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Figure 2.16 The lower energy levels in a Coulomb potential, shown for Z=1
{hydrogen atorn). The stales are labeied with {m, £); the degeneracies are indicated
on the left and the energy values on the night,

nuelear models in Chapter 3. The behavior of #ngular momentum in guantum
theary is discussed in the next section.

(guggﬂﬁh le cnen o 1))

2.5 QUANTUM ORY OF ANGULAR MOMENTUM

In solutions of the Schrddinger equation for three-dimensional problems, the
gquantium number ¢ plays a prominent role. ln atomic physies, for example, it
serves 1o label different electron wave functions and to tell us somethung about
the spatial behavior of the wave functions. This angufar momenturt quanium
sumber has the same function in all three-dimensional problems involving central
potentials, where I = ¥ir).

Tn classical physics, the angular momentum ¢ of a particle moving with linear ¢

momentum p at a location r from a reference point is defined as
f=roep (2.66)

In gquantum mechanics, we can evialuate the expectation value of the angular
momentum by analogy with Equation 2.10. We first consider the magmitude of
the anpular momentum, and for this purpose it is simplest to caleulate £%. We
must ficst find 2 guantum mechanical operator for 7, as we discussed m Section
27 This can be done simply by teplacing the components of p with their
operator equivalents: p, = —ih d/dx, p, = —ih gy, p.= —ihd/dz Evalual-
ing the cross product then gives leris of the form £, = yp. — zp,. and finally
computing (¢ 7y = (£2 + £} + £7) gives the remarkably simple result, which is
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Figure 2.17 Radial probability distributions for a particle in a Coulomb patential
(hydragenic atom). The probability vanishes at r = 0, but as before the ¢~ 0 wave
funclions do nof. This property becomes espacially impartani for phenomena that
depend on the overlap of atomic wave functions with lha nucleus —aonly =0
states contribute substantially to such phenomena (electron capture, hyperfine
structure, etc.). Why doesn't the “centrifugal repulsion” appear 1o ocour in this
case?

independent of the form of Rir),

(7 = he(d+ 1) (2.67)

That 1s. whenever we have a central potential, which gives a wave function
Rir)Y,, (8, ¢). the magnitude of the angular momentum is fixed at the value
given by Equation 2.67; the angular momentiom is a constant of the motion (a8 it is
in classical physics for central potentials), The atomic substales with a given ¢
value ‘are labeled using spectroscopic netation; we use the same spectroscopic
notation in nuclear physics: s for /= (0, p for =1, and 50 on. These are
summarteed m Table 2.6

When we now try to find the direction of £ we run into o barrier imposed by
the uncertainty principle: quantum mechanics permits us to know exactly only

Table 2.6 Spectroscopic Notalion

& value 0 1 2 3 4 ] 6
Syimbol 5 m f £ h i
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Figure 2.18 The vector ¢ precesses rapidly about the z axis, so that . Slays
canstant, but ¢, and I:;, are variable,

one component of £ at a time. Once we determine the value of one component,
the other two componernts are completely indeterminate. (This is a fundamental
limitation, and no amount of trickery can get us around it It is the very aet of
measuring one component that makey the olther two indelerminate. When we
measure ¢, we force £, and ¢ into indeterminacy; when we then measure ¢

K
for the same system, our previous knowledge of ¢, is destroved as ¢ is now

forced inlo indeterminacy.} By convention, we usually choose the = component of
£ 1o be determined, and computing {£.) as deseribed above,

1 = fim, (2.65)

where m =0, 21, +£2,..., +¢ Notice that |(£3] < |€] = b//(¢+ 1) —the =
compenent of the vector is always less than its length. II [{£)] = |£] were
permitted, then we would have exact knowledge of all three components of € (7,
and ¢, would be zero if ¢ were permitted to align with the : axis). The
conventional vector representation of this indeterminacy is shown in Figure 2,18
— rotates or precesses about the = axis keeping ¢, fixed but varving £, and ¢,

The complete description of an electronic state in an atom requires the
introduction of a new quantum number, the fnernsie angrlar momentun: or spin.
For the electron, the spin quantum number is s = L. The spm can be treated ag
an angular momentum {although it cannot be represented in terms of classical
variables, because it has no classical analog). Thus

8y = his(s + 1) {2.69)

(0.) = b, (m, = +7) (2.70)

1L is often uselul to imagine the spin as a vector s with possible = compaonents
+ 3h

Nucleons, like electrons, have spin quantum numbers of 4. A nucleon moving

in a central potential with arbital angulur momentum ¢ and spin s has a ol
anRguiar momentum

j=tC+s (2.71)

The total angolar momentum § behaves in o manner similar 1o € and s
(7Y ="Hri(i+1) 272
(Ly={f +u)=hn (2.73)
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Figure 2.18 The coupling of orbital angular momentum ¢ 1o Spin angular
memenium s giving total angular momentum f. () Coupling giving j ~ ¢ + 1. The
veclors £ and s have definite lengths, as does . The combined ¢ and s vectars
rotate or precess about the direction of f; in this coupling the z components £ and
5. thus do not have definite values. The vector j precesses aboul the 7 direction so
that . has a definite value. (b) The similar case of j= / — +. Iminterpreting both
figures, keep in mind that all such representations of vectors governed by lhe rules
of guantum mechanics are at best symbolic and at warst misleading.

wherem. = —f, —j+ 1., J— 1, j and where f is the iial ansular momen-
tum quantum number. From Equations 2.68, 2.70, and 2.73 it is apparent that
M=k omo=m,+ 4 (2.74)

Since m - is always an integer, rmy, must be half-integral (4 L 4 2, 4 2. )and
thus j must be half-integral, The vector coupling of Equation 2.71 suggests only
two possible values for j: ¢4 1 or #— 1, which are illustrated in Figure 2.19.

Usually, we indicate the j value as a subscript in spectroscopic notation. Thus,
for ¢ = 1 (p states), there are two possible 7 values: £+ i=3amd - 1= L We
would indicate these states as p,,, and Pis. When there 1s an additional
quantum number, such as a principal quantum number o (or perhups just an
index which counts the states in order of increasing energy), we indicate il as
23 5. 3Py 5. and 50 on,

In atoms, it is often useful for us to picture the electrons s moving in well
defined orbits with definite ¢ and . It is not at all obvious that 4 similar picture
15 useful for nucleons inside the nucleus, and thus it is not clear that ¢ and [ will
be useful fabels. We discuss this topic in detail when we consider the nuclear shell
maodel in Chaprer 5,

2.6 PARITY

The parity operation causes a refiection of all of the coordinates through the
origin: r — —r. In Cartesian coordinates, this meins v — X, ¥ —y oz
—z; m spherical coordinates, r —r, 8§ =7 -, ¢ — ¢+ 7. I a system is left
unchanged by the parity operation. then we expect that none of the observable
properties should change as a resull of the reflection. Since the values We Measure
for the observable quantitics depend on |7, then we have the following
reasonable assertion:

H7{r)=¥{=r), then hﬁ-{rlll'I =|¥{—r) |:-

ey
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This assertion, whose reverse 15 also true, has two importiant consequences for our
work in nueclear physics:

if |4 (r) ) =] (—r)|* then §{—r) = +¢(r). That is, the parity operation
has either of two effects on a wave function. The case ¢(—r)= +y(r) is
known as posiice or epen parity, while the case §(—r) = —f(r) is negative
or pdd panty. IT the potential F(r) is Jeft unchanged by the parity operation,
then the resulting stationary-state wave functions must be of cither even or
odd parity, Mixed-parity wave functions are not permitted. Recall our
solutions for the one-dimensional harmonic oscillator. The potential kx? is
certainly invariant with respect to the parity operation x -+ —x. The wave
functions listed in Table 2.1 have either only odd powers of x, and therefore
odd parity, or only even powers of x. and therefore even panty. Polynomials
mixing odd and even powers do not occur. Alse; review the solutions for the
finite potential well. Since the well lies between x = +a/2and x = —a/L,
the potential 15 symmetric with respect to the panty operation: F{x) =
F{—x). Notice the solutions illustrated n Figure 2.8. For some of the
solutions, Y —x) = (x) and their parity is even; the other solutions have
Y —xp= —¢(x)and odd party.

In three dimensions, the parity operation applied to the ¥, gives a phase
(—1)%

Yo dm — 8o+ 1) = (=1) ¥, (0.4) (2.75)
Central potentials, which depend only on the magnitude of r, are thus
invariant with respect to parity. and their wave lunctions have definite parity,
odd il ¢ 15 odd and even if £ 15 even.

The wave lunction for a system of many particles 15 formed from the

product of the wave lunctions [or the individual particles. The parity of the
combined wave [unction will be even il the combined wave function repre-
sents ony number of even-parity particleés or an eéven number of odd-panty
partictes; it will he odd if there is an odd number of odd-panty particles.
Thus nuclear states can be asstgned a define parity. odd or even. This is
usually indicated along with the total angular momentum for that state, as
for example, % or 27 In Chapter 10 we will discuss how the parity of a
state cin he determined experimentally.
The second consequence of the parity rule is based on its converse. Il we find
a svstem for which ||p{r]|‘ # |4 —r) |'1, then we must conclude that Fir) =
¥ —ri; that is, the svstem 1% mor invariant with respeet to panty. In 1957 it
was discovered that certain nuclear processes (ff decays) gave observable
guantities whose measured values did not respect the parity symmety. On the
other hand, no evidence has yet been obtained that either the strong nuclear
interaction or the clectromagnatic interaction violate parity, The establish-
ment of parity violaton in f decay was one of the most dramatic discoveries
i nuclear physics and has had profound influeaces on the development of
theories of fundamental interactions between particles. A deseriplion of Lhese
experiments 1s given in Sccuon 9.9
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2.7 QUANTUM STATISTICS

When we proup several pargicles together to make a larger quantum system
(severdl nucleons in a nuclens, several electrons in an atom, several aoms in a
molecule) a new guantum effect arises if the particles are indistinguishable from
one ancther. Let us consider the case of two particles, for example, the two
electrons in a helium atom. Suppose one electron is deseribed by coondinates r
and is in the state &, while the other electron is described by coordinates r, and
is in the state Y. The combined wave function is the product of the two
COMPONent Wave functions; thus ¢ = ¢ (r)d,(r ). Now suppose the two elec-
trons arc interchanged so that the new wave function is " = (e W (n) Is
there any measurement we could do o detect whether this interchange had taken
place?

If the electrons are truly indistinguishable, the answer Lo ths question must be
no. There is no observational seheme [or distinguishing the ™ first ¢lectron™ [rom
the “second electron.” Thues we have a result that 15 somewhal similar to our
result for the parity operation: Probability densiiies pust be tnoariant with respect
to exchange of identical particles. That is, the exchanged wave Tunction ., can at
maost differ only in sign from the orginal wave function .. We therelore have
lwo cases, IT the sign does not chanpge upon exchange of the particles, we have a
syppmetric wave function, fer symmetne wave [unctions, |, = oy 10 the ex-
change changes the sign, we have an anfisymeerric wave function, for which
boy = — iy AN combined wave functions representing identical particles must be
cither completely synumetric or completely aniispmmetric. Mo “mixed symmetry™
wave Tunctions are allowed.

When we turn to our laboratory expeniments o verify these assertions, we find
a Turther classification 1o which there are no known exceptions: all parnetes with
intepral spins (0, 1,2,...) have symmetne combined wave functions, while all
particles with hall-integral spins (£, £, 3, ... ) have antsymmetne combined wave
functions.

The ahove two-particle functions ¢ and ° will not do for combined wave
functions because they are neither symmetric nor antisymmetne, That is, 67 does
not at all look like either & or —d. Instead. consider the following combined
wave function:

1 : ;
P2 = A 9 0r)wa(n) £ ¢p(n)ddn)] (2.76)

Il we choose the plus sign, then the combined wave function is Sylnme!l‘it“:wilh
respect Lo interchange of the particles. 1f we choose the minus sign then the result
is an antisymmetric wave function, The factor of 1/ 2 ensures that the resulting
combination is nermalized (assuming that each of the component wave functions
is itsell normalized).

