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The Infinite Spherical Well

IF we work in spherical coordinates with a potential that depends only on r (not
on @ or ¢}, another new feature anses Lthat wall be important in our subsequent
inveshigations of nucléar structure, When we search for separable solutions, of the
form r. f, ¢) = K({r)B{F) d{¢), the central potential F{r) appears only in
the radial part of the separation equation, and the angular parts can be solved
directly. The differential equation for B4} is

d*d 3% ( )

— +my =10 287

dgt O f

where m; is the separation constant.
The solutien is

1
@, (b} = T i d (2.58)

where m, =, £1, £3, ., . The equation [or B(#) 15

2
mi
<

s

] f—f[ainﬂﬁ)-+ If’(!—i-l}— ﬂ}@=u (2.59)

sindl di dfl
whee = 0,1,2.3,.__ and pr,=0, +1, +2.__., +£. The solution E*;mr{ﬁ‘} can
be expressed as a polynomial of degree ¢ in sin# or cos#. Together, and
normalized, @, (¢) and &, (#) give the spherical harnonics Yo L b, some
examples of which are listed in Table 2.2, These functions give the angular part
of the solution to the Schrodinger equation for any central potential Vir). For
example. it is these anpular functions that give the spatial properties of atomic
orbitals that are responsible for molecular bonds.

For each potential F(r). all we need 10 do is to_find a solution of the radil

-
cuation _)% : 1:?‘:0-"
h {d*R 2 dR : (
_‘]_’ F—i_?d_ i V{i‘ K=ER {EGD?ELL a’q:
2 r [
e — ) // 25 iAo f\m
Tabile 2.2 Spherical Harmonics for Some Low ¢ Values J'h_.lﬂ. S
4 " Yo (8. 0) =8, ()0, (0} f‘%u_l-l!
; e l{.ﬂ"—nhm,
0 0 (1 /47 )
! 0 (374031 gog & Pkt
i +1 FEA) Asinge ' o
2 0 (5/16%) (3 eos” d — 1) L||éi-l£
2 +1 FSAB) P sinfros et
2 +2 (15/32a ) 5in® § o+ 300
-.pm,t@,j = szi; o <
2+ L — w3t 2
8, (d)y= Pre(d
APV T w0

where PSR s the assoctated Legendre polynomial
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Table 2.2 Spherical Bessal Functions —
Sample Expressions and Limits

) sin kr
Jalhr) =
=
() gimkr oS ke
o= T
ST S
. Isinkr  3coskr  sinkr
k) = —5 - —
(k) k)t e
B (o 4 .
el ’}=1-3-5---{2z-| 1) el
sinf kr — 5 /2
Jetkry = —( r /2) kr— o

win=(~£)(5-5) wewn

Figt
The #(£+ 1) term is generally written as an addition o the potential: it s ealled s
by S : : : O spar
the “Centrifng ential” and it acts like a potential that keeps the particle away Hives
from _the origin when ¢ 0.
AT se ol the miimie spherl y Ak
Hr)=10 r<a fivel
42
= oo r=a (2.67) leve:
We require again that R(r) =0 for r > a, since the walls of the infinite well are elec
impenetrable. Inside the well, the solution 1o Equation 2.60 for ¥ =0 can he of ¢
expressed in terms of the oscillatory functions known as spherical Bessel furctions the
AeCkr}, some of which are listed in Table 2.3. To find the eneroy eigenvalues, we 1
proceed exactly as in the one-dimensional problem and apply the continuity the
condition on ¢ at r = a. This gives Lol
; ang
Jelka) =0 (2.62) ol
This is in effect a transcendental equation, which must be solved numerically, inte
Tables of the spherical Bessel functions are available that can be consulted 1o
find the zeros for any given value of £.* For example, we consider the case ¢ = 0, |

From the tables we find j,(x) = 0at x = 3.14, 6.28, 942, 12,57, and so on. For
£=1, the first few zeros of ji(x) are at x = 449, 7.73, 10.90, 14.07. Since
E = h**/2m, we can then solve Tor the allowed values of the energics. Repeat-
g this process for /=2, ¢=3, and so on, we would be able to construct a The
spectrum of the energy states, as is shown in Figure 2.11. As in the case of the ;

i
Cartesian well, the regularity of the one-dimensional prablem is not present -
Also, note that the levels are again degencrate— since the enerzy depends only on
¢, the wave functions with different mr, values all have the same energy. Thus, in Som
the case of the level with #= 2, the possible wave functions are Jalkr ) Y508, @), Figut
Tl
"M Abrsmowite and LA, Swepun, Hamdiook of Mathemaical Functions (New York- Dhover, 1965) 2lvil
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Figure 2.11 Energy levels of a particle confined to a ithree-dimensional sphencal
container. The energy is given in units of £, = ¥n” /2ma’. Compare with the
spacings and degeneracies of Figure 2.10. The quantum number i does not arise
directly in the solution in this case; il serves to number the states of a given ¢

L)Y, (0, @), LURr ) Yag(8, @), (ke )Y, (0, ), and f(kr) Y5 o(#, ), Tor a
fivefold degeneracy. In facy, sinee m, i3 resteted oo the wvalues O, £1,
+32,..., ¢, there are exactly 24+ 1 possible ¥, for a given ¢, and thus each
level has a degencracy of 244 1. (This situation is very similar to the case of
electronic orbits in atoms, in which there is also a central potential. The capacity
al cach alomie subshell contains the factor of 24+ 1, which likewise arises from
the m, degeneracy.)

The probability to locate the particle in a valume do is given by || do, where
the volume element was given in Eguation 2,17, Such three-dimensional distribu-
tions are difficelt to represent graphically, so we often consider the radial and
angular parts separately. To find the radial probability density, which gives the
probability to lind the particle between # and r + dr averaged over all angles, we
integrate the probability density over § and ¢:

FPir)dr= f|1,[-|?'dr.'

2

= rl|R(r)|3drfsinl?t!ﬂfﬁf&f’gyfm,-

The spherical harmonics ¥, = are themselves normalized, so that the integral
gives 1, and thus
= Plr) =r*|R{r)° (2.64)
Some sample radial probability distributions for the infinite well are shown in
Figure 2,12,
The angular dépendence of the probability density for any central potential is
given by | Y[.,,,H(i?, 1|7, same samples of which are illustrated in Figure 213,

(2.63)
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Jplkrk

kr ez ke

Figure 2.12 The lefl side shows, for some of the lower enargy levels, tha
unnormalized j.(kr), adjusted so that [.{ka} ~ 0. The right side shows the corre.
sponding normalized radial probability density, r“R”. Note that all [, varsh at the
aongin except [, and that all probability denstties vamsh at r= 0. Also, note how the
“centrfudal TEpTISion . pushes corresponding maxima in Pir) away from the origin

as ¢ INCreases.
e e i

£ h

[¥eal® [¥11)? [¥yaf?

