed). The expectation value of ¢+ s can be calealated wsing a

common trick. We first evaluate j° = (¢ + 5)%
Fr= 24 0l w4 57
Los =4 = =31
Putting in the expectation values gives
{Eoas =3[+ 1) =itle+1) = 5054 1] 4° (5.3)

Consider a level such as the 1F level (¢= ). which has a degeneracy of
24+ 1) = 14. The possible j values are & + += 1 ar 1. Thus we have the levels
5,5 und 1f, . The degeneracy of each level is (27 + 1), which comes from the
m values. (With spin-orbit interactions, m, and n, are no longer “good™
quantum numbers and can no longer be used o label states of to count
degeneracies.) The capacity of the 15 . level is thercfore 6 and that of 16515 8,
giving again 14 states (the number of possible states must be preserved; we arc
only grouping them differently). For the 1, and 10 4 states, which are known
as a spin-orbit pair or doublet, there is an energy separation that is proportional
to the value of ¢+ 53 for each state. Indeed, for any pair of states with > 0, we
can compule the energy difference using Equation 5.3:

(- 8Yyirpe = (L 8y e = 2+ 182 (5.4)

The energy splitting mcreases with increasing ¢ Consider the effect of choosing
Vaolr) to be negative, so that the member of the pair with the larger j is pushed
downward. Figure 5.6 shows the effect of this sphtting, The 17, ., level now
appears in the gap between the second and third shells: its capacity of 8 nucleons
gives the magic number 28. (The p and d splittings do not result in any major
regrouping of the levels.) The next major effect of the spin-orbit term is on the 1g
tevel. The gy, state is pushed down all the way to the next lower major shell; its
capacity of 10 nucleons adds to the previous total of 40 for that shell to give the
magic number of 50. A similar effecl oecurs at (he top ol each major shell. In
cach case the lower energy member of the spin-orhit pair from the next shell is
pushed down inte the lower shell, ind the remaining magic numbers follow
exactly as expected. (We even predict a new one, at 184, which has not yet been
See. )

As an example of the application of the shell model, consider the filling of
levels needed 1o produce ;0 and '{O. The 8 protons fill a mujor shell and do not

(5.2)
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Figure 5.7 The filling of shells in "0 and 0. The filled proton shells do not

3.3) contribute to the structure; the properties of the ground state are determined
( primarily by the odd neutron.

¥ 0

svicls contribute to the structure. Figure 5.7 shows the filling of levels. The extreme
1 Lhe : limit of the shell model asserts that only the single unpaired nucleon determines
wod™ the propertics of the nucleus. In the case of 0, the unpaired neutron is in the
uini P12 shell; we would thercefore predict that the ground state of O has spin L and
is 8, odd parity, since the parity 15 determined by (—1)%. The ground state of "0
= qre should be characteristic of a d, , neutron with spin % and even parity. These two
OWR prediciions are in exact agreement with the observed spin-parity assignments,
nal and in fact similar agreements are found thepughout the range of odd-A4 nucla
lwe where the shell model is valid (generally 4 < 150 and 190 < A4 < 220, for reasons

to be discussed later in this chapter). This success in accounting for the shserved
5 4) ground-state spin-parity assignments was & erem triumph for the shell model.

Hmn * Magnetic Dipole Moments ( 3 7 ﬂPd ETM Ve ) ! !

he i i ]
ed Another case in which the shell model sives a reasonable (but not so exact)

i agreement with observed nuclear properties is in the case of magnetic dipole
ol moments. You will recall from Chapter 3 that the magnetic moment is computed
”;:: from the expectation value of the magnetic moment operator in the state with
s maximum : projection of angular momentum. Thus, including both £ and s
I::“m:' lerms, we must evaluate
]]: n=pylgd + s )/h 3.5)
Il s when j. = jh. This cannot be evaluated directly, since &, and 5. do not have
Haw precisely defined values when we work in a system in which j is pricisely
i defined. We can rewrite this expression, using § = £+ s, s
= [gen + (g, — )5 [ nurh (5.6)
s qf and, taking the Lx]'l-u.,l*mun value when ;. = jh, the result is
" () = Laed + (5, = 5e) o0/ (5.7)

= Wwarmasdtd wsduibern wn o walabe &y caped
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Figure 5.8 As the total angular momentum | precesses aboit the z-axis keaping
I, constant, the vectors #and s precess about J. Thecomponents of £and = along f
remain constant, but £, and s. vary.

The expection value of (s} cin be Quickly computed by recalling that J 15 the
only vector-of interest in this problem— the ¢ and & vectors are meaningful only
in their relationship to j, Specifically, when we compute (£, ) the only surviving
part will be from the component of s al ng foas suggested by the vector diagram
of Figure 5.8 The instantancous value of . vanes, but its componen) along f
remains constant. We therefore need an expression for the vector 3, the compo-
nent of s along . The unit vector along 7157/ f]. and the component of along
Fis |5= | /17| The vector 8, 15 therefore j|s ~J1A 1, and replacing 4l] quantitics
by their expectation vilues gives

i j A )
(8. = s |ild +1) —£(+1) + (5 4 )]k (5:%)
oS+ )
where s« j = - (£ + 5) is computed using Equation 5.3. Thus for j= £+ 1
{8y = k2, while for J=¢— | we have (8= —h/A 7+ 1) The correspond-
Ing magnetic moments are
=i (= eli- 1)+ de )
o v ) A8 3 3 (5.9
f=¢—1 { N —— e . h
! 3 G By (/+1) 7741 By By

Figure 5.9 shows a comparison of these cilcubiated values with measured values
for shell-model odd-A4 nuclei. The computed values are shown as solid lnes and
are known as the Schinidt lines; this calenlation was first done by Schmidt in
1937, The experimentat walues Fll within the limits of the Schmidt lines, but are
generally smaller m magnitude and have considerable scatler. One defect of this
theary is the assumption that g, for a nucleon in a nuclens is the same as g, fora
free nucleon. We discossed in Chapter 3 how the spin g [actors of nucleans diifer
considerably from the value of 2 expected for “elementary™ spin-1 particles. If
we regard the substantial diflérences as ansmg from the “meson cloud™ (hag
surrounds the nueleon, then i s not ar all surprising that the meson c¢loud in
nucler, where there are other sur rounding nucleons and mesons, diffirs from what
it a5 for free noeleons. e s customary 1o account for this effect by (somewhal
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Figure 5.9 Experimental values for the magnelic moments of odd-neutron and
odd-proton shell-model nuclel. The Schmidt lines are shown as solid for g =
giifree) and dashed for g, = 0.6g, (free).

arbitranly) reducing the g, Factor: for example, the lines Tor g, = 062 (free) are
shown in Figure 3.9 The overall agreement with experiment is better, bul the
scatter of the points suggests thut the model is oversimplifving the calealation of
magnetuc moments. Nevertheless, the success in indicating the general trend of
the observed magnetic moments suggests that the shell-model gives us at least an
approximate understanding of the structure of these nuclei,

Electric Quadrupole Moments

ents in the shell model 1= done by
.32 — £% i astate in which the total
1as ils maximum projection along the =
edor now that the odd particle is a proton, 17
welosely as guantum mechanics allows) with
mosyy in the v plane. As we indicated in the
would give a negative quadrupole

The caleulation of electric quadrepole mo
cvaluating the electric guad
angular momentum of the od
axis {that is, mr, = +j ) Let’s asst
s angular momentum 15 aligned
the = axis, then it muost be orhit
discussion following Equatio



