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Abstract : Corrections to the superallowed beta decay matrix elements are evaluated in 
perturbation theory using the notion of the isovector monopole resonance. The 
calculation avoids the separation into different contributions and thus presents a 
consistent, systematic and more transparent approach. Explicit expressions for cδ as a 
function of the mass number A  are given. 
 
 
 
 
                I  INTRODUCTION 
 
 
  One of the recent activities in nuclear structure are the attempts to determine the 
corrections one has to introduce in the evaluation of the beta-decay matrix elements for 
super-allowed transitions in  , 1=T =zT 1+   (or 1−=zT  ) nuclei  [ 1,2] . 
This is considered to be an important issue because using the measured ft values one can 

relate these to the u-quark to d-quark transition matrix element (m.el.)  in the 
Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the Standard Model (SM) this matrix 
satisfies the unitarity condition, that is the sum of squares of the matrix elements in each 
row (column) is equal to one : 
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1222 =++ ubusud VVV                                                                                   (1) 

 
Departures from 1 may indicate physics not described by the SM. 
   In order to use the experimental ft values to determine   one has to introduce 
corrections [1-3]. There is a class of important radiative corrections which we will not 
treat here. Discussions of these can be found abundantly in the literature [1-3]. 

udV

The second type of correction, that is usually termed as the isospin symmetry breaking 
term, denoted as cδ  and defined by the following equation: 
 

( cFF MM δ−= 1
202 )                                                                             (2) 

 
where  is the physical Fermi matrix element: FM
 

21 ΨΨ= +TM F                                                                                    (3) 
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1Ψ  and 2Ψ  are the parent and daughter physical states. The symbol  stands for 

the Fermi matrix element obtained in the limit when in the Hamiltonian all the charge-
dependent parts are put to zero, and the wave functions are eigenstates of the charge-
independent Hamiltonian. 

0
FM

The calculation of cδ is usually done by breaking it up into several contributions that 
result from the inclusion of charge-dependent terms in the Hamiltonian of the nucleus. 
This separation into different types of contributions is model dependent. As pointed out 
recently [4] the approach taken in a number of studies [1, 2] used the notion of analog 
spin [5], (also called the W -spin), instead of isospin, and this complicates matters 
because in eq. (2) the isospin raising operator appears and not the . +W
  In the present approach we start from a charge-independent Hamiltonian so that the 
matrix element in eq. (1) is exactly T2 and we then treat the Coulomb force in 
perturbation theory. In the way we approach the problem there is no need to break up the 
contribution of the Coulomb interaction into various separate components. All the effects 
of Coulomb mixing (such as isospin mixing, the change in the radial part of the wave 
functions, etc) are taken into account in a single term. (Some aspects of this approach 
have already been presented in the past [6], [7]).  
 
 
                   II COULOMB MIXING 

 
    We start by introducing a nuclear charge independent Hamiltonian which does not 
contain any charge dependent parts- . The eigenstates of this Hamiltonian with isospin  0H
 T  and  will be denoted as zT zTT ,  and: 
 

zTz TTETTH ,,0 =                                                                                   (4) 
 
The  components with different  values are degenerate. ,12 +T zT
The action of the isospin lowering and raising operators, ,  gives: −T ,+T
 

1,2, −=− TTTTTT  ;  TTTTTT ,21, =−+                                   (5) 
 
We now add to the charge independent Hamiltonian a charge dependent part . CDV
The dominant part in the charge dependent interaction is the charge asymmetric Coulomb 
force . (While the charge-dependent components of the two-body nuclear force might 
be important in changing the relative spacing of levels in the analog nucleus its influence 
on isospin mixing  is expected  to be small). In what follows we will deal only with off-
diagonal matrix elements of the Coulomb interaction. Because of the long range nature of 
the Coulomb force, the prevailing part will be in such cases the one-body part. 

CV

 
As a good approximation we take the potential of a uniformly charged sphere. 
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Of interest to us here is the isovector part of the potential. Any off-diagonal matrix 
element between two states of the isovector part is: 
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where  denotes the z-component of isovector monopole operator. ( )1

0M
It obvious that if the state n  is the giant isovector monopole state [8] then the above 
matrix element will exhaust much of the Coulomb sum rule [8]. 
 
We will now find in perturbation theory the effect of the charge-dependent part on the 
wave functions of the two members of the isomultiplet,  TT ,  and 1, −TT . 
 