A special case arises when we have identical guantum states 4 and B. (We can
remard o und B as representing a set ol quantum numbers.) When A 1s the same
as . the antisvmmetne combination wave function vamshes identically, and so
its probability density is alwavs zero. The probabifity to find twe identical particles
of half-integral spin in e sare quanten state psé abweys vanish. Thas s of course




’:lL

Just the Pauli exclusion principle, which determines why atomic subshells fill in a
certain way. This vanishing of the antisymmetric wave Tunction is the mathemuti-
cal basis of the Pauli principle. No such vanishing occurs for the symmetric
combination, so there is nothing to prevent identical particles of miegral spin
from oecupying the same quantum state,

Later in this text, we apply the Paulj principle to nucleons and show its
importance in understanding the nuclear shell medel. We also construct some
stmple antisymmetric wave functions for the quarks that make up nucleons and
other similar particles,
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2.8 TRANSITIONS BETWEEN STATES

A true stationary state lives forever, The expectation values of physical obseryv-
ables, computed from the wave funetion of 2 stationary state, do not change with
time. In particular, the expectation value of the energy is constant in tme, The
energy of the state is precisely determined, and the uncertainty in the energy,
AE = (E*) —{E) (2.77)
vanishes, because (E*Y = (E)? for this case. The Heisenberg relutionship,
AEAr = hy2, then implies that A7 = 6. Thus a state with an exact energy lives
forever; its lifetime against decay (1o lower excited states. for example) s infinite,
MNow suppose our system is subject 1o a weak perturbing potential F, in
additon to the original potential . In the ahsence of V' we can solve the
Schradinger equation for the potential ¥ and find a sel of eigenstates ¢, and
corresponding eigenvalues £ If we now include the weak additional potential
V', we find that the states are approximately, but not exactly, the previous
eigenstates ., of V. This weak additional potential permits the system to make
transitions between the “approximate” eigenstates ¥,. Thus, under the interac-
ton with a weak clectromagnetic field, a hydrogen atom can make transitions,
such as 2p — 1s or 3d -» 2p. We still describe the various levels as if they were
eigenstates of the system,
Even though a system may make a transition [rom an inigal cnergy state £, 1o
a final state £y energy must be conserved. Thus the total decay cnergy must be
constant. IT the final state £, is of lower energy than £, the energy difference
E, — E; must appear as radiation emitted in the decay. In transitions belween
atomic or nuclear excited states, a photon is emitted to carry the energy £, — E,.
A monstationary stale has a nonzero energy uncertainty AE. This quantily 1s
often called the “width™ of the state and iy usually represented by I The (iferime
= of this state (the miean or average time it lives before making a transition 10 a
lower stale) can be estimated from the uncertainty prnciple by associating = with
the time &¢ during which we are permitied to carry out a measarement of the
energy of the state. Thus r = h/T. The decay probability or wransition profability
A (the number of decays per unit ime) is inversely related to the mican lifetime +

A= — (2.78)
T

It would be very useful 1o have a way to calculate A or 7 directly from the
nuclear wave functions. We can do this if we have knowledge of (1) the tnitjal
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and final wave functions o, and &, which we regard as approximate stationary
states of the potential V5 and (2) the interaction ¥ that causes the transition
between the states. The calculation of & is oo detailed for this text, but can be
found in any advanced 4ext on guantum mechanics. We will merely state the
result, which 15 knewn as Fermii's Goldea Rule:

2 2 .
A= T|Vr,"| P“‘-rj {2-?9}

The quantity ¥ has the form of an expectation value:

Wi = f*h‘ Voo do (2.80)

Notice again the ordering of the states [ and i in the integral. The integral V' is
sometimes called the muatrix elemeny of the transition operator ¥, This terminel-
ogy comes from an alternative formulation of quantum mechanics based on
matrices nstead of differential equations, Be sure to take special notice that he
decay probehility depends on the square of the transition matrix element.

The guantity p( £,) is known as the density of final states. 1t is the number of
states per unit emergy interval at E, and it must be included for the following
reason: if the final state £, is a single solated state, then the decay probability
will Be much smaller than it would be In the case that there are many, many
states in a narrow bund near F, 17 there is a large density of states near £, there
are more possible final states that can be reached by the transition and thus a
larger transition probability. The density of fnal states must be computed based
on the type of decay that occurs, and we shall consider examples when we discuss
£ decay, ¥ decay, and scatlering C10ss sections,

REFERENCES FOR ADDITIONAL READING

The following introductory (sophomore-junior) modern physics texts provide
hackground material necessary for the study of quantum mechanics: A. Beiser,
Concepts of Modern Physics, 3vd ed. (New York: McGraw-Hill, 1981); K. 5.
Krane, Modern Physics (New York: Wiley, 1983): B. A, Tipler, Modern Physics
(New York: Worth, 1978); R.T. Weidner and R. L. Sells, Elemeniary Madern
Physics, 3rd ed. (Boston: Allyn and Bacon, 1980}

Quantum mechanics references at aboul the same level as the present text are
listed below: R. Eisberg and R. Resnick, Quantum Physics of Aloms, Molecules,
Solidy. Nuetel, and Particles, 2nd ed. (New York: Wiley, 1985); A, P. French and
E. F. Tavior, An Introduction to Quantum Physics (New York: Norton, 1978):;
R. B. Leighton, Principles of Modern Physics (New York: McGraw-Hill, 1968);
D. 8. Saxon, Elementary Quantion Mechanies (San Francisco: Holden-Dray,
19681

Advanced guantum texis, which can be consulted to find more detailed
discussions of topics discussed only briefly m this text, are the following: C.
Cohen-Tannoudji, B. Diw, and F. Lalo, Quantium Mechanics (New York:
Wiley-Interscience, 1977); D. Park, nteoduction te the Quantum Theory, 2nd ed.
(Mew York: McGraw-Hill, 1974); E. Merzbacher, Quantum Mechamics, 2nd ed.
(New York: Wiley, 1970).
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Fig, 5 shows ohserved nueclides, For small numbers of nucleons. the band
ig nearly diagonal, Le, £ = N, As the size grows, the band bends and is
helow the diagonal. Z < N. Using the empmeal mass formula, the existence
of the band is easy to understand. As von go away from the band. the
svmnmetry term hecomes nnportant and the mass of the nuelens grows, What
it means it that such a nuclide, if exists, decavs immediately by glecting excess
neutrons or protons until the svmmetry term becomes small enough to make
it energetically impossible to ejecl free neutrons or protons. For large nuclei,
Coulomb term is important and smaller number of protons s prefecred. That
s why the band bends dewnwards. Even within the band, the number of
stable nuclides is not so large. All the colored ones decay either by (F-decay
(N, Z) — {.‘V — 1, Z+ e b, or ;1111.i-ﬁadt_~{;a}' (N, ZV = (N + 1.2 - 1LeTwm
to approach the narrow band of stability moving along —45” line. Unstable
nuclei can also emit an a-partiele, a unusually tightly bound "He nucleus, to
lower the mass number, approaching the maxunum binding energy of A = 56,

L

3 Nuclear Force

Protons and neutrons are bound inside nuelei, despite the Coulomb repulsion

among protons. Therefore Lhere must be a different and much stronger foree

acting among nucleons to bind them together. This foree is called nuclear .
force, nuclear binding force, or in more modern settings, the strong inierne- ;u.t{;}—d e ey ¥
tion. (Here, we are not talking about a strong interaction, This is the name f‘va{

ol the foree.) Here are notable properties of the nuclear binding force.

L. It is much stranger than the electromagnetic force. In the empirical
mass formula, we saw that the coetficient of the Coulomb term is more
than an order of magnitude smaller than the other terms in the binding
energy.

Il is an atrractive force, otherwise nucleons wouldn’t hind. cJéﬁULJG

b

-]

It is short-ranged, acts only up to 1-2 fm.

4. It has the saturation property, giving nearly constant B/A ~ 8.5 MeV
This is in stark contrast to the electromagnetic force. For instance,
the Thomas—Fermi model of atoms gives B = 15.7327/% eV that grows
with a very high power in the number of particles.
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5. The foree depends on spin and charge states of the nucleon. To under-
stand nuelei and nucleon-nucleon seatiering data, we nesd not only a
potential V(r) between nucleons in the Hamiltonian huE alse the spin-
spin term dy - F2V(r), the spin-orbit term (7 + 62) « £V (¢}, and the
tensor term [3(d, - F)(Fy - F) — 47 - 32 V().

6. It can exchange charge. [ you do neatron-proton scattering exper-
ment, you not only see a forward peak but also a backward peak. Note
that a forward peak is analogous to a large impact parameter in the
classical mechanics where there i3 little deflection (recall Rutherford
scattering), and exists for pretty much any scattering processes. But
a backward penk i3 quite wnosual, The interpretation is that when

¥+ ihe proton appears to be backscattered, it is actually a neutron which
converted to a proton because of the nuclear reaction. In other words,
the neutrom is seattered to the forward angle, but has converted to
proton by the scattering and we are [ooled to see the proton sciattered
backward. This 15 the charge-exchange reaction.

7. Even though the nuclear foree is attractive to bind nucleons, there is
a repulsive core when they approach too closely, around 0.5 fm. They
basically cannot go cloger,

"

3. The nuclear force has “charse svm which means that we can
make an overall switch hetween protons and neutrons without chang-
ing forces among them. For mstance, nn and pp scattering are the
same {except for the obvious difference due to the electric charee). For
example, “mirror nuclet,” which are related by switching protons and
neutrons, have very similar excitation spectra. Examples inelude C
and N, Y0 and 'F, eic

9. A stronger version of the charge symmetry is “charge independence.”
Not only i and pp scattering are the same, but also np scattering is
also the same under the “same configuration” which 1 specify below
using the concept of sospin,

The last item needs some more explanations. There is a new symmetry
in the nuclear force called isospin, proposed originally by Heisenberg. The
idea is very simple: regard protons and neutrons as identical particles, Dut of
course, you can't; they are different particles, right? They even have different

10
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masses! Well, the trick s to introduce a new quantum number, isospin. which
takes values +1/2 and —1/2 just like the ordinary spin. We say a proton
is a mucleon with [, = +1/2, while a neutron with I. = —1/2. At this
point, it s Just semantics. But the important statement is thus: the nuclear
lorce is invariant under the isospin cotation, just like the Hamiltonian of a
ferromagnet is invariant under the rotation of spin. Then you can classify
states according to the sospin guantum numbers because the nuclear force
preserves isospin. Bul what about the mass difference, then? The point is
that their masses are actually quite similar: m, = 938.3 MeV/c® and m, =
939.6 MeV/c". To the extent that we ignore the small mass difference; we
can treat them identical. Another question is the obvious difference in their
electric charges +|e| and 0. Again, the Coulomb force is not the dominant

*force in nuclei, as we have seen in the empirical mass formula. We can
ignore the difference in the electric charge and put it back in as a “small”
perturbation.