H

|¥ani®

¥aa?

Figure 2,13 Spalial probability distributions resulting from the Y, . The three-
dimensional representations can be obtained by rotating each figure about the z
axis.
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All of the previous co
elemen

rations apply in ™ ase as well, with the volume

dr dfl diy (2.17)

ons illustrate the ap jon of these principles, first
ally simpler one-dimensional protegs and then with the
rec-dimensional problems.

The following two g
with the matheny
more physic

2.3 PROBLEMS IN ONE DIMENSION
_—————e————ary

The Free Particle &—

For this case. no forces act and we take ¥(x) = 0 everywhere. We can then
rewrite Bguation 2.4 as

{2.18)
The solution to this differential cquation ¢an be writlen
$i{x) = A'sinkx + B cosbox {2.19)
or, equivalently
glx)=de*+ Be'hn (2.20)
where &7 = 2mE /b and where A and B (or A* and [} are constants,
The time-dependent wave [unction is
Flx, 1) =dethi-utf g go—ikiten (2.21)

The first term represents a wave traveling in the positive x direction, while the
second term represents a wave traveling in the negativee x direction. The intensi-
tigs ol these waves are given by the squares of the respective amplitudes, J4|°
and | B|. Since there are no boundary conditions, thers are no restrictions on the
energy F7oall values of E give solutions to the equation, The normalizition
condition 2.9 cannol be applied in this case. because integrals of sin® or cos® do
nol CONVerge in x = —oo 0 +c0. Instead, we wse a different’ normalization
system for such constant potentils. Suppose we have a source such as an
accelerator located at x — —oo, emilting particles at a rate particles per
second, with momentum p = Ak 10 the positive x direction. Since the particies
are traveling in the positive x direction, we ean set # to zero-— Lhe intensity of
the wave representing particles traveling in the negative v direction must vanish
if there are no particles raveling in that direction. The particle current is,
aceording to Equation 2,12,

2 {2.22)

i=—l4
s

which must be equal 1w the enrrent of £ particles per second emitted by the
- = N
source, Thus we can take J = il S
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Step Polential, E> V]
The potential is
Fix) =0 X0
=F X (2.23)
where V, = (. Let us call x < 0 region 1 and ¥ > 0 region 2. Then in region 1,
the Schradinger equation 1s identical with Equation 2.18 and the solutions v, are

given by Equation 2.20 with k = k, = ,"'Z_mE,fhj_ In region 2, the Schriddinger
equation is

f‘r:‘;‘z 2m(E - V)

P _-;F ¥ (2.24)
Since £ > Vy. we can write the solution a3
Yy = Ce®v 4 pp—ike {2.25)

where k., = n,E,-;r{E o 1
Applying the boundary conditions at x = 0 gives

A+ H=C+D (2.26a)
from Equation 2.64, and
kifld—B)=k,(C—-D) (2.2658)

from Equanion 2.65.

Let's assume that particles are incident on the step from a souree at ¥ = — o,
Then the 4 term in b, represents the incident wave (the wave in x < ) traveling
toward the step at x = 0), the B term in ¢, represents the reflected wave (the
wave in x < {) traveling back wward x = — o), and the C term in ¢, represents
the transmitted wave (the wave in x > 0 traveling away from x = 0). The D term
cannot represent any part of this problem because there is no way for a wave to
be moving toward the origin in region 2, and so we eliminate this term by setting
D to zero. Solving Equations 2.26a and 2.26k, we have

1 — ky/k,

=4 - 227
2 T+ de (227)
2
= — (2.28)
14+ k7%,

The reflection coefficient R is defined as the current in the reflected wave divided
by the incident current:

jic i (2.29)
Hincident
and using Equation 2.22 we find
E 2 I - k'\ k 2
o 1B ( _,-f_i}

= = 2.30
Bk T+ ky/ky { )

The transmission coefficiemt T is similarly defined as the fraction of the incident

u
ni

n

I
1g
S
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_u.l .a_|=gn-,1)¢| r..,_

SN
Ay = 2, —=]
£ f
Vs

l

x=_{}

Figure 2.2 The wave function of a particle of energy E encountering a step of
height \, for the case £ > V. The de Broglie wavelength changes from A, to Mo
when the particle crosses the step, but § and di /dx are confinuous at x = 0.

current that is transmitted past the boundary:

T j:r.:m:imiued {2_3”
Jincident
and thus
ks |C]F Al Sk
_ % €] 2/ (2.32)

kAT (14 kask,)

Notice that R + T =1, as expected. The resulting solution is illustrated in
Figure 2.2,

This is a simple example of a scattering problem. In Chapter 4 we show how
these concepts can be extended 1o three dimensions and applied 1o nucleon—
nucleon scatlering problems,

Step Potential, £ < |

In this case, the potential is stll given by Equalion 223, and the solution for
region 1 {x < 0} is identical with the previcus calenlation. In region 2. the
Schrédinger equation grves

d::._b‘, 2Im

w1 = (Y (2.33)
which has the solulion

g, = Okt po—tiz (2.34)

where &, = 2m(V, — E)/h*. Note that for constant polentials, the solutions
are either oscillatory like Equation 2.19 or 2.20 when £ = . or exponential like
Equation 2.34 when £ < V. Although the mathematical ferms may be different
for nonconstant potentials Fix), the general behavior 1s preserved: oscillatory
(though not necessarily simusoidal) when £ > V(x) and exponential when £ <
) T

This solution, Equation 2.34, must be valid [or the entire range x> 0. Since
the first term would become infinite for x — oo, we must set =0 to keep the
wave function finite. The D term in o, illustrates an important difference
between classical and quantum physics, the penetradion of the wave function into
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| | * £3

Figure 2.3 The wave function of a particle of energy £ encountering a step of
‘ height I, for the case £ < 1. The wave funclion decreases exponenially in the

classically forbidden region, whers the classical kinetic energy would be negative
| At x =10, ¢ and a¢ /dx are continuous.

the classically forbidden region. Al (classical) particles are reflected at the
| boundary: the quantum mechanical wave packet, an the other hand, can penetrate
a short distance inio the forbidden region. The (classical) particle is never directly
observed tn that region; since £ < V,, the kinetic enerzy would be nesative in
region 2. The solution i3 illustrated in Figure 2.3

EBarrier Potential, E > V, 7

The potential 1s

Fix) = x
=V, D<x<a (2.35)
=0 >

In the three regions 15 2, and 3; the solutions are

| ‘1!'! =.*If.'|k'. oy Be—l}.‘,\'

v

4_,3 - ‘:_-I,_,-'i'_u | GE,—rql.ul

Celfery pgmias {2.306)

where ko = &y = 2mE/R* and &, = -I-"l.ur{ E— F)/ht.