( ) 1
1,11,1 , −

++++=Ψ NMMTT TTTTTT εε                                              (8a) 
 

( ) 1
21,111,1,112 1, −

−++−−−− +++−=Ψ NMMMTT TTTTTTTTT ηηη            (8b) 
 
 
 
where '' , zTTM ,  are the components of the isovector monopole, and where '' , zTT

2
1

2
1 1 +++= TTN εε  and  2

1
22

12 1 +− +++= TTTN ηηη                                (9) 
 
The admixtures are given in perturbation theory by the equations: 
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where is g.s. energy in this nucleus,  0E
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Here  is the energy of the analog state. 1E
One can write these as: 
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The first bracketed expression is the Clebsch-Gordan (CG) coefficient, while the second 
bracket is the reduced matrix element. The reduced matrix element for large excess 
neutron (proton) nuclei is such that the components with lower isospin have larger values 
[8]. However we will deal with two- nucleon excess nuclei (T=1, states) and in this case 
the differences are very small, so we will assume that the various reduced matrix 
elements are equal.  The energy denominators are the excitations of the isovector 
monopole components in the parent and daughter nuclei either with respect to the ground 
state or the analog state. We will denote these energies as, . i

MEΔ
The  components are split by the symmetry potential: iT +
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Where t
r

is the isospin operator of the isovector excitation. 
For the various components of the monopole excitation: 

( )( ) ( )[ 2111 −+−+++=+ TTiTiT
A
VEs

iT ]                                             (15) 

and 
 

ξ=Δ i
ME s

iTE ++ωh                                                                                  (16) 
 
where MeV and 3/141 −= Aωh ξ  is a numerical factor which depends on the model used 
to describe the isovector monopole. The range of values for this parameter is between 3 
and 4 [8].   
Introducing the values of the CG coefficients and the notation  for the reduced matrix 

element, denoting 

u

A
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  The matrix element of interest here is: 
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where: 
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It is worthwhile at this point to note that in case of complete degeneracy of the 

components of the isovector monopole state (that is when iT + 01 =V ) the result for the 
physical matrix element in eq. (1) will be T2 , the same as in the case when there is no 
charge dependent perturbation. This occurs actually when isospin mixing is not zero, and 
not necessarily negligible. It happens because the parent and daughter states can be 
related to each other via the action of the  operator in spite of the fact that the 
Hamiltonian is not charge-independent. 

+T

 
We will apply this formalism to the 1±=zT  nuclei for which experimental results exist 
for number of nuclei. The value of 1001 ≈V  MeV. The value of κ  is smaller than 1 even 
in nuclei as light as and it becomes very small for A=50. We can express all the 
above coefficients in terms of one, and we choose 

C10

1ε . Neglecting terms quadratic (or 
higher powers) in  κ  , we calculate the matrix element in eq.s (17-23) and arrive, after 
some algebra, at the expression: 
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Therefore to order , using the definition in eq. (2) we find: 2

1ε
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and using the expression for ωh  in MeV, 
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2
1ε  is the isospin admixture of the 1+T  state into the TTT z =,  ground state. This is 

commonly defined as isospin impurity. Note that cδ
2

1ε<  because the coefficient in front 
of  for the nuclei considered is less than 1. For large 2

1ε T  there is the factor 1+T  that 
enhances the value but it is cancelled by the factor  in   [8]. 1)1 −( +T 2

1ε
For  nuclei 1=T
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  We will now use different models for  introduced in the past and presented in ref. [8]. 
We will use the value 

2
1ε

ξ 3≈  and take 1001 =V MeV. Of course as we mentioned some 
models predict 3>ξ  and the value of  is not well determined and values lower than 
100 MeV are also used sometimes. However both uncertainties will not change our main 
conclusions. 

1V

 
 
          III   RESULTS 
 
    The isospin impurities in the ground state of a nucleus (or in its isobaric analog) are 
computed often using the one-body part of the Coulomb potential. The two-body 
Coulomb interaction because of its long-range is dominated by the monopole part in the 
multipole expansion. When considering off-diagonal Coulomb matrix elements, the most 
important part is the one-body matrix element involving the monopole. 
In fact, the isovector monopole matrix element between the ground state and the 
isovector monopole can be approximately written as [8]: 
 

ZMV
C 7

10 )1( =  MeV                                                                       (28) 

which for a nucleus like  is 3 MeV. Ca40

The other parts of the two-body Coulomb force cannot contribute much to Coulomb 
mixing, unless there is an accidental degeneracy between levels that mix. This of course 
is not the case for the ground state.  Coulomb mixing (including isospin mixing) is 
determined by the distribution of the isovector monopole strength.  
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         In ref. [8] studies of Coulomb mixing were presented in which the notion of the 
giant isovector monopole was extensively used. The reader is referred to this reference, 
where various models of isospin mixing via the isovector monopole are described. 
Here we use the results in [8] in order to calculate expressions for cδ . 

   As we deal with  nuclei we will take 1±=zT
2
AZ ≈  and express the dependence on 

A  only. Below are presented the results for cδ  using the four models, for the  
nuclei. 

1±=zT

The first one we employ is the hydrodynamical model of Bohr and Mottelson [9] in 
which the IVMS is the result of radial oscillations of the proton fluid against the neutron 
fluid. In this model the energy of the IVMS is very high, ξ  being more than 4.  
 
1.    The hydrodynamical model: 
 
                                                                                (29) 27100.6 Ac

−×=δ
 
     The next model we apply here is based on the Non-Energy Weighted Sum Rule 
((NEWSR).for the isovector monopole strength. For the approximate derivation of this 
sum rule see ref. [8]. The result  for cδ is given below. 
 