The charge symmetry is a limited example of the isespin invariance. It
corresponds to the overall reversal of all isosping. If you reverse all spins 5.,
that is basically the 180° rotation around the y-axis, and you obtain another
state with degenerate energy. Likewise, if you reverse all isospins, by rotat-
ing the isospin around the “iscspin y-axis" by 1807, you interchange protons
with neutrons, just like interchanging spin up and spin down states. If the
nuclear force is indeed invariant under the isospin rotation, it must also be
mvariant under the isospin reversal. Fig. 7) shows that indeed the nuclear
spectra approximately respect this invarianee, Of course, isospin i5 not an
exact symmetry because protons and neutrons have different electric charges.
Jut the isospin invariance goes even further (“charge independence”). It Says
that @ not only the interaction between pp and nn are the same (“charge
symmetry” ), also np is, except that you have to carefully-select the config-
uration. Here is what is required. Because proton and neutron both carry
4 = 1/2 (and opposite . = £1/2), two nucleon states wottld have both 7= 1
and = 0 components. Both pp and nn states are sek g in the T = 1
state. On the other hand, the np stale can either be in the 7= L orT =10
states, But the fermion wave function must be anti-symmetric while 7= 1
(T = 0) isospin wave funciion is symmetric (anti-symmetric). Therefore, if
the space and spin wave function of a np state is symmetric (anti-symmeltric),
it selects T = 0 (7 = 1) isospin wave function. This way, you can separate
purely T = 1 part of the np wave function, and compare the interaction to
that of the nn and pp states. And they are indesd the same up to corrections
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from Coulomb interaction. On the other hand, the force in the T = 0 state
can he different. For instance. the only two-nucleon bound state is the deu-
terium. an np state WhatHs sugoests is that the bound state is in the T =0

Stale; ._1[“,1 .].!!r.] :;YT[IIII{‘.EI,'H: b{}bi’}]]’] wave tl[!l[fl.lﬂ]']. lheﬂ t.hL resh l}'l I.hl:.l wave
function must be symmetric. For a given potential, the S-wave is always
more binding than the P-wave just because it lacks the centrifugal barrier.
Therefore the deuterium is likely to be in the S-wave, a symmetric spatial
wave function. Then the spin wave function must be symmetric, 5§ = L
[ndeed demterium does have spin one. A more quantitative test can be seen
in Fig. 8. “'F, *1Ar, “INa, and *'Mg all have the mass number 21. Assuming
w.E 15 in the T = 0 state, all four nuclei can he obtained by adding three
%&ﬂﬂin ih; which can be ineither 7= 3/2 or 7 = 1/2 states. The nuclear
éxcitation spectra show states common only between 2L Ar and ®!Na, which
are in the T = 1/2 state, or states common to all four of them, which are in
the T== 3/2 state. Similarfy check can be done among 'C, "N, "0, which
show states common to all of them (T = 1) or states special to YN [T = 0).

4 Yukawa Theory and Two-nucleon System

Civen the properties of the nuclear force described in the previous section,
what, after all, is it? I briefiy go through the explanations in a guasi-historic
way, bul this is by no means rigotous or exhaustive. But hopefully | can
give you an idea on how we came up with the current imderstanding, namely
Guantum ChromoDynamics (QCD).

The obwious oddity with the nuclear force was its shorl-rangedness. Peo-
ple knew gravity and electromagnetism: both of them are long-ranged, with
therr potential decreasing as 1/r. On the other hand, the nuclear force is
practically zero beyond a few fm. As we will discuss in the “Quantization of
Radiation Field,” the electromagnetic interaction 15 described by photons in
the fully quantum theory. Likewise, the nuelear foree must alse involve a par-
ticle that is responsible for the force. Such a particle is often called a “force
carrier.” The idea of the foree carmer is simple: quantum mechanics allows
you o “borrow” energy AR violating its conservition law as long as you give
it back within time At ~ B/AE allowed by the uncertainty principle. Take
the case of an electromagnetic reaction, say electron proton scattering. An
electron cannot emit a photon by itself because thal would violate energy
and momentum conservation. But it can do so by “horrowing” energy as
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FIG. 6.1, Energy level diagrams for the siermbers af the mass.?1 sasmn quarlel showing
the positions of the T = 3/2 levels in ach nucleus. For clarity, the ground state energies
of mirsar-nuclel have been equated. and many of the excited levels of Ne and Na befow
10-MeW excilalion have been deleted [Butler, Cerny, and Mclarthy, (55)].

Figure #: Comparison of excitation spectrum of four nuclet with the same
mass number, showing states withT = 1/2 and T = 3/2 nmultiplet struc-
ture. From “Theoretical Buclear Physics,” by Amos deShalit and Herman
Feshbach, New York, Wiley, 1974,

15



long as the ereated photon is absorbed by the proton within Ad allowed by
the uncertainty principle. Then the “virtual photon” has propagated from
the electron to the proton, causing a scaitering process, because of its kick
when emitted by the electron and when absorbed by the proton, Since the
photon is a massless particle with £ = ¢p. 1ts energy can be arbifrarily small
for small momenta, and hence Ad ean be arbitranly long. The distance the
“virtual photon” can propagate can also be arbitrarily long d = el This
is why the electromagnetic interaction is long-ranged. 1f, on the other hand,
the force carrier had a finite mass m, there 5 a minimum energy reguired
to create the force carrier particle £ = me’. Thevefore the time to pay
back the debt is limited: At = Afme®. The distance the force carrier can go
within the allowed fime limit is then also limited: o = cAt = h/me. There-
[bre the force carrier cannot go bevond this distance and the force becomes
short-ranged. This distance determined by the mass of the particle is called
“Compton wavelength.” Yukawa suggested back in 30’s that the foree carrier
of the nuclear foree must therefore be massive. Judging from the range of the
nuclear force of about two fm, he suggested that the force carrier must weigh
about 200 times electron, or 100 l‘--‘[eV,r’rr"' . The short-rangedness 15 then an
immediate consequence of the finite mass. B ————

The presence of the charge exchange reaction suggests that the force
carrier i5 (or at least ean be) electrically charged. This particle is ealled
charged pion == or 7% in the modern terminology. The charge exchange
reaction, producing the backward peak in the np scattering i caused by the
[ellowing process, When the neutron comes close to the proton, the neutron
emits the force carrier 7, and it becomes a proten (!}, Even though (from
the neutron point of view) she is still going pretty much straight ahead, we
see Lhe proton coming along the original direction of the nentron, namely the
“hackscattered proton.” The emitted 7 is then absorbed within the time
allowed by the uncertainty principle and the proton becomes a neutron.

By 40's there was discovered a particle that weighs 200 times electron in
eosmic rays (or more precisely, 1057 MeV/c?). This of course raised hope
that the discovered particle may be the force carrier for the nuclear force.
After intensive research, however, especially that carried out by Italians hid-
ing (literally) underground in Rome under Nazi's occupation in 1945, it was
shown that the new particle does not show any sign to feel the nuclesr foree.
This particle is what is now called muon . Indeed, underground is a good
place to study muens! Later on people speculated that there may be twe new
particles weighing 200 times electron, and this is indeed what happened. By
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going to higher altitudes on the Andes in cosmic rav studies, people have
found th a,t the charged pions exist in cosmie rays, which quickly (within
aloi, 1078 Vgoc) decay to muons which live longer {about 1077 sec) and reach
the surface of the BEarth, (Of course therr life s stretched by the relativistic
time dilation effect. Otherwise we didn't have i chanee to detect thern even
on the Andes.] Only at higher allitudes, pions had chance to enter the de-
tector {photographic films). Later on, a neutral pion 7 was also discovered
that decavs into two photons. They are later determined to have no spin
and odd parity. Once found, it seemed to confirm Yukawa's suggestion. The
potential between nucleons caused by the exchange of a “virtual pion” was
caleulated to have the following form
o " 4 P . T
¥y =i T o) [m )+ (142 L) 512] £ ®
3 hedmi; pr o (ur)? pr
Here yu = m.c/h with m, with the small difference between mqoe = 139.6 MeV/ &
and e = 135.0 MeV ignored in the same spirit as we ignore the proton-
neutron mass difference and call it my. The factor

512 == —13 ﬂ Jn e “J’_'.:I == {GI U’Q ] f?:]

i the form for the phenomenologically required tensor force. The matrices

= IT are the analogs of Pauli matrices for the sospm. The mmportant
pmm. with the potential is that it is indeed invariant under the rotation of
the isospin space becanse of the form (7, - T2).

The OPE (one-pion-exchange) exchange Eq. (6) works well in the [wo-
nucleon system, We have seen that there {5 only one bound state in two-
mucleon system, namely deuteron, with™T=0, L = (. § = 1. Let us see if
this is consistent with the OPE potential. We focus on the s-wave (L = 0)
which doesn’t have the centrifugal barrier and presumably binds the most.
WhenT = 1 ({7} - 7a) = +1), the Fermi statistics requires § = 0 (72 = —&}
and hence (&, - @) = —3). Then the tensor force is pmp:iirt-il:)na] Lo

—

Sip= 1%[:3(51 Ty - 7) — (&) - Ga)r?] = T—lz[ ~3(, - P)er )+ 37 (8)
At the lowest order in the potential in perturha.tic:n theory, using the fact
that the s-wave is isotropic, we find (r'r/) = 3{r"}, and hence the tensor
force vanishes identically. Therefore, the OPE potential is

gt m? T T
S Ty (9)
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This potential is attractive, of finite range, and may or may not have o bound
state depending on the size of the coupling ¢°/fe and m,. For the actual
valuey, there is no bound state;

On the other hand, for the T°=0, L =0, § = 1 eage, we have (7-7) = =3
and (Fy - da) = +1. Let us take S, = +1 state as an example. Then the :
tensor foree does not vanish, and i€ expectation value is proportional Lo p !

]
(8 =1,8. = 11 =35, A)(da-7) - (51 -GS = 1.8y = +1) ot & .
q 5 ':‘L.

it

¥ 11' = e 2 ¥ % =
=(5 =18 = +1|5[3(s72)(032) — ]IS = 1,5 = +1) <&

ZE:E_I:_UI‘: I'?

\
. e 10)

o
Therefare, the OPE potential is

g3 T N, T, oy R
g m 4 Azt —at — g™ | e
Vi=—> e 1+ = : 11

hedmy, it [ re J e (12)

The cocfficient of the potential is the same as the™T = 1 case, except Lhat
there is an addition of the quadrupole moment rYy = \/l%ﬂ?;? — g2 =
y*). If the gquadrupole moment is positive, which means a cigar-like shape,
a5 opposed to negative, which means a pancake like shape, the quadrupole
moment adds to the attractive force and can lead to a bound state even
if the T = 1 case doesn’t. Experimentally, the quadrmpole moment of the
deuteron is confirmed and has the value Q(d) = 2,78 x 107% cm®. The
deuteron indeed has a cigar-like shape where Lhe spins are lined up along the
elongated direction,

In erder for the quadrupole moment to be non-vanishing, however, a pure
S-wave would not do the job because it is completely isotropic. However,
the state with total J = 1 with § = | can also arise from L = 2. In fact,
the deteron has a mixture of [ = 2 state that is responsible for the finite
quadrupale moment.