Using the continuity conditions at x = and at x = &, and ASKUTING Again
that particles are meaident from x = — s (so that 6 can be set 1o zero), after
considerable algebraic mantpulation we can fnd the transmission coefficient
F=[F3 /4% -

T= - (2.37)
| : 1 Ve 3l
' o ———— i R
.i. 3 E(E - V..]\m al

| r The solution is illustrated in Fipure 2.4,
w /
|_ Barrier Potential, E < I, ‘
! -
or This case, the ¢, and | solutions are as above, hut o bBecomes

By = ket o paia ? (2.38)

where now £, = ||-':2m{ir"” — E)/k". Because region 2 extends only from x = 0)
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! |

ﬂf\/\ /\f\/‘\(\

0
EUVATAVAVISES oA ey
f %ullar € 2 |

Vi

|

x=0 x =g
Figure 2.4 The wave function of a paricle of energy £ > ¥, encountering a
barrier potential. The particle is incident from the leit. |The wave undergoes reflec-
lions at both boundaries, and the transmilted wave emerges with smaller amplitude.

1o x = a. the question of an exponential solution going to infinity does not arise,
sed we cannol sel C or £ to zero.

Again, applying the boundary mndmoua at x={hand x = o permits the
sofution for the transmission coeflicies

Classically, we would expect 7= 0—the particle is not permitled to enter the
forbidden region where it would have negative kinetic enerzy, The quantum wave
can penetrate the barrier and give o nonzero probability to find the particle
beyond the barrier, The solution is illustrated in Figure 2.5,

This phenomenon of barrier penetration or quantum mechanical tunneling has
important applications in nuclear physics. especially in the theory of a decay.
which we discuss in Chapler 4

~ /\ T~ |
TRV -

r=0 =

Figure 2.5 The wave function of a particle of energy £ < ¥ noEncountering a
barrier patential (the particle would be incident from the lefl in the figure), The
wavelength is fhe same on both sides of the barner, but the amplitude beyond the
barrier is much less than the original amplitude, The particle can never be oh- il
served, inside the barrier (where il would h:we neqative: kinetic energy) but o can 1F;?:
ke observed beyand the barrier. g‘[



ALPHA DECAY

Alpha particles were fitst identfied as the least penetzating ol the radistions
cmitted by noturally oceurring maerials. In 1903, Rutherfond meisured ther
charge-toemass valio by deflecting o particles Trom the decay of radium i electric
unel magnenic fields, Despite the difficulty of these early experiments, Rotherford's
result was only aboug_25% higher than the presently acvepted value, In 1909
Rutherford showed that, as suspected, the o particles were in faet heliom nuclei
in his experiments the partucles entered an evaeuated thinswalled chamber by
penetrating its witlls, and after several dayvs of colleeting. atomie spectroscopy
revealed the presence of hebium gas inside the chamber,

._..FM-'HW heavy nuclel, especially those of the nuwrally occurnng radioacove
series, decav thoush o emission, Only exceadingly rarely docs any other sponki-
neous: radioactive process result S LRI onss wedn s, Tor
example. ohserve deuteron emission as a natural du:(:u_v provess. There must
therefore be o specin] reason Lhal nocler choote o emission over other possible
decay mades. In this chapter we examing this question and study the o decay
process in detail. We also show how o spectrascopy can help us o understand
nuelear structure,

B.1 WHY o DECAY QCCURS

repulsion effedg. I becomes increasingly important
of heavy nuclel becavse the disrupuyve Conlomb Torce increases with size ar g
laster rate (namely; as Z°) than does the speclic ndcléar binding force, which
increases approxamately as A,

Why is the e pacticle chosen as the ugent Tor the spontancous carrying away of
positive charge? When we call o process spo us we mean that some kinene
energy hus suddenly appeared in the system for no apparent cause: this éncrgy
must come from a decrease in the mass of the svstem. The o partiche. because it
i s yvery stuble and tightly bound strocture. his o relutively small mass compared
with the mass ol s separibe constituenis 11 is particularly I'wnn.d s e ed

particle if we hope 10 have the disintegration products as light as possible and
thus pet the largest posstble release of Kinelic encfey
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Table 8.1 1 Energy Release (O value) for Various Modes of Decay of 222

Energy Enerey
Emitted Release Emitted Rilease
Particle (MeV) Particle T
n -T2 ‘He +3.41
'H 612 He 2549
*H - 1070 "He - 1Y
"H -10:24 41 - 579
'He —8.92 i —1.94
“Compisted from known nasses - l'IC.'f ?

For a typical o emitter *2U (72 y) we can compute. [rom the known masses,
the energy release for various emitted particles. Table 8.1 summarizes the results,
Of the particles considered, spontaneous decay is encrecticully possible oy [or
the o particle, A positive disintegration energy results for some shghtly heavier
particles than those listed, "Be or “C, for example. We will show, however
(Becnon §.4), that the pariial disintegration constant for emission of such heavy
partcles is normally vanishingly small compared with that for o emission. Such
decuys would be so rare tha in practice they would almos: never be noticed, This
suggests that if a nocleus is 1o be recoznized as an alpha emitter it is not enough
for o decay to be encrsetically possible. The disintegration constant must also
not be too small or else a emission will occur so rarely that it may not he
detected. With present techniques this means that the haif-life must be less than
about 10" v. Also, A deeav, if it has a much higher partial disiceration
constant. cin mask the a decav. Most nucles with A = 190 (and awgoy wilh
Li0 = A4 < 190) are energetically unstable asninst & emnission bui anly about
one-hall o THem can meet these other reguirements,

2.2 BASIC ¢ DECAY PROCESSES

The spontancous emission of an a particle can be tepresented by the Tollowing
process:

Xy 439Ky 2t a
The a particle. as was shown by Rutherford, is o nucless of *He, consisting of
twa neutrons and two protons, To understand: the decay process, we must study
the conservation of enerzy, linear momentum, and angular momentur.

