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Prompted by the level of accuracy now being achieved in tests of the unitarity of the CKM matrix,
we consider the possible modification of the Fermi matrix element for the β-decay of a neutron,
including possible in-medium and isospin violating corrections. While the nuclear modifications
lead to very small corrections once the Behrends-Sirlin-Ademollo-Gatto theorem is respected, the
effect of the u−d mass difference on the conclusion concerning Vud is no longer insignificant. Indeed,
we suggest that the correction to the value of |Vud|2 + |Vus|2 + |Vub|2 is at the level of 10−4.

I. INTRODUCTION

The unitarity of the Cabbibo-Kobayashi-Maskawa (CKM) matrix, U , is a fundamental aspect of the Standard
Model and any deviation would represent clear evidence of new physics. The most accurate test of unitarity involves
the (11) element of U†U [1–4], namely

|Vud|2 + |Vus|2 + |Vub|2 = 0.99995± 0.00061 . (1)

This remarkable result is primarily a triumph of decades of precise studies of super-allowed nuclear β-decay, which
at the present time yields a more accurate value of Vud, namely Vud = 0.97425 ± 0.00022, than studies of the free
neutron.

In the light of the remarkable level of accuracy that has been obtained, as well as the improvements anticipated in
the near future, we feel that it is timely to address once more the issue of two corrections which are little discussed.
The first issue concerns the effect of the mean scalar field in the nucleus. In Ref. [5] it was shown that the difference
between the radius of a neutron and a proton would grow with density and it was then claimed that this would lead
to a violation of the Behrends-Sirlin-Ademollo-Gatto [6, 7] (BSAG) theorem. This result, which was a consequence
of an incorrect application of the constraint equations in the bag model, is wrong. Indeed, suppose that the u and d
masses are equal in a nucleon immersed in an isoscalar scalar field. As mu and md move apart the BSAG theorem
must apply whatever the scalar field and one must not obtain a correction to the Fermi matrix element linear in
mu−md. Of course, the coefficient of the term in (mu−md)

2 may change and we estimate this effect here. It is very
small.

On the other hand, when we calculate the change in the Fermi matrix element in a manner consistent with BSAG,
it turns out that at the physical value of mu −md it is no longer totally negligible in comparison with the current
errors on Vud. The reduction in the overlap of the u and d wave functions turns out to be of order 2× 10−5. Finally,
we combine this calculation with an earlier estimate of the effect of pion mass differences carried out using chiral
perturbation theory, in order to obtain a total correction. When applied to the unitarity test in Eq. (1), the total
correction amounts to about 1.2× 10−4.

As a final note on the possibility of a genuine correction associated with the nucleon decaying in-medium, we point
out that the relatively small isovector scalar potential (in the QMC model associated with the δ meson) expected in
nuclei with N 6= Z will serve to effectively increase the value of md −mu by an amount Vδ. The latter may be as
large as 4 or 5 MeV in a heavy nucleus and this could produce a decrease in the apparent value of Vud as large as
2× 10−5, depending on the neutron-proton asymmetry of the particular nucleus. While for the present this is below
the level at which it could be detected it is a systematic error which may need to be accounted for in the near future.

II. EXPLICIT CALCULATION

In terms of the quark field isodoublet ψ = (ψu, ψd), the Fermi operator for β decay is

F± =

∫
d~rψ†τ±ψ
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It is related to the generators (Tα, α = 1, 2, 3) of the isospin transformations

Tα =

∫
d~rψ†

τα

2
ψ,

which are conserved by strong interactions in the isospin symmetry limit. In the following we assume that the quark
mass difference δm = md−mu is the only source of isospin breaking. So we write the exact Hamiltonian of the strong
interaction as

H = H0 + v = H0 +
δm

2

∫
d~rψ̄τ3ψ,

where H0 is the isospin symmetric part: [H0, T
α] = 0. Even in the presence of the symmetry breaking term v the

isospin generators satisfy the current algebra relations

[Tα, T β ] = iεαβγT γ

and combined with the fact that [H,Tα] ∼ δm this leads to the BSAG theorem for the Fermi matrix element:

F+ =< p|F+|n >= 1 +O(δm2) .

We wish to estimate how the overlap defect ∆ = 1− F+ changes when the neutron is in the nuclear medium and
the challenge is to do that in a way consistent with BSAG. When we naively use the bag model to compute F+, as
originally done in the QMC model, we have the problem that the bag radius depends on the flavor content. As it
changes during the n → p transition, there is a lack of orthogonality between the eigenmodes of the initial and final
bag and this leads to an overlap defect of order δm. Clearly this is an artefact of the static bag model which, by
definition, cannot handle a radius which changes with time, as is the case in a β decay.

Since this overlap artefact arises from the small mass difference δm the correct approch is to start with the isospin
symmetry limit and use the bag model only to compute the deviation from unity. We then find that this deviation is
explicitly of order (δm)2 – as it should be. Higher order deviations can also be computed in this framework but we
stop at order (δm)2, which is quite sufficient for our purpose.

We denote as |Nα,mτ = ±1/2 >, the eigenstates of H0 with isospin 1/2.