5 Fundamental Description of Nuclear Force

Now the world looked simple: there are protons and neutrons in nuclei,
bound together by the foree mediated by the exchange of pions. But the
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With a, = 0.72 McV and %, = 23 MV, it followgthat the first two terms in be the o
the numerator are neglicible, in that
particles
Zo = — (3.31) may be
% 8./ gy each con
- One i
For ﬁ_mull zr.lz,w, = ri,flE as expected, B for !urgt .«l,‘Zmi“ < A /2. For heavy the poss
nuelei, Equation _3.31 gves £/ = consistent with observed values for A
hua\_ay SL:aE_ﬂe nuclei. _ compon:
Figure 318 shows u typical odff-4 decay Mam for 4 = 125, leading to the ARk
stable nucleus at £ = 52, The wistable nucle apgroach stability by converting a with the
neulron into a proton or a pgMon into a neutron My radioactive 2 decay. Notice x This: req
how the decay caergy (thaghls, the mass difference bidyveen neighboring isohars) i A
mereses as we go furthgfflrom stability. For even A, (B pairing term gives two ; require |
parabolas; displaced byf28. This permits two unusual effe™g, nol seen in odd-4
decays: (1) some odg?”, odd-N nuclei can decay in either dirbetion, converting a
neutron o g prolgdl or a proton Lo 2 neutron; (2) certain donble 8 decavs can
become energetighlly possible, in which the decay may change 2 protons to 2
neutrons. Both 8 these effects are discussed in Chapter 9. N
—'--,_-_ nuclear -
3.4 NUCLEAR ANGULAR MOMENTUM AND PARITY ki Z‘TL;
.
In Section 2.5 we discussed the coupling of orbital angular momentum £and spin h together
s 1o give total angular momentum . To the extent that the nuclear potential is spin of o
central. #and » (and therefore §) will be constams of the motion. Tn the quantum ined We disci
mechanical sense, we can therefore label every nucleon with the corresponding 5 Chapter
quantum aumbers ¢, s and . The total angulsr momentum of a nucleus o Along
containing A nucleons would then be the veetor sum of the angular momenta of B parity ¢
all the nucleons. This total angular momentum 15 wsually called the nuclear spin } of every
and is represented by the symbol 1o The angular momentam 1 has all of the the parit
usual propertics of guantum mechanical angular momentum vectors: 17 = T = W
BT+ 1) and {.=mh (m= —1 .. +{) For many applications involving zenerally
angular momentum, the nucleas behaves as 1f 1t were a single entity with an nucleon.
intrinsic angelar momentum of 1. In ordinary magnetic fields, for example, we whole ni
citn observe the nuclear Zeeman effect, as the state T splits up into its 27 + | nuclear ¢
individunl substates m = —J, =1+ 1 I — 1, [, These substates are egually the nucl
spaced, as in the atomie normal Zeeman effect. I we could apply an incredibly i thesretic
strong magnetic field, so strong that the coupling between the nucleons were either =
broken, 'we would see cach individual ; osplitting into its 27+ 1 substates,
Atomic physics also has an anatogy here: when we apply large magnetic fields we
can break the coupling between the clectronic £ and s and separate the 2¢+ 1 3.5 NU
components of £and the 25 + 1 components of 5. No fields of sufficient strength
to break the coupling of the nucleons can be produced. We therefore observe the a5 Much of
behavior of 1 as if the nocleus were only a single “spinming™ particle. For this ‘ Strong n
reason, the spin (total angolar momentum) £ and the corresponding spin guan- & weaker el
tum number J are used 1o describe nuclear states. v lishes the .
To avoid confuston, we will always use { to denote the nuclear spin; we will Fiz distributio
use f 1o represent the tolal angelar momentum of a single nucleon. 1t will often i i clectroma,
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be the case that a single valence particle determines all of the nuclear properties;
in that case. f = In other cases, it may be necessary o consmder two valence
particles, in which case I =j, + jo. and several different resultant values of [
may be possible. Sometimes the odd particle and the.semaining core of nucleons
gach contnbute to the angular momentum, with £ = s+ T

One important restriction en the allowed values of I comes from considering
the passihlc z components of the total angular momentum of the individoal
nucleons: Each j must be half-imtegral (L, 3. 5. .0 ) and thus its only possible z
components are likewise hall-integral (414, 220, £ 34, ... ) I we have an even
number of nucleons, there”will be an even number of hall-integral componenis,
with the result that the = component of the total ! can take only integral values.
This requires that [ itsell be an integer. If the number of nucleons is odd. the
todal =z component must be hali-integral und so must the total f. We therelore
require the following rules:

odd-A nucler: I = hall-integral
even-+4 nuclei: I = integral

The measured values of the nuclear spin can well us a great deal about the
nuclear structure. For example, of the hundreds of known (stable and radicac-
tive) even-Z_ even-N nucler, all have spin-0 ground states. This is evidence [or the
nuclear pamning force we discussed in the previous section; the nucleons couple
together in spin-0 pairs, giving a total 7 of zero. As o corollary, the ground state
spin of an odd-4 nucleus must be equal 1o the 7 of the odd proton or neutron.
We discoss this poinl further when we consider the nuclear shell model in
Chapter 5.

Along with the nuclear spin, the parity 1% also used 10 Lahel nuclear states, The
parity can take either + (even) or — (odd) values. IT we knew the wave unction
of every nucleon, we could determune the nuclear pariey by multiplving together
the parities of each of the A nucleons. ending with a result = either + or —:
7w =Wy o0 @, However, mm practice no such procedure s possible. for we
generally cannot assipn a definite wave function of knewn paniy to every
nucleon. Like the spin f, we regard the panty = as an “overall” property of the
whole nucleus. It can be directly measured using a vanety of technigues of

nuclear decavs and reactions. The parity 1s denoted by a + or — superserpl to
the nuclear spin, as /% Examples are 0%, 27 17 {° There is no direct
theoretical relationship between [ and = for any value of I, it is possible to have
either # = + or o = —,

-ty

3.5 NUCLEAR ELECTROMAGNETIC MOMENTS

Much of what we know thout nuelear structure comes from studyving not the
strong nuclear interaction of nuclei with their surroundings, but instead the much
weaker electromagnetic interaction. That is, the strong nuclear interaction estab-
ht“hﬂs the distribution and motion of nucleons in the nuclens, and we probe that
distnbution with the electromagnetic interaction. In doing so, we can use
electromagnetic fields that have less effeet on the motion of nucleons than the
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where |£] is the classical angular momentum moer. In quantum mechanics, we
operationally define: the observable magnetic moment-to correspond to the
direction of greatest component ol £5-thus we can lake Equation 3.32 directly
inte the quantum regime by replacing,¢ with the expectation valué relative to the
axis where it has maximum projection, which is m fowith m,= +¢. Thus

el
= —f {3.33)

2m

where now ¢ 15 the angular momentum quantum number of the orbit.

The quantity e/ 2m is ealled a megreton. For atomic motion we use the
electron mass and obtain the Sehr magneton py = 57884 % 10 "eV /T, Putting
in the proton mass we have the muclear magneton o = 31525 % 10 % eV /T,
Mote that py = up owing to the difference in the masses; thus under most
circumstances atomic magnetism has much larger effects than nuclear magnetism.
Ordinary magnetic interactions of matter (ferromagnetism, for mstance) are
determined by atemic magnetism; only in very special circumstances can we
observe the elfects of nuclear magnetism (see Chapter 16).

We can rewrite Equation 3.33 in a more useful form:

= gelpy (3.34)

where g, is the g facror associated with the orhital angolar momentum £, For
protons g.= 1i because neutrons have no cleetric charge, we can use Equation
3.34 1o desenibe the vrbital motion of neutrons if we put g.= (.

We have thus far been considering only the orbital motion of nucleons,
Protons and nevtrons, like clectrons, also have inlrnsic or spin magnetic mo-
ments, which have no classical analog but which we write in the same form as
Equation 3.34:

= g, 5py, (3.35)

where s = | for protons, neutrons, and electrons, The quantity g i3 known as
the spin g focror and is caleulated by solving o relativistic quantum mechanical
equation. For a spin- | point particle such as the electron, the Dirac equation
gives g, =1, and measurement i5 quite consistent with that walue for the
clectron: g, = 2.0023. The difference between g, and 2 is quile small and can be
very accurately computed using the higher order corrections of quantum elec-
trodynamics. On the other hand. for free nucleons, the expenmental values are
far from the expected value [or point particles:

5.5B36912 + 0L.0000022
— 382604837 + 0.0000018

prolon: £

neutron; £,

(The measured magnetic moments, in nuclear magnetons, are just half the g
factors.) Not only is the proton value far from the expected value of 2 for a point
particle. but the uncharged neutron has a4 nonzero magnetic moment! Here s
perhaps our first evidence that the nucleons are not elementary point particles
like the electron, bul have an internal structure: the mmternal structure of the
nucleons must be due 10 charged parucles in motion, whose resulting currents
give the observed spin magnetic moments. It is interesting 1o note that g, forthe
Proton is greater than its expected value by about 3.6, while 2, for the neutron is
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strong force of the nuclear environment; thus our measure
distort the object we are trying to measure.

Any distribution of electric charges and currents produces electric and mag-
netic fields that vary with distance in a characterisue [ashion. It 15 customary to
assign to the charge and current distribution an electromagnetic multipole me-
ment associated with each charactenstic spatial dependence—the 107 electric
ficld arises from the nel charge, which we can assign as the zeroth or monapale
moment; the 1,/¢? electric field arises from the first or dipofe moment: the 1407
clectric field arises from the second or guadrupole moment, and so on, The
magnelic mulupole moments behave similarly, with the exception of the mono-
pole moment; as far as we know, magnetic monopoles either do nol exist or are
exceedingly rare, and thus the magnetic monopole field (=< 1/r%) does not
contribute. Electromagnetic theory gives us a recipe [or caleulatng the vanous
electric and magnetic multipole moments, and the same recipe can be carried
over inte the nuclear regime using quantum mechanics, by treating the multipole
moments in operator form and caleulating their expectaton values for vanous
nuclear states. These expectation vilues can then be directly compared with the
experimental values we measure in the laboratory. Technigues for mensuring the
nuclear moments are discussed in Chapter L6,

The simplest distributions of charges and corrents give only the lowest order
multipole fields, A spherical charge distribution gives only a monopole (Coulomb)
Geld; the higher order ficlds all vanish, A cirenlar current loop gives only a
magneuc dipole field. Nature has not been arbitrary in the construction of nuclei;
il a simple, svmmetric structure (consistent with the nuclear interaction) is
possible, then nucler tend to acquire that structure. 1t is thercfore usually
necessary to measure or caleulate only the lowest order muliipole moments to
charactenize the electromagnetic properties of the nucleus.

Another restriction on the multipole moments comes about from the symmetry
of the nucleus, and 15 directly related to the parity of the nuclear states. Each
electromagnetic multipole moment has a panty, determined by the behavior of
the multipale operator when r — —r. The parity of eleciric moments is { — 1)%,
where I is the order of the moment (L = 0 for menepole, L =1 for dipale,
L = 2 for quadrupole, efc,); for magnetic moments the parity is { — 151 When
we compute the expectation value of 4 moment, we must evaluate an integral of
the form [* @Y do, where & 15 the appropriate electromagneuc operator. The
parity of ¢ itself is not important; because o appears twice in the integral,
whether ¢ — 4 or = =i does not chanege the integrand. If, however, & has
odd panty, then the integrand is an odd function of the ¢oordinates and must
vanish identically. Thus all add-parity static multipole momenes nuss vanish—clec-
tric dipole, magnetic quadrupole, electric octupole (L = 3), and so on.

The monopole electric moment 15 just the net nuclear charge Ze. The next
nonvanishing moment is the magnetic dipole moment . A arcalar loop carrying
current ¢ and enclosing area A has a magnetic moment of magnitude |p| = fd: if
the current 15 caused by a charge e, moving with speed ¢ in a circle of radius ¢
(with period 2=r/v), then

o ot serously

e . ewr e 4 (3.22
Il = {Ii'rrj:-'}ﬂr = EmE | 4
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Table 3.2 Sample Values of Nuclear Magnetic ,2 L{
Dipole Moments

Buclide . felpey)

= 19130418
p |- 27928456
HAD) +ORSTA3TH
Ty -~ 1.89379
e 4 (LOG0GE2 203
i, 4,733

REEN N 6,105

Al values refer 1o the nuclear pround $lates; uncertamnfics
are Lypically o few parts in the last digil. For a complewe
tabulation, soe V.5 ﬂ[‘llﬂl‘.}', in Talle of Tsotopey :Wilu}“_ Iew
York, 1978), Appendix VIL

less than its expected value (wero) by roughly the same amount. Formerly these
differences between the expected and measured g, values were ascribed to the
clouds of « mesons that surround nucleons, with positive and  neutral
% mesons in the proton’s clowd, and negative and neutral = mesons 1 the
neutron’s cloud. The equal and opposite contributions of the meson clowd are
therefore not surprising. In present theones we consider the nucleons as com-
posed of three guarks; adding the magnetic moments of the quarks gives the
nucleon magnetic moments direetly (see Chapter 18),

In nuelet, the pairing force favors the coupling of nucleons so that ther orhital
angular momentum and spin angular momentum each add to zere, Thus the
paired nucleons do not contribute to the magnetic moment, and we need only
consider a [ew wvalence nucleons, If this were not 50, we might expect on
statistical grounds alone to see a few heavy nucler wiath very laree magnetie
moments, perhaps tens of nuclear magnetons, However, no nucleus has heen
observed with a magnetic dipole moment larger than about 6.