Let’s lirst consider the conservation of energy in the o decay process. We
assume the initial decayving auclens X to be at rest. Then the energy of the mitial
system a5 jusi the rest energy of X, i e® The linal stale consists of X' and a,
cach of which will be in mation (o conserve Tinear momentum}y, Thus the final
total energy is myee® 4+ Ty + me” + T where 7 represents the Kinetic energy
af the final particles. Thus conservation of energy sives

Me™ = mgee™ + T ¥ e+ T, I (8.1}

\ ["7?-: —inrye =i N7 = Bt T [ [8.2)
e ——————y

(E1N
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The quantity on the left side of Equation 8.2 is the net eneray released i the
decay. called the ¢ value:

! O=(my —my. - m_ Je? 1 (8.3

and the decay will oceur spontineously andy if () =0 (The decav @ values For
U were listed in Tuble %1, ) vuline¥ can Culated from aromie miasy
tables because even though Egquation 8.3 represents o sucloar process, Lhe
e T * - o -t v:
electron masses will cancel in the subiraction When the masses ure in atamic
Mass units (W), expressing ¢ as 931,502 MeV /u mves © values direetly in MV,

The € value 3 also equal 10 the ol kinetic energy miven 1o the decoy
[razments:

Il the: original nucleus X is a1 rest. then its linear MICHNENTEMm 15 2ero, and
conservation of linear momentum then requires that X’ and & move with eequal
and apposite momenta in order that the final momentum also he P ol

.Pn _T'I\ “‘:-_jj
a decays typically release ahour § MeV of energy, Thus Tor both X' and w.
T <= mc? and we may safelv use nonrelativistic kinemutics. Wriling T = p* /2
and using Equations 8.4 and 8.5 gives the kinetje cnerpy of the aw particle in terms.

of the ¢ value: A j_
W, A

4 i— L5.a)
i S

R _:l'- A
Because the mass ratio s small wompared with T (recall that X “reprosents o heavy
nucleus), 1L is wsually sufficiéntly accurate (o express this ratio simply as 4/ A
4y, which gives, with 4 = 4,

i Ao _
T =01 - 4/51J (8.7)
Typically. the « particle carrics aboul 98% of the £ value, with the much heavier
nuclear fragment X* carrving only about 2%, (This reced ensrs 2 by

fragment is oot entirely negligible. For a typical (0 value of 5 MV, the recolling
nucleus has an energy of the order of 100 keV. This encray w Lir in exeess of thit
which binds_aloms i ids, ithe recoiling nucleus, i it is near the
surface of the radioactve: source. escapes from the source and can spread 1 the
surroundings. [ the o decay 13 part of a decay cham, then the recoilin ditupliter
nucleus may '].&b&ﬂ@u&%ﬁwﬂs can result methe spresd of
radivactive material. Fortunately, the heavy recoil nuelei have an extremely short
range inomatter and therr spread can be prevented by a thin coating, such as
Mylar or lacquer. placed aver the radicactive sampli)

The kinetic encrey of an o particle o ; 3 dircetly with o mapnerc
spectrometer. and so Lhe @ value of o decay enn be determined. This BEVES U5 3
Wiy 10 determing alomic fmses, suchiisin g case in which we might koo the
mass ol Tong-lived X as u resull of divecl measurentent but X is so shorilived
thit s miass cannol He determined hy diret! meusurcment,

o

aﬁﬂ}}ff
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8.3 o DECAY SYSTEMATICS

One feature of w deciy is 2o siriking that it was noteed as long ago as 1911, 1he
vear that Rutherford “discovered” the nucleus, Geger and Nutall noticed that
enntters with laree disintegration eneroies had short half-lives and conversely,
The vanation s astomshinely rapid_as we may see from the linuling cases of
0 (L 10V v 0 = 408 MeV ) and PUTh (1.0 = 10 ' 50 @ = 385 MeV),
A factor of 2 enérgy means a factor of 10 10 halltie! The theoretcal
explanation of this Geiger-Nuttall rule in 1928 was one ol the first mumphs of
A plot of log ¢ . agmnst @ mowhich all o emitters are imeluded shows a
considerable seatter about the geaeral Geiger-Nuttall trend. Very smooth curves
resull, however, if we plol only o cantters with the same 2 and i Turther we
seleer [rom this group only thase with 7 and N hoth even (Frgure 813,
Even-add, odd-even, and odd-odd nucley obey the general trend but do not plo
into guite such smooth curves: their periods are 2 100 times longer than those
for even-cven types with the same & and ¢
"_-Il_i?_in[c[th'liﬂg that "2 (even Z, odd N s one of these “extra-iong-life”
types. 1T ts half-life were 1000 tmes shorter, this important nucleds would ol
vecur n nature, and we probably would not have nuclear reactors today! We see
in Chapter 13 that the sume feature that upparently accounts for the long hie
against o decay. namely the odd neutron, also makes U very susceptible 1o
lisston by thermal neutrans.

Figure 82 shows another important systernatic relationship for e enniters:
Lookimg for the moment only at the data for A = 212 we see that adding
nentrons 1o a nuclens reducey the dismiegration enerpy, which, beehuse of the

=

n seccndsl

logip &

- 10—

—— || — | _

a 5 6 7 P ] 0y
4 ANy 1
Figure 2.1 The inverse reflabienship belween a-decay hall-lile and decay energy,
called the Gemger-Nuttall rule. Only aven-Z. even-N nuclel are shawn, Tha solid
linga connect the data points.
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a.0l—
30—
I
17a 1B 190  zao 210 2200 230 20 250 26p
Mass tmlior A
Figure 8.2 Energy released in o decay lor vanious isotopic sequances af heauy
nuclei. In contrast to Figure 8.1, beth odd-4 and even-A isotopes are shown, and a
small amount of add-even staggenng can be seen. The effects of the shall closures
at N = 126 (large dip in data) and Z - 82 {larger than average spacing batween Po,
Bi, and Pb sequences) are apparaent,

@ iey

Ciziger-Muttall rule, increnses the half=hfe: The nuclens becones more siahle. A
striking discontinuity near 4 = 212 pceupg where W = 126 and 5 another cxam-

ple of nuclear shell structore,

We can compare the systematic dependence of @ on A with the prediction of
the semiempirical mass Formula, Equation 3.28;

' O=B('He) + B(Z -2, 4 - 4) — 8(Z. Aﬂ (8.%)
=13 —da, +3a. 477 L Jp 70 31 =z y34)

42, (1 =22/AY + 3a a7 (8.9)