2.   NEWSR 
       3771067.0 Ac

−×=δ                                                                      (30) 
 
We will also use here the results for the isospin impurity obtained in [8] using the energy 
weighted sum rule (EWSR) for the isovector monopole resonance. Using the expression 
for  one finds 2

1ε
 
 
3. EWSR 
 
                                                                                  (31) 27107.5 Ac

−×=δ
 
In all three above models the IVMS is treated as a doorway state and one allows for a 
spreading width of this resonance. (Some small fraction of this strength can reach 
relatively low energies). 
 
Finally we will use the results of some simple microscopic RPA calculations of the IVMS  
In which schematic p-h interactions were used. In N>Z nuclei the separation of the two 
isospin components with T and 1+T  for the IVMS was taken into account. To obtain 
good isospin states it is necessary to include certain 2p-2h configurations in the wave 
function of the IVMS [8]. This was explicitly done and the 1+T  components of the 
IVMS were determined. Using these components the isospin admixtures were evaluated 
for a series of nuclei. A phenomenological formula for the isospin impurity was obtained 
by fitting these results for several nuclei with different masses [8]. 
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4.  Microscopic : 
 
        357100.18 Ac

−×=δ                                                                         (32) 
 
Numerical results for several masses A  and the four models are presented in Table 1. 
 
 

cδ      A       10      40       80 
Hydrodynamical    0.006%   0.1%   0.4% 
NEWSR    0.001%   0.04%   0.20% 
EWSR    0.005%   0.09%   0.4% 
Microscopic   0.009%   0.06%   0.25% 
 
Table1. Values of cδ  in  % for several mass numbers A for the 
 four models discussed in the text. 
 
 
              IV DISCUSSION 
 
 
   The spread of values for cδ  in Table 1 is within a factor of 2 for the various models 
considered. Comparing these to the results for cδ in [1, 2] one sees that our calculation 
predicts considerably lower values, by factors 2-4. When comparing the calculated cδ  to 
the ones obtained in the shell-model [3] one observes that the numbers for IMδ  (Isospin 
Mixing) from [3] are roughly in agreement with the cδ  in the present work. However, in 
[3] the ROδ  correction (termed the “radial overlap”) is large and as stated in [1-3] should 
be added to IMδ  in order to get cδ . As already emphasized the cδ  calculated here 
includes both contributions. Therefore 
our results for cδ are smaller than those in [3]. 
   Why is there this difference between the results of our approach and the ones discussed 
above? It is difficult to pinpoint exactly the reasons; one possible reason is that in the 
other works collective effects are not included. In the present work on the contrary, the 
mixing with IVMS takes into account effects of collectivity.  The IVMS is a collective 
excitation and because of the repulsive nature of the particle-hole interaction in the 
isovector mode it is shifted to higher energies and its strength is reduced. This leads to 
reduced Coulomb mixing both, in the proton wave function and in the isopin impurity of 
the isospin quantum number.  
       The question of using the analog spin W  versus the use of isospin T  in some 
calculations of cδ  [1, 2] was raised recently in ref. [4]. In the analog spin formalism the 

 operator, for example, changes a neutron in a neutron orbit into a proton occupying 
the corresponding proton orbit which is distorted by the Coulomb potential. The operator 

−W
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−T , on the other hand, changes the neutron charge but does not change the orbit. 
(Analogously for the  and  operators). As mentioned the operator to be used in eq. 
(2) is the . In our approach we employ consistently the isospin formalism. It is worth 
noticing the Coulomb admixtures of the IVMS introduce distortions into the proton single 
particle wave functions and, as has been demonstrated, this mixing  in the isobaric analog 
state is equivalent to the formation of a W -analog state. In our approach this is a result of 
the calculation and not the starting point. The so called “radial overlap correction” is 
included in a consistent manner, avoiding double counting, without the need to use the 

-spin. 

+W +T

+T

W
      It is clearly exhibited in our approach that the correction cδ  depends explicitly on 
two quantities; the isospin impurity and the strength of the symmetry potential. Smaller 
symmetry potential leads to a smaller  correction. cδ
   It is important to asses the uncertainties in our treatment of cδ . As already mentioned 
the symmetry potential strength is not well determined. This parameter determines the 
splitting between the various isospin components. There is another factor that influences 
this splitting, namely the different degree of collectivity of these isospin components. In 
large neutron excess nuclei this might alter considerably the spacing [8], but in 1±=zT  
nuclei the collectivity of the various components of the IVMS is similar and the effect on 
the spacing is small. The IVMS has a spreading width and this could bring some fraction 
of strength to lower energies and influence the result. Also the centroid energy 
represented by the factor ξ  contains some degree of uncertainty. The use of a simplified 
charge distribution (homogenous sphere) and the neglect of short-range non-Coulomb 
charge-dependent interactions might affect the results somewhat. There are possibly a 
number of other small uncertainties. If we rely on an intuitive estimate that the maximal 
uncertainty is 50%, still our results for cδ are considerably lower than the ones found in 
previous studies. However, the effect of these reduced values on  will not be that 
strong because the radiative corrections (which we do not treat here) dominate. 

udV
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