Table 3.2 gives some tepresentative values of nuclear magnetic dipole mo-
ments, Becawse of the painng force, we can analvze these mugnelic momenis Lo
learn about the nuclear structure. In Chapler 4, we discuss the magnetic moment
of the deuteron, and in Chapter > we consider how nuclear models predict the
magnetic moments of heavier nuelet

The next nenvanishing moment 8 the elecne guadrupole: moment. The
quadrupole moment ¢Q of a classical point charge ¢ is of the form e(3z° — 7).
IT the particle moves with spherical symmetry, then (on the average) =27 = 7 =
1P =173 and the guadrupole moment vamishes. If the particle moves i a
classical flat orbit, say in the x plane, then z = 0 and @ = —¢”. The quadru-
pole moment in guantum mechanics is

o) = .r.'fyL-“{.’J:: — r* Y dy (3.36)

for a single proton: [or an orbiling neatron, @ =10 If 4| is spherically

symimetrie, then & =10, 1T 1:;-|1 is concentrated in the v plane (2 = 0} then
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|
Table 3.3 Some Values of Muclear Electric
Quadrupale Moments 2 '\’-
Nuclide O by
TH (D I 000288
i P - {02578
*Co ]
Lk ] Cu (1204
i 0003
%1 Dy +24
s B 8.0
>R 037
All values. refer to :umiu:n; wroungd stines; Llnml'lujnlin.'_.l.

are typically o few parts in the last dight. Fora complete
tabulation, see Vo 8. Shirley, in Table of fiowpes (Wiley,
New York, 1978), Appendix VI

O~ —{r*y, while il [#|? is concentruted along the z axis (z = r); we might
have @ — +2{r*}, Here (r*} is the mean-square radius of the orbit, Once again
the pairing force is helpful, for if the paired nucleons move in spherically
symmetric orbits. they do not contribule to . We might therefore expect that for
many nuclel, the quadrupole moment can be estimated from the valence nucleon,
which we can assume 10 orbit near the surface. 50 r = K, 4"}, We therefore
estimate [eQ| < eR5A", which ranges from about 6 x 107" em’ for light

nuclet to 500 x 107" em? for heavy nuclei. The anit of 107 m? iy nsed

: frequently in nuclear reaction studies for cross sections, and is known a5 4 barn
1 {b). This unit is also comvernent for measuring quadrupole moments: thus the
i expected maximum 15 from 006 (o 0.5 b, As you can see from Table 3.3, rany
i nuclet do fall within that range, but several, cspeciaily in the rare-carth
] region, are far oulside. Here the quadrupole moment is giving impartant informi-

tion— the model of the single particle cannot explain the large observed quadru-
pele moments. Most or all of the protons must samehow collectively contribute
to have such & large @. The assumption of a spherically symmetric core of paired
nueleans 15 not valid for these nuclei. The core in certain nuclei can take on a
static nonspherical shape that can give a large guadrupole moment. The proper-
ties of such strongly deformed nuclet are discussed in Chapter 5.

3.6 NUCL EXCITED STAJES

Studying their excited states, we studv nuclear
properties of nuclear excited stales. (And like
atomic excited states, the excited states are unstable and deciy rapidiy to
the zround state) In g W ake exciled states: by moving individual
clectrons 1o higher gfergy orbits, amMywe can do the same for individual
nucleons; thus thgfescited states can reaygl something about the orbits af
mdividual nuclegs, We have already several 1 in this chapier referred to the
complementary $ingle-particle and collectve strudture of nuclei—we ean also

Just as we learn a
structure in part throd
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matter ¢
vectar I

Equan
: coupling
In analyzing and interpreting nuclear level schemes in this lext, we hawve re- : We ean
peatedly used the spin quantum number / 10 Fabel the individuval levels. In element:
Chapter 5 we discussed how fmportant it is to have an established set of these I : angular
Spin quantum numbers o compare the observed level scheme with the predic- tians to
tions of a particular nuclear model. The measurement of nuclear spin assign- not suffi
men(s i one of the goals of experimental nuclear physics, and in this chapter we nucleons
explore some of the lechniques that are used to obtam this information. i For th
Nuclear magnetic dipole” and electric quadrupale moments have a similar : angular 1
importance in helping us to interpret nuclear structure. We have already dis-
cussed in Chapter 4 the clues 10 the deuteron structure deduced feom s
moments, In Chapter 5 we have seen the systematic behavior of shell-model
magnetic moments, and we have also secn how the unusuilly large guadrupole ; where 16
moments of certain nuclei suggest a new feature of nuclear structure, the stible X nuclear ¢
deformation. T Tepresen
The experimental techniques that are responsible for the determination of o Finall:
these spins and moments span a considerable range, from those involving nuclear ?‘: nuelear |
radiations (angular distributions and correlations. Mésshauer effect). to those _-2;’
mvelving atomic and molecular beams (the Stern-Gerlach expenment, for - B s To—
stance} and radiations in the optical. microwave, and radio regians of the = in Equat
‘spectrum. In this chapler we Inli.mduce and review many of these techniques and i i
five examples of their applications. ¢ B e
A
16.1 NUCLEAR SPIN v Bye
Each nuclear state is assigned a unique “spin™ quantum number 7. representing B odi
the total angular momentum (orbill plus mirinsic) of all the nuecleons in the =
nucleus, The veetor [ can be considered the sum of the orhital and intrinsic ; : Bien
: Odd
%
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contributions 10 the angular momentunm:

=3 (¢+s) (16.1)
=1
=L 4§ (16.24a)

4
=0 d; (16.25)
F=1
where the decomposition according to either Equation 16.2a or 16,25 is lurgely a
mutter of convenience. The quarium member I has the usual connection with the
vector I 5

7] = I{1 + 1) (16.3)
Li=mb (my=dF—=1,..,-1+1~7) (16.4)

Equation 16.1 represents what could in principle be a very complicated
coupling of many vectors o a single resultant, and it may not be apparent why
we can negleet this internal structure and trent the nucleus as il 1t were an
elementary particle with a single spin quantum number. representing the inirinsic
angular momentum of the “particle.” This is possible only because the interie-
tions 10 which we subject the nucleus, such as static clectromagnetic felds, are
not sufficiently strong o change the internal structure or break the coupling of
nucleons that is responsible for Equation 16.1.

For the electronie motion in atoms, we can similarly define the tatal electronic
angular momentum:

z
J= F (£ + st#) (16.5)
=l
where the ¢ and s vectors now refer to the clectronic states. In analogy with the
nuclear case, we can oflen (but not always) treat the electrons as if they were
represented by o single angular momentum J,
Finally, there are cases in which it is mest appropriate to deal with the total
nuclear plus clectronic angular momentum, usually called F:
F=f+17 (16.6)
The vectors J and Fobey all the usual quintum rules for angular momentom. as
in Equations 16.3 and 16.4,
The quantum numbers / and J may be either integral or hali-integral as the
number of nucleons or electrons s even or odd:

A z F g F
Ewen Ewven Integer Inteper Integer
Ould Even Half-integer Inteper Hall-inteser
Even Old Integer Hall-intcger Hall-tnieger

Chdd Odd Half-integer Hall-inteper Inteper
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Figure 16.1 Proton-neutron angular momertum couplings in **Cl and 59%¢.

For nuclear ground states, there are several rules for determining the spins:

All even-Z, even-N nuelei have { = 0. This results from the strong tendency
of mucleons to couple pairwise 10 «ero spin,

In odd-4 nuclei, the net spin is almost always determimed by the j of the last
odd particle. with the remaimng 4 — 1 nocleons (having even numbers of
protons and neutrons) pairing to zero spin as above.

In odd-Z, odd-N nuclei, the spin is determined by the vector coupling of the
J of the odd proton and neatron, £ = Jp + do- ind thus any of several values
are possible. To determine which of lhu,c passible ::ouplmgs will be the
ground state, we use the empirical rule that the ground state s usually the
coupling with the neutron and proton intrinsic spins s, and s, paraliel. As
an example, consider **Cl, which consists of a d , 2 prulon mupl::d toanf; .

neutron. For the proton, ¢ = 2 and thus s is opposite o j. For LiIL
neutron, ¢, = 3 and s, 15 parallel to j. Arr.'mging the coupling so that s
and ¥, are parsfllcl as in Figure 16.1, we zet [ = L, —J| o = 2, which is
in fact the ground-state spin of *CL (The first excited state is /= 5.
corresponding to { = j, + j,.}) On the other hand, consider *'Se, resulting
from an [, , proton coupled 10 a p,, neutron. Here making s, and 5,

W=

=
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L1

parallel also makes F, and § parullel. and thus / =Jp o= 5, in agreement
with observation. (The state f = Us =7l = 2 is a Tow excited state of *Sc.)
Other couplings with f hetween Jo  Jo and Lin = | may be found among,

ather Tow-lying excited states.

16.2 NUCLEAR MOMENTS " ﬂ ,

Magnetic Dipole Moments lw P

Classically, the magnetic dipole moment p arises from the motion of charged
particles, and we can regard a5 a means (o characterize a distribution of
currents whose effect on the surroundings (that is, on other moving charges) we
call “magnetic.”” When we go over 1o the quantum limit we find a similar
relationship, with one distinctly nonclassical addition: the intrinsic angular
momentum {spin) contributes to the magnetic moment alsg.

Let’s briefly review the elassical electromagnetism that leads (o magnetic dipole
moments. We consider some currents distributed over & sample that occupies a
certain volume in space (Figure 16.2). The distribution of currents s spectfied by
the current density A The vector » Tocates & Specific point of the sample
relative to the origing the sector Junetion j(r') then gives the magmitude and
direction of the electric current per unit volume dp” at that point. The recipe for
caleulating the magnetic ficld 8 resulting from the currents is straightforward:
first caleulate the vector potential A{r) at the observation paint r by integrating
tsumming} over all the currents in the sample:

.”-L}f_j(’r] v’ {16.?]

A(r} = E = r;[_
and then the magnetic ficld follows directly from Bir)=w H*oA(r). Following
some mathematical manipulations, which can be found in standard texts on

Obsereation
g

Charge ani
currant distribution

Origin
Figure 16.2 The current element Jiryev: gives a contribution to the vectar
potential at the observation paint, The total potential is found from the integral over
the entire current distribution,
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electromagnetism, we can rewrite the vector potental as

Alr) = %{—:_fj[r'] dr’ %fﬂr']{r' ey o’ sk ~——'} (16.4)

which can be written
o pX T
A = = + - 16.9
{r} dg 47 ( )

where

.
p= ;jr’ ¥ jle) {16.10)

The leading nopvanistung term is characterized by the mapnetic dipole moment p
of the current distribution. What we have done, in effect, is a multipole expansion
of the current distribution; the lowest-order term (dipole) is likely to be the most
important. The argument of thie integral for p includes the charge density and the
vector product ' % o, which in the case of a particle with mass m s just ¢/nr,
where ¢ is the angular momentum. Going over Lo the quantum limit, the charga
density is e[$(r)|% and it is entirely consistent with our previous experience
with quantum mechanics to write this as

i i
b= [P @ (16.11)

IF the wave function ::nrn_:-s,ponds w a state of definite ¢, then only the :
component of the integral is nonvanishing, and

o
= [ E VA ) do 12
e 5o W)y do (16.12)
eh .
o= R {16.13)
~ M

with ¢, = m,h. —

What we observe in an experiment a5 the magnetic moment is defined 10 be
the value of p_ corresponding to the maximum possible vilue of [hz?wr
of the angular momentum. The guantum number ny, has 4 maximum value of
+¢, and thus the magnetic moment p is '

eft
h=— (16.14)

2m
The quantity e /2m has the dimensionear o magnetic moment (¢ 15 a dimen-
sionless quantum number) and is called a magneron. Putting in the proton mass
for m, we get a nuclear magneton [T

ch
fn = 3 = 315245 X 10°*eV/T ,/

P

and using the electron mass gives the Bohr magneron

vh .
g = 5— = 578838 X 10 *eV,/T /
2,

Considerg the intrinsic spin, which has no classical analog. we make a simple
extension of Equation 16.] <
B gl 428/ (16.15)

2 "”l""‘“,
MJeSpm

és
(77

T
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where the z fuctors g, and g, account for the orbital and intrinsic contributions
1o g, Their values can be adjusted as needed for individual particless g, = 1 for
protons and g must be measured for “free protons™ in which ¢ does not
contribute to p. As we discuss later in this chapter, g, s megsured (o be
5.53856912 for protons. For neutrons, which are uncharged, we can set g.=10,
and g, is measured Lo be — 38260837,