0,

wlhicre the approximation in Equation 8.9 15 Z, 4 = 1. For *Th, this formula
givés @ = .73 MeV, not tog Far from the measured value of 6.45 MeY What is
perhaps more stpnificant is that the general trend of Figure 8.2 i reproduced: for
ST, Lguation 8.9 gives 0 = 5.71 MeV (to be compared with @ = 4048 Mev),
while for *Th the formula pives 0 =777 MeV (compared with O~ §.95
MeV). Keep in mind that the parameters of the semiempirical mass fomola are
chosen to give rough agreemen! with observed binding energies across the entire
range of nuclel, It is important that the formula gives us rough agreement with
the decay @ values and that it correetly sives 0 ~ () [or the Beavy nuclei. It also

—
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5 more than the ol available encrgy O. Classieally the a particle ennnot enier
this rewion Trom Siher direction, just u8 i tennis hall dropped Trom a certain
height cannotl rebound hrgher: in each case the kinetic eneray wonld have w be
flegintive, The region £ fois g classically permitted resion outside the ba rer,
From the clussical point of view, an ¢ parlicle in_the spherscal potgnln) well
would sharply reverse its motion every ume i tried to puss bevond r - i
Quantum mechanically, however, there s 3 chance of “leakage” or Srennelfing”
through such a barder. This Armer auecounts for the fact that a-unsealle pucls
do not deeav Tmme atety. The o particle within the nnelie DIUSL_present (gsel[
dunin and ugnin m thé barrier surface until it Amally pederrates. [y 790 Fise
example. the leakope probability s so small that Ui o partiche. on the averise,
must make — 10™ (fes hefore it escapes ( ~ 14! per second for — 107 vearsy!
The barricr also Gperites in reverses i the crae article sealtering by

nuclel {see Seetions 3.1 and 11,63, Alphs ; alent on the barmer from
outside the nueleus usually searye e Conlomb Ueld if the inciden LHCTRY 1S

well below the barrier heishy. Tunnelling through the barrier. so that the nucler
force between the particleand target can couse pucliar reactions, 1s @ relitively
improbable process at low energy, The theoretieal analvsis of nuelear reaction,
induced by charged particles uses a formalism: similar to that of a decity o
caleulate the barrey penetration. probability, Fusion reactians. such s (hose
esponsible for the gy released in stars, also are analyzed usino e D

¥

The disintesration consint of an o emitter s given i the vne-hody theoiy by
: P G O0CY LG ;

1
where £ iy the Cregueney with which the e particle presents sell ar the barrier
and P s the probability of wansmission Lthrowsh the barmer,

Equation 810 suggests that our treatment is going to be semiclissical in that
our discussion of the situation for » < o 15 very “billrd-ballish.,” A FeTons
wive-mechanical treatment. however. gives uboul the same resulis for this
problem. The guantity /15 roughly of the order of /4 where o i the relative
veloctiv of the o particle as it raites ahoul inside the nugleiss, We ean Gnd o
trom the Kinetic eneray of the & particle for 7 < 4. Estimating 1, = 35 MeV forq
¥pucal well depifl Ve 7= 6 « 107 15 for @ = 5 MeV, We will see later that we

o not need 1o know £ Very precisely to eheck the (heary

The harrier penetration probability P must be ohtained froen a guanium
mechanieal caleulation simifar w the one-dimensional problem diseussed
Seetion 2.3, Let's first use the result of that ealeulation, Equation 2.39, 10 estimnne
the probability £, Of course, the caleulation th Jed to Equation 239 wag hased
on - one-dimensional rectitigalar barrier, which is not direcily applicable 1 the
1Ar Conlomb potential, by we can al least find a rough arder-ofmiugnitude
estimate. The result, Equation 2.39, depends on the width of the burricr and o
its heizht (ealled by for the rectangular barrier) above (he energy £ of (he
particle. The Coulomh harter of Figure 8.3 has height B at r = 4. whiere

= A A

I =y
J=——— (4.11)
dore,

In this cxpression the « particle has charge e and the danghter sucleus, which

ranch (see Seetio 2l acalasiss JE VET
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correetly predicts the decrease of 0wl ngpeasing A foc g sequence of sotopes

such a8 those of thorum, although it gives 1o small a change of 0 willl 4 (the

L '\ formula gives AQ = —(L17 MeV per umitchange in o, while for Th the observed
avernge change is Ad) = — 040 MeV per unil change in ).

b \ 84 THEORY OF « Emssmm_

=3 The general leatures of Figure 8.1 can be secounted lor by a quantem mechanical
~ theory developed in 1928 almost simultaneously by Gamew and by Gurmey and

3 Condon. In thas theory an o particle ix assumed 10 move in g sphencal region
determined by the denghter nucleus. The central Teature of this one-body model is

that the « particle 15 preformed inside the parent nucleus. Actually there 15 not
much reason 1o believe that o particles do exist separately within hewve nucler:
nevertheless, the theory works quite well, espeaially for even-even nucler. This
suceess of the theory does not prove that wparticles are peelormed. bug merely
that they behave as if they were.

Figure 8.3 shows a plot smiable for purposes of the theory, of the: potearial
energy between the « particle and the residuoal nueleus for various distances
between their eenters. The horzontal line @ is the disiotegration energy, Note
. that the Coulamb potential is extended inward to o radius o and then arbitrarily

260 " g : . ; -

- cut o) The radius o can be wkew as the sum of the radius of the residual nucleus

: and of the w plrl:u_h: There are Lhree regions of interest. 1: 1I:u_ spherical region
| heay

Y e o owe are insidé’ the nuclens and speak ol ¥,

ioand g
SUrES “'H'L Vi 88 Laken as g pasitive number. Clissically (the e p.:lul_lL can move in this
r:n Puu region, with a kinelic enersy 2+ ¥, but it cannot escape from it The annular-

shell region g < ¢ < b forms o potential barrier hecause here |[]L puunu.ﬂ energy

o i
.|.1:.v:.‘. A - 8 2
CXAI) = a O c'
on o
won ol - o ©
o4 k& yw.c.ftg-o B
a L .: IIE

e

(8.9)
il ﬂ\ W Muw &lm Qﬂ-\
hat 15 ﬂ a S IZM.-LIJ'E
e Tor Vo
el ) ? &'fl

I Eﬂ-ﬂ Pu.M

$ 803 ld"'wm w w-t-*uﬂ“
it are ; =iy : }94'20

= Figure 8.3 Relative podential energy of a-particle, daughter- nucleus sysiem as a
e lunction of thew ssparation. Inside the nuciear surface at r— 4, the potential is
with represenied as @ square well; beyand the surface, only the Coulomb repulsion

dlso operales. The o particle tunnels through the Coulomb barrier fram a (o b




LRI 1

Certikin
S be
rer.
it waell
=
cifing™
nucler
L oatsell
LI Tor
clage,
sears )
ng by
“{rom
TEN I8
el
ively
S Th L
4 1o
i
ATTIET

by
830

Irrier

1 that
STOLRS
s
alive
el
fora
s

tum
[
il
|
Lhe
e
| o
the

ALPHA DECAY 253

prowvides the Coulomb repulsion, hus charge 2'v = (F — 2)e. The height of the
barrier thus varies Trom (8 — @) above the parlicle’s eneray at ¢ = o 1o zero a1
r = b, and we can ke 3 representative average hetght 1o be 't B~ (), We aun
similarly choose a representative average width 1o he Lib — a b The factor K, of
Equation 2.39 then becomes y"{"rar,fhzl LB — ). For atypical heavy nueleus
(Z =90, a'= 75 ), the bayrier height B is about 34 MeV. 5o the fuctor i
about 1.6 Tm ™", The radius b at which the a particle “leaves” the barrier is found
from the eyuality of the p.xrl;u‘!’ﬁe:lergy and the patential enerav;