H0|Nα,mτ = ±1/2 >= Mα|Nα,mτ = ±1/2 >

The nucleon corresponds to α = 0. The exact proton and neutron states are |N,mτ > such that

H|N,mτ >= M(mτ )|N,mτ >

Let P be the projector onto |N0,mτ = ±1/2 > and Q = 1− P. We have

|N,mτ >=
√
Z

(
1 +

Q

M0 −H0
v + . . .

)
|N0,mτ >

with

Z = 1− < N0|v
Q

(M0 −H0)2
v|N0 > +O(v3)

independent of mτ .
Using F+|N0,−1/2 >= |N0, 1/2 > we have, up to O(v3) contributions:

F+ = < N,
1

2
|F+|N,−1

2
>

= Z +
∑
α 6=0

< N0,
1

2
|v 1

(M0 −Mα)2
|Nα,

1

2
>< Nα,−

1

2
|v|N0,−

1

2
>

The terms linear in v vanish because F+ commutes with H0 and hence with Q. From the isospin structure of the
pertubation we have < Nα,− 1

2 |v|N0,− 1
2 >= − < Nα,

1
2 |v|N0,

1
2 >. So the contribution from the excited states adds

to that in Z and we end with

F+ = 1− 2 < N0|v
Q

(M0 −H0)2
v|N0 >
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Since the overlap defect, 1 − F+, is explicitly of order (δm)2, we can use the (isospin symmetric) bag to finish the
calculation. If we denote as ωα the energies with the same quantum numbers as the nucleon we get

F+ = 1− 3δm2

2

∑
α6=0

(
< α|γ0|0 >
ωα − ω0

)2

with

< α|γ0|0 >=

∫ R

d~r φ†αγ0φ0 ,

where φα are the normalized eigenmodes of the cavity of radius R with quark mass m∗ = m̄− gqσσ and σ is the mean
scalar field in the medium, as calculated for example in the QMC model [8–10]. In practice we can set m̄ = 0. Note
that the nuclear vector fields simply shift the energy scale and cannot change F+.

If we denote by Ωα/R the energy (positive or negative) of the mode α, the eigenmode is

φα =

(
fα(r)

i~σ.r̂gα(r)

)
χ√
4π

with

fα(r) = Nα
1

r
sin
[√

Ω2
α − (m∗R)2

r

R

]
gα(r) = Nα

R

(Ωα +m∗R)r(
1

r
sin
[√

Ω2
α − (m∗R)2

r

R

]
−
√

Ω2
α − (m∗R)2

R
cos
[√

Ω2
α − (m∗R)2

r

R

])

and N the normalization constant such that ∫ R

0

r2dr
(
f2α + g2α

)
= 1 .

The energy is determined by the boundary condition f(R) = g(R), that is

(Ωα +m∗R) sin
[√

Ω2
α − (m∗R)2

]
= sin

[√
Ω2
α − (m∗R)2

]
−
√

Ω2
α − (m∗R)2 cos

[√
Ω2
α − (m∗R)2

]
.

In the following we assume that m∗R is larger than the critical value −3/2 at which Ω0 = 3/2. This is not a restriction
in normal nuclei. The scalar matrix element is then

< α|γ0|0 >=

∫ R

0

r2 (fαf0 − gαg0) dr .

We show the resultant overlap defect as a function of density for nuclear parameters [9] in Fig. 1. The u − d mass
difference has been set to 5 MeV, which is appropriate to the MIT bag [11]. The overlap defect changes by only a
few times 10−6 as the density varies from zero to nuclear matter density.

III. DISCUSSION

Although the variation of the Fermi matrix element with density is small, we note from Fig. 1 that the intercept at
zero density is around 1.94× 10−5, which is only a factor of 10 smaller than the current error quoted for Vud. While
such a deviation from unity for the hadronic form factor is carefully handled in the s → u transition, it seems to
receive little attention in the literature in the d→ u transition. Indeed, we found only the discussion by Kaiser[12], in
the framework of chiral perturbation theory. That work reported a total reduction from the mass difference between
charged and neutral pions of about 4 × 10−5. The additional contribution from the difference between the π0nn
and π0pp coupling constants, which is of order 0.4% [13], produces a negligible defect, well below 10−6. The pionic
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FIG. 1: Deviation below unity of the vector matrix element for the transition neutron to proton, as a function of the density
of isoscalar nuclear matter.

correction of Kaiser and the correction from the valence quark overlap calculated here are independent and hence the
total correction is δgV = 6×10−5. Thus one should increase the value of Vud deduced from the analysis of super-allowed
Fermi β-decay by this amount. As noted earlier, this amounts to an increase in the value of |Vud|2 + |Vus|2 + |Vub|2
by around 1.2× 10−4, which is only a factor of 5 below the error quoted in Eq. (1).

While the absence of a sizeable correction to gV in-medium is reassuring, we note that there is a genuine correction
which has so far been ignored, involving the isovector mean scalar field. This is often ignored because the coupling
is so much smaller than that for the isoscalar case, but if the mean isovector scalar field felt by the quark is τz

2 Vδ,

the isospin breaking term will be proportional to (md − mu + Vδ)
2. This could potentially double the deviation

associated with the quark mass difference, depending on the neutron excess and structure of the particular nucleus
under consideration. It will be interesting to explore this effect quantitatively in future as well as to investigate the
model dependence of isospin breaking term calculated here within the MIT bag model.
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