In real nuclei, we must make a modification to allow for the effects of all the

nucieons:
A 3
b= X e+ g s lpa/h (16.16)
im]

which 15 similar o Equation 16.1 for T,

There is no single theory that allows us 1o evaluate Equation 16.16 1o calculate
# because the interactions between the nucleons are strong and the relative spin
orientations are not sufficiently well known. In certain cases, we can make
simplifying sssumptions, based on nuclear models. For example, in the indepen-
dent particle shell model, we couple 4 ~ 1 nucleons pairwise: to zero-spin
combinations ihat do not contribute 1o p. For the remaining odd nucleon, the
shell-maodel theary gives the coupling of £and s to form I, which permils p (o be
calculated, as we did in Section 5.1, ln many other cases, we cannot iznore the
effect of the “core™ nucleons; and we asstgn them a “collective” g factor usually
designated g, so that

J‘L = gj.{"rc + E(Ef.r'!f + g:.l“lr.]]pN/h flﬁ']'?]

where 1. refers Lo the core and the sum is carried out over a few nucleons outside
the core. Il we consider “pure” collective states, with no odd nucleons, the
collective model gives. g, = Z/4, the ratio of the nuclear charge to its mass.
Figure 5.16a showed that this was u good approximation far 2 states of many
even-Z, even-N nuclei,

Electric Quadrupole Moments ( w)

We now consider Lhe distribution of charges, rather than currents. within the
nucleus. From an external point, the electric potential F{r) appears to be
L po(r)de’
plr) e (16.18)

dmeg 4 |r— |

B

Vir) =

which is analogous to the expression (16.7) for the magnelc vector potential,
Classically. we can assign to 4 charge distribution a monapole (Coulomb) feld,
which is proportional o the total charge. I we construct a charge distribution in
which the total charge vanishes, we can easily study the next highest multipole;
the dipole field. the standard for which is charges of ¢ located at, respectively,
2= +ayland z = —g/2. In general, any charge distribution that lacks spheri-
| cal symmetry will have a dipole field, possibly in addition to the monopele feld.
(One way o distinguish the two contributions to the total field is that the
monopole electric ficld varies as v while the dipole field varies as . ) Just as
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adding equal and opposite charees at different locations gives a dipole ficld,
adding equal and opposite dipoles causes the vanishing of the dipole field and
gives the next higher multipole, the quadrupole ficld, For example, we could add
the dipole with charges —g at the originand +yg 4l z = g 1o the opposite dipole
with charges — g at the origin and tgat = = —a The characteristic dependence
of the electric quadrupole field is as %,

Expanding the factor of |r— #/| in Equation 16.18 gives immediately the
mathematical details of the multipste expansion of the electric field-

rr-‘l - —1,/%
lP=# V= Y1+ — —2:—cosd (16.19)
o b
1 12 ' 1 .F"l o v
= Ml=-cl|l=—d—cosl |+ | = —2—ctz8]| &
’., & 81 F r
[16.240)

where # 15 the angle between r and #', and where we have assumed r = ¢, (That
15, the observation point is far from the nucleus. For the interaction with utomic
electrons, which dominates the hyperfine structure; this is a good dpproximation. )
Thus

1

i 1
¥ir) = El:fp{r b ade Ff'p{r}r cos g

1 "
| F[p{r']r-':'_jlrﬂ_cos..g_ 1} 7 T4 TR flﬁ,_l]}

The integral in the first term gives the total charse ¢, which from the point of
view of nuclear structure is usinteresting. The second term vanishes for nuclei
under ordinary circumstances hecause nuclear states are, to a very good ap-
proximation of the order of one part in 107, states of delinite parity. Going over
to the guantum limit and replacing p(r') by $*(r (), the integral vanishes
because the integrand is an odd function of the comrdinates. (Simplify the
geomelry somewhat by choosing the origin at the center of the nuclear charpe
distnbution, and let r define the = axis. Then r'cos 15 ', and under the party
aperation z* — —=* while [{(r)|® = I¥(—#")|". The integrand is therefore odd
and the integral vanishes.) The first nteresting” term in the multipole expansion
i5 the quadrupole term, and we define the nuclear quadrupole moment as

Q= [p(r)ri(3eos 0’ — 1) a (16.22)

where, ds in the case of the magnetic dipole moment, we refer to a specific choice
of reference axis—we measure @' from the axis corresponding to the maximum
projection of the nuclear spin.

The nuclear quadrupole moment tells us whether muclei are spherical (for
which & = () or nonspherical. If Q = 0, the nuclet are profute deformed— in the
expression (16.22), the quantity r? (3eos? 8 — 1) = 322 _ o2 is on the average
positive. That is, there is more of the nuclear charge density afong the »* axs than
within the average radius. Figure 16.3¢ iMustrates thal ease. IT 322 — ;27§
negative, the =* axis comtains less of the nuclear charge density and there is a
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(Figure 16.
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ar

t) Frolate i) Olilate
Figure 16.3 Prolate and ablate charge distributions,

corresponding flattening. In this case @ <0 and the deformation is efdare
(Figure 16,3h).

The energy of interaction of the nuclear charge distribution with an externally
suppiied (pechaps from the atomic clectrons) potential 1, is

Lt )

= [olr W (#) dv (16.23)

agam integrated over the nuclear volume. (Consider how 1his reduces (o the
familiar expression for a point charee in an external field when V.. = constant.)
If we expund ¥, in a Taylor series about the center of the nucleus, then there is
4 constant term depending on F._(0), which is of no interest, 4 dipole term which

involves integrals such as
Ly 3;’:1[ ]
fp{r ]— (_J:T ):'-‘J -

which vanishes by the same parity argument presented above, and 4 nonvanish-
mg quudrupole term, proportional to integrals of the fonm

A,
fp{r'}:“'( ——J dv’
f?; N =tk

In all there are nine possible terms (involving x2, x'y", etc.). If the external fistd
has cylindrical symmetry (as in many cases of interest for atoms), then we can
reduce the eleetric quadrupole contribution 1o the energy to the following form:

&2

; 3 aiyrm
Eg=1(eQ)(Icos*p - H( ) (16.24)
: o

where @ is now the angle between the symmetry axis (now the = axis) of ¥, and
the nuclear symmetry axis. The quadrupole moment ' is caleulated with respect
o the = axis (the symmetry direction of F_,). while Q of Equation 16.22 is
caleulated with respect to the nuclear symmetry direction z'. In evaluating

Equation 16.24, we must take into account the directional relationships among




610 EXTENSIONS AND APPLICATIONS

these different reference systems. The nuclear anguler mementum has com ponern

1. relative to the chosen z axis, and thus ; t:'I’ :
& = ud (16.25) :
cosfl = — = ) i
] i1 +1)
=1 -
Evaluating the expression eQ'(3cos’ @ — ), with @ defined as always with
respeet 1o the axis of maximum projection of 7., the result is
3mi— HI+1){a%,, . e
Ey=teg——— [ = 16.26
0 QGQ ‘,{21, = n P ):““ '.. }
In Section 16.3 we consider the case in which the anule # is determined by the @
relationship between the nuclear spin I and atomic spin J. B3l
16.3 HYPERFINE STRUCTURE
-

ture was originally taken to include thogt dtomie effects {much
smaller than Mg fine structure) that arise from the cgfipling between the elec-
tronic and nueleMg angular momenta. It is thes an “igfernal” effect in atoms, and
we cannot switch INofT or modify it except by chagfine the nuelear or electronic
structure (going 1o edgjted stales, for instance), THese ellects were first studlied by =
optical spectroscopisis\who observed them asgmall perturbations in the struc-
ture of spectral lines. Modern techniques flsing lasers have extended these
meisurements to unpreceddgied levels of pgfoision.

In recent years, hyperfiny structure Bfls come o include all effects that ; Figure 1f
originate with the coupling of tyclear spifls and moments with their environment. its electro
including the atomic electrons. TR gtonment is often under the direct control atomic st

Hyperfine shy

of the expenimenter, who can 2 he hyperfine structure by for example, tum = ¢
changing an externally applied mugglc field. In this section we adopt this broad particular
interpretation of hyperfine interacpfons) & decreuse
Atommic states are lnbeled using oscopic notation # %L in which L | 2
i indicated by the usual desig F. .. eorresponding to L =, 1, 4 % = g
3. o, For atomie states wi rom, such as the alkali atoms, the = can be mo
alomic spectroscopic notatgn is similar to thé\conventional notation used to %: the electr:
designate individual electghn states: Thus the sodick ground state, with its 35 L2 i 1' magnetic
electron, would be reprgfented as 378, sz The princhgal quantum number o is E the spin
often not indicated. to the fin
We will use T 1o gfpresent the total nuclear angular mMdgentium (the nuclear without 1l
spin). Similarly, Jfwill represent the total (intrinsic plussgrbital) electronie always pi
angular momentigh. In ideal hydrogenic atoms, the electron modgs in the nuclear apparent
Coulonb potengfal in quantum states of well defined orbital angukyr mementum {(which 15 ¢

L. Including Ufe electron spin gives a second label 5. In principle,
matter whether we label the electronic states of this ideal atom by Woe set ol
quantum numbers L, m,. 8, mgor the set L, 8. J. m,. However, the s\
intcraction, which produces the fine structure of clectronic levels, couples Wy and ~ where fir
§ in such 2 way that m, and mg are no longer well-defined. and the cour I3 B permits s
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r i)
e function far B = 2.1 frm. Note how the exponential
joms smoethly to the sing at £, so that both u(r) and du/dr are continuous
the: wave function did not 't over' inside r= A, it would not be possi
connect smoothly to a decaynd exponential (negative slope) and there w
no bound state.

Figure 4.2 The deuteron

function finite for r — eo we mustave D = 0, and to Keep il inigfTor r — (0 we
must have # = (L (¢ depends on
Applying the continuity conditions «

{4.5)

This transcendental equation gives 2 1 lationship JEuween ¥, and R, From
eleciron scattering experiments, the rms oy: s af the deuteron is known
to be about 21 fm, which provides o rea¥onabf first estimiate for R, Solving
Equation 4.5 numerically (see Problem 6 a1 end of this chapier) the result is
Vi = 33 MeV. This 15 actually quite a reds le estumate of the strength of the
nucleon-nucleon potential, even in mo lex nuclen. (Note, however, that
the proton and nevtron are very kel | at separations greater than &;
see Problem 4.)