& Sl P E A

(%.12]

4w, O
- - - o .’ .
and for o typical case of & heavy noeleus with €= 6 MeV. b =42 fm. Thus
koo b — @y = 1 and we can approximile Equation 2.39 as
_Ir); r_,—!l:ql_,'.‘hlh—u'l ts.l.}}

stnee the factors m fronl of the exponential gre of unit order of magnitude, For
the ease we are estimating here, P = 210 % and thus & ~ 10 /s and
I =700 s A shght change of 0 1o 5 MeV changes £ 1ol X 10-" and
1,5~ 10" 5. Even this very crude caleulatipn is able to explain the many orders
of maqru de change of 7; - berween © =5 MeV and 2 = 6 MeV_as illusoared
e Figure 8.1,

The exact quantum mechanical caleulifion is very similier in spret W the crde
estimiie ahove, We can think of the Coalemb barmer s made up ol o sequence
of mhnitesimal rectangular harfers of '.:ig,lu'lr':.rj = ;E“r:_ﬁ!mnr and widih dr
The probability to penetrate ench infiitesimal barmier, which extends from ¢ 1o

rtodr, s
dP = rxp : -2 dj'u{?,mjh:}_[ Fir) — Q_l ] (%14
=
The probability to penetriate the complete h:lfﬁ'gﬂrﬂl's c\:? =
1 ‘!;? -ﬁi e
pP=yg (813}
where the Ganow factor € 1s
2 },u: =
e=y73 f [¥(r) — Q1" dr (8.16)
e L
which can be evaluated as Lo 78
‘ Im zFe’ | =3 -
{l= f e ——— - 4 = g1
{ FIJQ vy are cos v \I- Ll ; [ }

where © = o/ = 0/8 The L]u.lnm:; in brackets in Bquation 817 is approg-
mately 72 — 2xVF when i =2 1,asis the case for most decays of intercst. Thus

the result oF the quantm chh'.miuul caleulition for the hall-life of o decay as

a L awt i ." _Hn s

b =1Ak643 | X
i ¢ lL'I ¥, +0) a ll '[.I!H'J {} ey, |
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Table 8.2 Calculated a-Decay Hall-lives for Thisatopes

foais
A 2 (MeV) Measured Culeuliecd
220 .95 = 3gxin?
223 B3 28 %10 ° R )
134 731 104 3Fw p
276 6.3 1854 6 1t
i 352 B0 2 10T 4% 10
230 177 25w 1pH Lo L0
kel 408 44 % 1o LR (LU

The resulis of this caleulution for the even solopes ol Th are shawn in Table §.2.
The ugreement is not exact, but the caloulation js able 1 reproduce the trend of
Lhe hall-Tives within 7-2 wrders ol magnitude over g runge of more than 200 seders
of magnitude. We have neglected several important detuils in the caleulition: we
did ment consider the initial and final nuclear wave fimetions (Fermi's Golden
Rule. Equation 2.79, must be used 1o evaluate the decay probability ), we did not
consider the angular momentum carried by the a particle, and we assumed the
nucleus 1o he spherical with a mesn radivg of 195417 fm. The latter approxima-
ton has a very substantial influence on the caleulaved half-lives. The nuclei with
A = 230 have strongly deformed shapes, and the ealeulated half-lives are et
tremely sensitive to small changes in the assumed mean radins, For instunee,
changing the meun radiug 1o 120,417 (a0 4% chanee in g chanees he Tmlhves

by u Tactar of 51 Tn [act, hecause of 1his wxtreme sensiDviny the procedure _L_si_l_"u.r"f‘
reversed— the messuied Tall-lives are used to deduce the nueloar tadius: what
actually comes oul o] (he wn_is more like the sum of the radii of the

nuclens X and the o particle, i we assume their charee distribuliong 1o have 4

sharp edge. This resull cun then be used to ablwn an estimate of the niclear
radiust sée. for example, L. Marquez, . Phys. Lew. 42, 181 (1981 1

Even though this oversimplitied theory is not strietly eorrect, it =ives us 1 sond
estimate of the decay hall-lives, It also enables us 1o understand w r
decays into lisht particles are not comimonly seen, Lm_t_hi}_ugmv_hc-
allowed Ty the 3 value, Tor example. the decay 2" — ¢ 4 " Po would have
40 vulue of 321 MeV, and carrying through the calculation using Equution .15
BIVes o =33 10% 5 for the 2T decay into “C, This is a fuctor of _10'%
longeTThan the a-decay hulf-life and this the decay will noifeas: -observihle.
ecently. just such g deciy mode has in Fact heen abserved. the fst wimple
of a spontaneous decay process mvalving emission of a particle heavier than an
. Fhe decay of “*Ra normally proceeds by o emussion with a hall-life of 112 4.
but there his now Been discovered the decay process “TRa s Bo g g The
probability for this process is very small, about 1)~ relative 1o 1he o deeiy,
Frgure 84 indicaies the heroie cllorts thut are necessary 16 ohserve (he process,
To conlirm that the cmitted particle is "¢ requires the AF 7 technigue
discussed in Chapter 7, Fignre 54 shows a portion of the high-eneroy cnd of the
tatl of the hyperholt expecied for observa ton of cirbon From the nas Lables.
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120 T T
100 = =
L R e~
:-; e ﬁ!—- .
T _—-
=
=5
g Bl — =
=
-1
ari {— i 14 =i
= —
=i | | |
26 24 ElH
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Figure 8.4 A portion of the 1ail of the AE-T hyperhola showing the observed
1 avents fram the decay of “*2Ra. The dashed lines show the limits expecied for
carbon. The 11 "0 events resull from 6 months of counting. From H. J. Ro&e
and G A dones, Mature 307, 245 (16984), Reprinted by permission, copyrighil ©
pMacmillan Journals Limited.

the decay € value is caleulated o be 31.8 MeV, wihich (when vorrected Tor the
récoil) gives-a " C kinetic encrgy of 29.8 MeV. By contrast, the caleulated encrgy
for "0 emission would be sbout 20 MeV, The total of 11 events cbserved
represents about six menths of counting with a source of 3.3 pCi of **¥Ra in
secular equililrium with 21-y “ine w member of the naturally pccurring actimium
series heginning with ™.

Caleplating the Gamow lactor (or M emission gives a decay probability of
ahout 107 Y relulive 1o @ emission; the discrepaney between the caleulated and
observed (107 ) vilues results from the ssumptions about the preformation of
the particle inside the nucles, You will recall taat our theory of « decay 1s hased
on the assumption that the a s preformed mside the nuecleus. What  the
Soperiment tells us 1y (hat the probability for forming 10 clusters inside the
FETEDS 15 about 107° relative 1o the probubility (o preform a's,

—or  deseription of the expeniment, sec HL T Rose and G AL Jones, Naoture
307, 245 (1984). Emission of **C from several other nuclei in this region hiis alsoe
heei observed, and emission of heavier decay fragments, including Mg, hag

heen reported.

Going in the opposite direction, we can use Eyuation 818 with == 1 1o
evaluite the hall-Jife for proton decuy— thal is, the sponianeous CImssIon af o
proton by an anstable nucleus. In Uhis case the Coulamb harmer will be anly hall
a5 RN as it 15 [or o decay, hut these decays are inhubited Tor o stronger reason:
the € values for proton decay are sencrally negative and 50 the deciys are

: neg K
ahsolutely TorBgaen by cnergy conservatiot, Such decays have recently beci
- L IO 1 - "
oFsorved for o few proton-rch imstable auclel, which are Tormed o nuclear

reactions by hombirding o target with & = # weing o projectile havig ¥ = A4
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Figure 8.5 (Left} Charged-particle speetrum amitted in the radioactive decays of
products of the reaction "Ry + “*Ni. Tha peaks above.4 MaeV represent w decays;
fhe 1.2-MeV peak is from proton emission. (Righty The decay with lime of the
proton peak gives a hall-lile of 85 ms. From S. Hafmann etal., Z Phys A 305, 111
(1982),

This creates a heavy nucleus with N = 7 4 very unstable confisuration, and
proton emission may-be energetically possible as the nuclens trivs 10 relieve itsell
of its proton exeess: The € vailue for praton deeay can be found by a shaht
moditiention of Egquation 8.3, which sives winetly the nesanve of the protan
separation energy, Equation 327 Proton BT : sepcally possibile
witen fhe 73 5lhe itve_and therefore when the separation UNEFEY 15
negative. A glance 4t the muss tbulations (see A, H. Wipstra and G, Audi, Mucl
Phys, A4 432 1 (19835)) shows onlv_a lew very rare cases in which the prown

SEPATLLON Energy is negative, and even these are not directly mensured bt
mmj‘t@\mWns from more stablé nueler,

0 an experiment reporied by Holmann arat. s, AT
target of ™Ry was bombarded with N projectiles, Fighre W
spectium of beht pispicles gmitted following the reaction The more energelc
peaks are identified as™s decays from unstable nuelelin 1he neighborhomd of
A = 13 produced in the Pagetion. The peak at L.239 Me¥ was ider ufied as a
proton using AE -4 rechniging as deseribed jor” Chagtér 7, lis halflife was
measured as 85 mel as shown in Fidyre 8.5, T vias assigned to phe isotope
Y L based opn series of indirect o Qi wiunately, reactibng such as
this producemany different products, st it is often o difficult ték o identils
the sourge’of the observed radiations This cvep ment thus proyiiles evidence [or
the deefy "Ly — 1"y 4 p,

dy of decays such as thisenables wto extend e wiwledue of nucler
riass systematios [ar beyongdethe previad limits; (or ingdie. a1 the time of thiy
work " Lu wag three nepfons furtherArom subility thefn the p ouy last Kaawn
iz (TEr), Flenre £ shows th &, vahees deduted from knodwg masies
rom extrapolations based on sydlemitios. The pilue for 'Ly lies Mg on the
theoretical ealeybiton. giving ¥hnfidence 1o busth the dentification of (i 150l0pe
anel W the thetretical calculdiion. 4
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Aridy Figure 8.8 Proton-decay energies.of N - 80isolones. The solid lines are theorel-
sxalf ical catculations based {._I::‘l nuciear mass formuias (semewhat like the sermempingal
; mass formula) Only Tor ™'Lu is the decay energy positive. From S, Holmann &1 al,
”I'-*'{’: Z. Phys A 305, 111 (1982),
BIRA]|
ble Uising Equation £38 for the half-life gives u vglee ol abont 1.7 ps 100 small by
£ 3 nearly 5 orders of magni Zon. 1t has been proposed that the
e, decay is inhibited by difference® ie nuclear structurs of the mitial and fina
o states {or possibly by o large-ngularmamentam chiange i the decay, examples
bust ol which are discuy
L I
'r": 8.5 ANGULAR MOMENTUM AND PARITY IN « DECAY W
[ af We have up to this point neglected to discuss the angular momentum carfied by
ey the o particle. [n atrupsition from an smtal puelear state of angular m-.nfu:nlum
Vil wﬂ:.u*_l.,_[ﬁc angular mementum of the o pariele can range fetween
pe + I and |1, — 1| The nuclens *He consists of two protons and two neatrons,
% Al m 1s states and all with their spins coupled pairwise to 0 The spinfol the
tify particle is therefore zero._and [0e tofal ansular momentum carmed by an
for particle i o decuy process is purely orbital jn character. We will desienate (s by
o The o particle wave funclion is then represented by a v, with ¢ £ thus
i hepanTy change assoviated with e emission 15 { — 1)~ apd_we have o pariy.
f1is MJ mdicatng which trunsinens are permitied and which are absolutely
Wil forbidden by conservation of panty: if the initigl and fnal paritics ane the sy,
il then ¢, msse he eveng il the parties are different, then ¢, must be odd,
1z To study the applications of these rules, we must tecoznize that we have also
pe | neglected one very sigoificant feature of o decay—a given nilml st can

populate many dillerent final states in the daoghier nuelens, This property is
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Figure 8% _a decay of "Cm to difteren{ excited states of
each a-decay his given to the right of the level,