We can see from Figure 4.1 h
the nueleon-—nucleon lorce w
would not exist (see Proble
the formation of deuteg
proton-proton cycle o
formation of stabl

close the deutertyn s to the top of the well. If
¢ just a bit weakerNthe denteron bound state
3). We are fortunate thaljt does, however, because
m from hydrogen is the Ar¥ step not only in the
Ausion by which our sun makes its Werzy, but also in the
atter from the primordial hydrogen War filled the carly
universe, If no sg#ble two-nucleon bound state existed, we wolld not be here to
discuss it! (Fgf more on the cosmological consequences of 1he formation of
deuterium pfthe early universe, see Chapter 19,)

teron wave function is shown i Figure 4.2, The weak binding means
) 1s Just barely able 10 “turn over” in the well 50 as to connect at r = &
e negative slope of the decayine exponential, #

e DEVTE RO

The total angular momentum £ of the deuteron should have three COMpOnents:
the individual spins 5, and s, of the neutron and proten (each equal 1o L) and
the orbital angular momentum ¢ of the nucleons as they move about their
common center of miss:

F=g +im +¥ {4.6)
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When we solved the Schradinger equation for the deuteron, we assumed £= 0 in
anmalogy with the lowest bound state (the 1s siate) in atomic hydrogen. The
measured spin of the deuteron is = 1 (how this is mepsured s discussed in
Chapter 16). Since the neutron and proton spins ean be cither parallel (for a tolal
of 1) or antiparallel (for a total of zero), there are four ways 10 couple 8, and
£ooget a total T aof 1:

84 BASIC NUCLEAR STRUCTURE

(a) s, and 5, parallel with 7= 0,
(b) s, and 5 antiparallel with =1,
{c) s, and 5 parallel with &= 1,
(d) s, and 5 parallel with £= 2,

Another property of the deuteron that we can delermine is its parity (even ar
odd), the behavior of its wave function when r— —r (sec Section 2.6). By
studying the reactions involving deuterons and the property of the photon
emitted durimg the formation of deuterons, we know that its parity is even. In
Section 2.6 we discussed that the parity associated with orbital motion is { — 1},
evert panty for =0 (s states) and £= 2 {d states) and odd parity for £=1 (p
states). The ohserved even parity allows us to eliminate the combinations of spins
that include = 1, leaving /= 0 and £= 2 a3 possibilities. The spin and parity of
the deuteron are therelore consistent with ¢ = () as we assumed, but of course we
cannel yet exclude the possibility of = 2

Magnetic Dipole Moment

In Section 3.5 we discussed the spin and orbital contributions 1o the magnetic
dipoile moment. TF the = 0 assumption is correct, there should be no orbital
contribution 1o the magnetic moment, and we can assume the total magnetic
moment to be simply the combination of the neutron and proton magnetic
moments:

B=pgtp,
== Ernftn s R_\pp"-'
== T8 (4.7)

where g = — 3826084 and E.p = 2385601 As we did in Section 3.5 we tuke
the observed magnetic moment 1o be the = component of g when the spins have
their maximum value {+ Lh):

=N Em t &) (4.8)
= 0.879804 1,

The observed value is 0.85743768 + 00000004 1. in good but not quite exact
agreement with the calculated value: The small discrepancy can be aseribed to
any of a number of factors, such as contributions rom the mesons exchunged
between the neutron and proton; in the context of the present discussion, we can
assume the discrepancy to anse from 4 small mixiure of d state {#= 2} in the
deuteron wave lunction:

= a f(f=0) +ag4{r=12) (4.9)

Calculating

where pi ¢

= -ga:n ]F’h o
with af =]
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Calculating the magnetic moment from this wave function sives
p=alp(f=0) +aip(f=12) {4.10)

where p(f= 0) is the value ¢aleulated in Equation 4.8 and
= g gy 15 the -.ralue calculated for a d state. The obsery

a' = 0.96, a; = 0.04; that is, the deuteron is 96% = 0 and only 4% £=2, ﬁ@fﬁ/"
fuﬂ"’o'

The assumption of the pure = 0 state. which we made in calculating the well Y
depth, is thus pretty grmrd hut not quite exact. 'e"

Electric Quadrupoie Moment

The bare neatron and proton have no electric quadrupole moment, and so any
measured nonzerg value for the quatdrupole moment must be due to the orbital
motion. Thus the pure #= ( wave function would have a vanishing guadrupole

moment. The observed quadrupole moment 1s
(= 000288 + (0.00002 h
which, while small by comparison with many other nuclel, is certamly not zero.
The mixed wave function of Equation 4.9, when used as in Equation 3,36 to

evaluate O, gives two contributions, onc proportional o ¢ and another propor-
tional 1o the cross-term a a4 . Performing the calculation we abtain

) = i a3 (4.11)

= Ry — e 4.11
{_ -Hf} N |J< }u’I ) d( }dd

where (:r?)“[ = JriRAr)yR {ryr7dr is the integral of r? over the radial wive
functions; {r*},, is similarly defined. To caleulate @ we must know the deuteron
d-state wave function, which is not directly measurable. Using the realistic
phenomenological potentials discussed later in this chapter gives reasonable
values for @ with d-state admixtures of several percent, consistent with the value
of 4% deduced from the magnetic moment.

This good agrecment between the d-state admixtures deduced from p and &
should be regarded as a happy accident and not taken too seriously, In the case
of the magnetic dipole moment, there is no reason (o expeet that it 1% correct to
use the free-nucleon magnetic moments in nuclet, (In fact, in the next chapter we
see that there 15 strong evidence to the contrary.) Unfortunately, a nuscleon in a
deuteron lies somewhere hetween a free nucleon and a strongly bound nucleon in
a nucleus, and we have no firm cloes about what values to take for the magnetic
moments. Spin-orbit interactions, relativistie effects. and meson exchanges may )
have greater eliects on g than the d-state admixture (but may cancel one
another’s eflects). For the quadrupole moment, the poor knowledge of the d-state
wiave function makes the deduced d-state admmture uncertain. (1L would prob-
ably be more valid 1o regard the caleulation of @, using a known d-state mixture,

s 4 Lest of the d-state wave function.) Other experiments, particularly scattering
experiments using denterons as fargets, also give d-state admixtures in the range
of 4%, Thus our conclusions from the magnetic dipole and electric quddrupu]u
moments may be valid afier all!

It is importunt that we have an sccurate knowledse of the destate wave
funcrion because the mixing of ¢ values in the deuteran is the best evidence we
have [or the noncentral (tensor) character of the nuclear [orce.
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incorreet, to explain the nonexdstence of the di-proton as arising from Coulomhb in that «
repulsion. No such temptation exists for the di-neutron, the nomgristence of | pobar v
which must anise from the spin dependence of the nuclear interaction, Reviewing Thus fol
the evidence, we first learned that the deuteron zround state is a spin triplet and of a spi
that no bound spin singlet state exists, We then argued that, because wdentical. linear w
fermions must have total antisymmetric wave functions and because the lowest Tinear ¢
state is expecled to be a spaually symmetric =0 state, the di-proton and ance an
di-neutron systems must have antisymmetric, or singlel. spin states which are are invi
unbound. ) teTms o

, ; .E;m‘oﬂWT - i
AR FORCE

4.4 PROPERTIES OF THE NUCL

Based on the low-enerzy propertics deseribed in the previous sections, we can
learn many details about the nuclear force. When we include results from higher

energy experiments, still more details emerze, In this section we summarize the Thus

main features of the internucleon force and in the next section we discuss a

particular representation for the force that reproduces many of these details. T ]
O eVl

J : = squared

The Interaction between Two Nucieons Consists to Lowest Order Eguatiar
of an Attractive Central Potentizl

In this chapter we have used for this poténtial a square-well form. which With o
simplifies the calculations and reproduces the observed data fairly well. Other
more realistic forms could just as well have been chosen, bul the essential
conclusions would not change (in fact. the effective range ApProXmalion s
virtually independent of the shape assumed for the potential). The common and for
characteristic of these potentials is that they depend only on the internucleon
distance r. We therefore represent this central term as Fr). The experimental

states:

program Lo study F.(r) would be to measure the energy  dependence of Thug a «

nucleon—nucleon parameters such as seattering phase shifts, and then to ry to potentia

choose the form for F(r) that best reproduces those parameters. singlet &
different

The Nucleon — Nucleon Interaction is Strongly Spin Dependent dm:;f o

N

This observation follows Irom (he failure 10 observe & singlet bound state of the

deuteron and also from the measured differences hetween the singlet and triplet

cross sections. What is the form of an additional term: that must be added o the

potential to account for this effect? Obviously the term must depend on the spins : where |

of the two nucleons, s, and s, but not all possible combinations of s; and s, are triplet b

permitted, The nuclear force must satisfy certain symunetries, which restrict the '

possible forms that the potential could have. Examples of these symmelries arg The Int.

parity (r — —r)and time reversal (¢ — —¢). Experiments indicale that, to a high a Tonse

degres of precision (one part in 107 for parity and one part in 107 for time

reversal). the internucleon potential is invariant with respect 1o these operations, Evidence

Under the parity operator, which involves spatial reflection, angular momentum IOment o

véctors are unchanged. This statement may seem somcewhat surpriging, because sphericall

upon inverting 1 eoordinate system we would naturally expect all vectors defined | with mixe




- THE FORCE BETWEEN NUCLEONS 101 - ; ]

in that coordinate system to invert. However, angular momentum is not a true or
polar veclor; it is a pseudo- or waal vector that does not invert when r— —r.
This follows dircetly from the definition rx p orcan be inferred from a diagram
ol a spinning object. Under the time-reversul operation, all motions (including
linear and angular momentum) are reversed. Thus terms such as ¢ or 5, or a
lincar combimation Ax, + B, in the potential would violate ime-reversal invari-
ance and cannot be part of the nuclear potential, terms such as 7. 51, or ¥, = 5,
arc invarant with respect to time reversal and are therefore allowed. (All of these
terms are also invariant with respect to parity.) The simplest term involving both
nucleon Spins is &, = 55 Lets.consider the value of s, - 84 Tor singlet and triplet
states. To do this we evaluate the total spin 8§ = 5, + 5,

Si= 88 =5 + 5} {5+ %)
2ok ud o+ Tapmss
Thus
TR ) (4.44

Te evaluate this expression, we must remember that i quantum mechanics all
squared angular momenta evaluate as 57 = f%(s + 1}; see Section 2.5 and
Equation 2.69,

{syon) =4[ S(85 + 1) =l + 1) —uwy(ss + )] 4 (4.45)
With nucleon spins s, and 5, of 1, the value of 5 =5 15 for tmplet (8 = 1)
states:
(sies) =111+ ) =11+ 1) - L +1)]A7 = 14" (d.46) i

and for singlet (& = 0) states:
ey =400+ 1) - Hi+1) - Hie)]Hr= -0 (447)

Thus a spin-dependent expression of the form &, - 5,F,(r) can be tncluded in the
potential and will have the effect of giving different ca!cul:ttcd cross sections for
singlet and triplet states. The magnitude of ¥, can be adjusied to give the correct
differences between the singlet and triplet cross sections and the radial depen-
dence c¢an he adjusted to give the proper dependence on energy.

We could also write the potential including V. and F, as

L il G B 1
V() = =2 = ) + (22 + ,ij{r} (a48) |
where J,(r) and Fi(r) are potentials that separately give the proper singlet and
i triplet behaviors.,
‘ / The Internucleon Potential Includes a Noncentral Term, Known as

a Tensor Potential

Evidenee [or the tensor force comes primarily from the observed quadrupole
moment of the ground state of the deuteron. An s-state (= 0) wave lunction is
spherically symmetnic; the electne quadrupole moment vamshes. Wave funclions
with mixed ¢ states muost result from noncentral potentials. This tensor force
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must be of the form Fir), instead of ¥(r). For a single nueleon, the choice of a
certain direction in space is obviously arbitrary; nucleons do not distinguish -
north from south or east from west, The only reference direction for 4 nucleon is
its spin. and thus anly terms of the form s - ror 5.% r, which relate r 10 the
direction of 5, can contribute. To satisfy the requirements of panty invariance,
there must be an even number of factors of r and so lor two nucleons the
potential must depend on terms such as (s, - r)(s, * r) or (% % r) (s Xork
Using vector identities we can show that the second form ean be writlen in terms
of the first and the additional term s, - 5,, which we already included in 17(r).

Thus without loss of generality we can choose the tensor contribution to the Fif‘gi
internucleon potential to be of the form Vi(r)S,., where Frir) gives the lorce ;rat_'run i
the proper radial dependence and magnitude, and '
1= 3(sy - r)sy o r)frd =5y o5, (4.49) b
which gives the force its proper tensor character and also averages to zero over all Thiz.eo
angles. we add
FeITHAln
o The Nuclean - Mucleon Force Is Charge Symmetric gc’:i‘:;
fatienl |
This means that the proton—proton interaction is identical to the neutron—neu- shifts i
tron interaction, after we correct for the Couloenb force in the proten-—prolon shifs It
system, Here “charge™ relers to the character of the nucleon ( Prowon or neution)
and nat to electric charge. Evidence in support of this assertion comes from the 1987
equality of the pp and nn scattering lengths and effective ranges. OF course. the 1
Pp parameters must first be corrected for the Coulomb interaction, When this is
done, the resulling singlet pp parameters are
a=—171+ 0.2 Im ,,\‘
G0 —
ry = 2.84 + 0.03 fm
These are in very good agreement with the measured nn parameters (o = — b6 '
+ 0.5 fm, r, = 2,66 4 0.15 fm). which strongly supports the notion of charue L5
SYIMELry. %
£ O
Ul‘he Nucieon — Nucleon Force Is Nearly Charge Independent
This means that {in analogous spin states) the three nuelear Torces nn, pp, and
pr arc identical, again correcting for the pp Coulomb foree. Charge indepen-
dence is thus a stronger requirement than charge symmetry. Here the evidence is ) —50"—
not so conclusive; in fact, the singlet np scattering length (—23.7 fm) seems to
difter substantially from the pp and nn scattering lengths ( — 17 fm). However, we
se¢ [rom Figure 411 that large negative scatiering lengths are extraordinarily
sensitive to the nuclear wave funetion near r = R, and a very smill chanpe in Figure .
can give a large change in the scattening length, Thus the large difference between ergles. |
the scattering lengths may correspond (oo a very small difference (of order 1%) eV sho
between the potentials, which (as we see in the next section) is casily explaimed by in the nu
the exchange foree model, etal., &
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a= =23im a= -17fm R = 2im

Figure 4.11 Very small changes in the nucleon - nucleon wave funclion near
r= A can lead to substantial differences in the scattering length when the extrapeo-
lation is made (compare Figure 4.75).

The Nucieon —Mucleon Interaction Becomes Repulsive at
Short Distances

This conclusion follows from qualitative considerations of the nuclear density: as
we add more nucleons, the nucleus grows in such a way that its central density
remains roughly constanl, and thus something 15 keeping the nuclepns from
crowding too closely together, More quantitatively, we can study nuclean—nuclean
scattering at higher energies. Figuee 4.12 shows the deduced sinplet s-wave phase
shifts for nucleon—nucleon scaltering up to 500 MeV, (A1 these energies, phase
shifts fram higher partial waves, p and d for example, also contribute to the cross

100%—

Triplat & wove

00—

Singlet 5 wave

|
200 400 LKoo
00

w2

Phace shift

Energy {Mav

Figure 4.12 The phase shifts from neutron-praton scatltering at medium en-
ergies. The change in the s-wave phase shift from posifive to negative at aboul 300
MeV shows that at these energies the incident nucleon is probing a repulsive core
in the nucleon - nucleon inferaction. 4, 8, e. 'S, 0. 'F,. Dala from M. MacGregor
etal. Phys Aev. 182, 1714 (1960).
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-a Figure 5.6 Af the left are the energy levels calculated with 1he potential of Figure

5.5. To the right of each level are shown its capacily and the cumulative numbaer of
ucleons up o thal level. The mght side of the figure shows Ihe effect of the

spin-arbat interaction, which splits the levels with > O into two new levels. The

shell eftect is quite apparent, and the magic numbers are exactly reproduced.

N
A Gl
How can we modify the potential o give the proper magic numbers? g»
certamly cannol make a radical change in the potential, becavse we do net want
to destroy the physical content of the model—Equation 3.1 is already o very
good guess at how the nuclear potential showld look. 1t is therefore necessary to
add various Wrms o Equation 3.7 to try o improve the sitation. In the 1940s,
many unsuccessful attempts were made at finding the needed correction; success
was [inally achieved by Mayer, Haxel, Suess, and Jensen who showed in 1949
that the inclusion of a spin-erbir potential could give the proper sepuration of the
subshells,

Onge again, we are borrowing an ides [rom our colleagues, the atomic
physicists. In atomme physics the spin-orbit interaction, which causes the observed
fine structure of spectral lines, comes about because of the electromagnet
mteraction of the cleciron’s magnetic moment with the magnetic ficld generated
by its motion about the nucleus. The effects are typically very small. perhaps one
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part i 107 in the spacing of atomic levels, Mo such electromagnetic interaction
would be strong enough to give the substantial changes in the nuclear level
spacing needed to generate the observed magic numbers: Nevertheless we adopt
the concept of a nuclear spin-orbit force of the same form as the atomic
spin-orbit force but certainly nor eleciromagnetic in origin. In fact, we know ffom
the scattering experiments discussed in Chapter 4 that there is strong evidence for
a nucleon- nucleon spin-orhit force.

The spin-orbit interaction is written as ¥ (£ )¢~ ». but the form of Fo.lr) 15 not
particularly important, It is the =5 factor that cuuses the reordering of the
levels. As in atomic physics, in the presence of a spin-orbit interaction it is
Appropriate to label the states with the tora! anenlar mementunt FJ=f+s5 A

single nucleon has v = 1| 5o the possible values of the total angular momentum

quantum number are j= £+ § or j= ¢— 1 (exeept for £= 0, in which case
only jf= 1 is allowed). The expectation value of ¢- 5 can be calealated using a
common trick. We first evaluate ;2 = (£ + 5)%
JE= 4 o w4 6P
Lf.l'; =3 1:{‘1-'-‘ = {'1_ .\'1}
Putting in the expectation values gives
L8y =3[+ 1) = £(£+ 1) = s(s + )] 47 (5.3)

Consider a level such as the 1F level (¢= ). which has a degencracy of
24+ 1) = 14. The possible j values are ¢ + += 1 ar 1. Thus we have the levels
If5 5 und 1f, . The degeneracy of each level is (27 + 1), which comes from the
m, values. (With spin-orbit interactions, m, and m, are no longer “good”
quantum numbers and can no longer be used o label states of to count
degeneracies.) The capacity of the 1f; ., level is thercfore 6 and that of 1, 5 15 8,
giving again 14 states (the number of possible states must be preserved; we arc
only grouping them differently). For the 10,5 and 10, 4 states, which are known
a5 a spin-orbit pair or doublet, there is an energy separation that 15 proportional
to the value of (- 5% for each state. Indeed, for any pair of states with > 0, we
can compule the energy difference using Equation 5.3:

(e L P (4 e = H2E+ 1A (5.4)

The energy splitting mereases with increasing ¢ Consider the effect of choosing
Veo(r) to be negative, so that the member of the pair with the larger j is pushed
downward. Figure 5.6 shows the effect of this sphitting, The 1, ., level now
appuears in the gap between the second and third shells: its capacity of 8 nucleons
gives the magic number 28. (The p and d splittings do not result in any major
regrouping of the levels.) The next major effect of the spin-orbit term is on the 1g
level, The 1, ., state is pushed down all the way o the next lower major shell: is
capacity of 10 nucleons adds to the previous total of 40 for that shell to give the
magic number of 30. A similar effecl oceurs at the top of each major shell. In
cach case the lower energy member of the spin-orbit pair from the next shell is
pushed down inte the lower shell, and the remaining magic numbers follow
exactly as expected. (We even predict a new one, at 184, which has not yel been
SeC. )

As an example of the application of the shell model, consider the filling of
levels needed 1o produce ;0 and '{O. The 8 protons fill a mutjor shell and do not

(5.2)
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Figure 5.7 The filling of shells in "0 and "0. The filled proton shells do nol
confribute fo the structure; the properties of the ground state are determined

J'J: primarily by the odd neutron.

a

viels contribute to the structure. Figure 5.7 shows the filling of levels. The extreme
i Lhe : limit of the shell model asserts that only the single unpaired nucleon determines
od™ the propertics of the nuclens. In the case of 0, the unpaired neutron is in the
suni Pa 2 shell; we would therefore predict that the ground state of 2O has spin § and
is & odd parity, since the parity 15 determined by (—1)%. The ground state of 0
- are should be characteristic of a d, , neutron with spin % and even parity. These two
own prediciions are in exact agreement with the observed spin-parity assignments,
wnal and in fact similar agreements are found theoughout the range of odd-4 nucla
I, we where the shell model is valid (generally 4 < 150 and 190 < 4 < 220, for reasons

to be discussed later in this chapter). This success in accounting for the ohserved
ground-state spin-parity assignments was & great triumph for the shell model.

5.4) (i 3 s '
sing * Magnetic Dipole Moments c; H.Pd ETM ? EJ' g
s Another case in which the shell model gives a reasonable (but not so ex: 1ot
i agreement with observed nuclear properties is in the case of magnetic dipole
20ns moments. You will recall from Chapter 3 that the magnehc moment is computed
"t-];jr from the expectation value of the magnetic moment operator in the state with
B maximum z projection of angular momentum, Thus, including both £ and s
'Uﬂs lerms, we must evaluate _
J]L = FN[.:—:{':- < Hl'g.'.}f?h ‘_:'5\]
] E
Il i when j. = jh. This cannot be evaluated direetly, since ¢ and 5. do not have
Haw precisely defined values when we work in a system in which j is precisely
e, defined. We can rewrite this expression, using § = £+ s, as
r=gs+ (g, — g )5 push (5.6)
s of and, taking the expectation value when ;. = J."JJ the result is
not ; v
: (ud = Lo + (g, — g0 /h] (5.7)
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Figure 5.8 As the total angular momentum | precesses about the z axis keaping
I, constant, the vectors #and s precess about f. The components of £and s alang j
remain constant, but £ and s. vary.

The expection value of (s} in be quickly computed by recalling that j 1s the
only vector of interest in this problem— the ¢ and s vectors are meaningful only
in their relationship to 7. Specifically, when we compute (5.3 the only surviving
part will be from the component of s along f. as suggesied by the vector dingram
of Figure 5.8 The instantancous value of 8. vanes, but its component along j
remains constant. We therefore need an cxpression for the vector %, the compo-
nent of s along j, The unit vector along f1s 77| f|, and the component of s along
£ 15 |5 = §| /1 F]. The vector s, 1% therefore j|s i1/, and replacing al) quantitics
by their expectation values gives

(o) = ———— |/ +1) = £(F+ 1) +s(e+ 1)] A {5.8)

s L,l'[_f + 1) :
where s« j = s - (£ + 5) is computed using Equation 5.3. Thus for j= £4 |
{s.) =h/2 while for j = #— } we have (5.9 = /2 1 + 1). The correspond-
INg magnetic moments are

J=f+1 my=leli- 1)+ de )

5 v | algedy T3 (5.9)
f=¢—1 { fp———— — —— 4
g 3 L) L (7+1) 3741 By My

Figure 5.9 shows a comparison of these calculated vithues with mensured values
for shell-model odd-A4 nuclei. The computed values are shown as solid lines and
are known as the Schoude lines: this calenlation was first done by Schmidt in
1937, The expenimental values Fall within the limits of the Schmidt lines, but are
generally smaller i magnitude and have considerable scatler, One defect of this
theory is the assumption that &, Tor a nucleon in a nuclews is the same as g, fora
free nucleon. We discussed in Chapter 3 how the spin g factors of nucleans diifer
considerably from the value of 2 expected for “elementary™ spin-1 particles. If
we regard the substantial differences as arnsing from the “meson cloud™ thi
surrounds the nuecleon, then it is oot ar all surprising that the meson cloud in
nucler, where there are other surrounding nucleons and mesons, differs from what
it a8 Tor free noucleons. It is customary 1o account for this effect by (somewha)
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Figure 5.9 Experimental values for the magnetic moments of odd-neutron and
add-proton shell-model nuclei. The Schmidt lines are shown as solid for g =
giifree) and dashed for g, = 0.6g, (free).

arbitranly) reducing the g, factor; for example, the lines for g, — 0.6, (Tree) are
shown in Figure 3% The overall agreement with experiment is better, bul the
scatter of the points suggests thut the model is oversimplifving the caleulation of
magnetc moments. Mevertheless, the success in indicating the general trend of
the observed magnetic moments suggests that the shell model gives us a1 least an
approsimate understanding of the structure of these nuclei,

Electric Quadrupole Momenis

ents in the shell model 1= done by
.32 — £% 10 astate in which the total
has i1ls maximum projection along the =
or news that the odd particle 15 a prowen, 17
welosely as guantum mechanics allows) with
mosyy in the vy plane. As we indicated in the
would give a négative quadrupole

The caleulation of electric quadrepele m
cvaluating the electric guad
angular momentum of the od
axis {that is, mr, = ;) Let's asst
its angular momentum s aligned
the = axis, then it muost be orhit
discussion following Equatio