u. The intensily o

+

sometimes known as the “fine stroctore™ of a decay, but of course has nothmg
whiatever 1o do with atomic fine structure, Figure 8.7 shows the w decay of 22 Cm.
The tnitanl state 15 spin zero, and thus the anealar momentum ol the a parbele ¢

i5 equal to the angular n@:‘&enmm af the final nuclear state 1. You van see that
_many dillerent slaies of - Pu are populaded. The o decays have dilferent (0
values {(given by the 2 wvalue for decay to the ground state: 6,276 Mev, less the
Cxeinon_enerpy ol the excited state) and different intensities. The intensity
depends on the wave lunctions of the it ol linal statesTond alad depends on
TieImEniar monentum 7, In Equation 260, 10 was show low (he *centriugil
potential” Z(7 + DA 7Zmr? must be included in_spherical coordinates. This
T, which s alwarys positive, has the éffeet of raising the potential enery for
¢ < r=<h and (hes inereasing the thickness of the barrier which must be
penetrated, Consider for example the 0°, 2, 4%, 6, and & stgles of the
%m;lc rotational band. The decay w o the 2 state has less intensity thin
the deeny 10 the ground state for twi reasons-—the “cenrifugl potential™ riises
the barrier by afou 1, ahon enerpy lowers O by Dk Mel,
The decay intensity continues to decrease for these same reasons s we go up the

i
band to the 8 stte 15 we vse our previeas theory foc the decay rates, kg
Sl
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Lo decount the increasing effective & and decreasing O we oblam the following
estimates for the relauve decay branches: 07, 76%: R T i )

U077%: 87, 84 % 10 7% These resulls are not in exael agreemenl with the
ohserved decay inlensities. bul they do give us o rough jdea of the orizin of the

decrease i oinfensity

Onee we go ghove the ground-state band, the o decay intensiies hecome very
small. of the order of 10%% of the total decay intensity. This situation results
from the poor match of wmitial and final wave [unctions—many of these excited
states onginate with vibraiions or pa-breaking partacle exatations, which are
aot at all similar o the paired, vibrationless 07 ground state of ““Cm. You
should noie that there are somé states for which there 15 no observed decay
intensity at oll, These iclude (he 27 states ot 0968 and 0956 MeV, the 37 stute
Al 1070 MeV, and the 4 state ot 1.083 MeV, Alpha decoy 1o 1hese siates is
dbsolutely Torbidden by the party selection mle, For exumple, o 0 — 3 decay

must have ¢ = 3, which must give 1 change i parity between initial and linal

=

states. Thus b7 — 37 is possihle, but noL 0 _— & - sy, = 2 aod 00— 4
s L R R 3
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Figure 8.8 Intensities of vanous e-decay angulay mamentum componenis (n the
decay of “Es. Fer ¢, =& and higher, (he Infensities are mat known but are
prasumably negligibly small. From the results of a study of spinaligned o decays by
A, J. Soinski et al., Phys, Aew. 2, 2378 (19705



260 NUCLEAR DECAY AND RADIOACTIVITY

decavs: connot change the parity, and $o 0 — 2 and 0 =4 e gol

- ————
permitle
When peither the mitial nor the final states have spin 0, the situation is not so

&y 4 s, Foroexample, the decay
I — 2" must have odd ¢, (hecause of the change in parity), and the angular
midinentum coupling rules require ) = ¢, < 4, Thus it is possible 1o have this
decay with ¢, = 1 or 3. The next quesiion thal oeeurs is whether £, = 1 or Lo=3

5 Tavored and hy low mycht Dur previous discussion would lead os to suess (o]

the tfuu = | intensity 15 roushly an order of magniinde geeater thian the £o=13
intensity. However, measuring only the energy or the intensity of the decay oives

s no inf wit how the ol deg s il g the
_possible values of ¢, Ta _Lnikc the determination ol the relative contributions of
e diiferent ¢ values, 1115 necessary to measure the anzolar distibution of the o
particles. The emission of an ¢ = 1 & particle is governed by a r'mj
¢~ 3 u decay 15 cmillcd with_a distpbution gccording o Yo(d, ¢, 1T we
“Tevermne The spanal distibution of these decays, we could i primeTe de-
termine the relative amounts of the different ¢ values. T
— To do this cxperiment we must fiest align the spins of our a-radioactive nucle,
such ds by aligning their magnete dipole or electrie quadrupole moments m a
magnenc licld or in a erysalline clectee field gradient. Keeping the spins aligned
requires that the nocket must be cooled (o o lempersture ot which the thermal
malion is net sufficient o destroy the alignments gencrally femperatures helow
(K are requited (that is, less than 040 degree above the absolute zera of
temperniure! ),

As an example of such an experiment, we consider the decay of ™'Es to states
of the ground-state rotational band of *™Bk. The possible ¢ values are indicated
in Figure 8.8: and the results of measuring the w-particle angular distribitions
help us to determine the relative contribution of the different values of 7,

Figure 8.9 In 4 detormed nucleus, o particles escaping from the poles anter (he
Coulomb barrier at the larger separation o', and must therefore penetrate a lowar,
thinner barsier. It s therefore more probable (o observe emission from the poles
than fromm the egquator
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':i,“""'{ Figure 3.10 Intensity distnbution of o parficles emifted trom the déformed
LS muclaus &t the center af the figure. The polar plot of intensity shows a pronounced
angular distribution effect,

Since many a-emitumg nucle are deformed, these .muul i disteibution meas-
urcments can also helpus 0 answer andiDer GUes y o siable
profate (elongated) ooclews, will more o’s be emiited from e m:-]i:& o1 [mm the
wquator; Furure B9 sugoecsty a pessihle answer 1o 1his t[&S_Ig_I_I]_:_‘.LL_,U_,_LJ.L:__L,r
radins of the poles The o particle Teels o wealier Coulomb potental and must
therefore penctrate g thinner and lower barmer. We therefore expect that polar
crmission eught o he more likely than equaterial emission. Figaee 8,10 shows the
anguiar distribution of « crussion relilive o the sytmetry axis, You can see thal
eritssion [rom the poles is 3-4 tmes mare |‘.-|nh}h|L than emission from the
eyualon, exaetly as we expect on the bugis of the pnli_mlal.

[ 8.6 «DECAY SPECTROSCOPY
I'he linal topee in oy s What can we learn ahout the
eéncray Jevels of nucler by si0
he Les wommider, Tor example, Cthe 3 veny ol P Fm o devels ol 2L (The
wir, levels of M1 are also populated i euy ol s but the half-life of
Aleg think decay i so short, 47 min, thae® is moere difficull o use asoa detailed probe
ol the level strecture of 70T




