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Isobaric multiplet mass equation for A = 7 and 8
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The isobaric multiplet mass equation (IMME) relates the
mass excesses of the members of an isobaric multiplet in terms
of their isospin projection TZ . To the extent that the isospin is
a good quantum number, the energies of the multiplet should
be independent of TZ in the absence of Coulomb forces. If
two-body forces are responsible for charge-dependent effects,
Wigner found

M(T , TZ) = a + b TZ + cT 2
Z. (1)

Typically cubic and quartic terms (dT 3
Z + eT 4

Z ) are added
to the IMME to provide a measure of any deviation from
the quadratic form associated with isospin symmetry. In
general, the quadratic form (d = 0 and e = 0) provides a
good description of isospin quartets and quintets for A < 40
where the appropriate experimental masses are known [1]. The
success of IMME has lead people to use it to predict the mass
where no measurement is available and thus it is important to
understand the magnitude of deviations when they occur.

Experimentally, the A = 9 (T = 3/2) quartet is well doc-
umented as violating the IMME [1,2]. A purely quadratic fit
gives a χ2/n = 10.2 and one requires d = 5.5 ± 1.8 keV
to fit the multiplet. The use of more recent data from the
AME2011 [3] and the ENSDF [4] databases gives an enhanced
values of χ2/n = 15.3 and a consistent value of d = 6.3 ±
1.6 keV.

For heavier systems, there is good evidence of a violation
for the A = 32 (T = 2) quintet [5–7] which requires a small
but statistical significant cubic term (d ∼1 keV) to fit the
multiplet. This small d term can be explained from isospin
mixing with T = 1 states [8]. A deviation for the A = 33
quartet has also been reported with d = −2.95 ± 0.90 keV [9].

While a quantitative understanding of deviations to the
IMME for the lighter systems has not been achieved, such

deviations can be expected from either isospin mixing or
from the expansion of the single-particle wave functions near
threshold [2]. The A = 9 quartet has two members which are
particle unbound. If continuum effects were the only isospin
symmetry-breaking mechanism, then one would expect larger
deviations for the multiplet associated with the first excited
state where all levels are ∼2.3 MeV less bound. However,
the cubic coefficient in this case (d = 3.5 ± 3.4 keV) is less
than the ground-state value. In this Rapid Communication,
we will investigate the IMME for two other multiplets with
particle-unbound members: the A = 8 quintet and the A = 7
quartet. In both of these cases, the proton-rich members
have negative binding energies and so the single-particle
wave functions change considerably across the respective
multiplets.

In the 1998 systematic study of isospin multiplets in
Ref. [1], the A = 8 quintet was also found to deviate from
the quadratic IMME with χ2/n = 15.5. However, in this 1998
study, an accidental error led to the use of an uncertainty for
the 8LiIAS mass which is much smaller than the correct experi-
mental value [10]. In view of this and new mass measurements
since 1998, it is useful to reevaluate the IMME for A = 8. In the
present Rapid Communication, we incorporate the new mass
measurement for 8Cg.s. determined from the invariant mass of
its five decay products (4p + α) [11]. In the same experimental
study, a new measurement was also made for 7Bg.s., allowing
us to also reexamine the A = 7 quartet. For the 7B case the
mass excess was determined from the invariant mass of its
four decay products (3p + α). The accuracy of both of these
measurements can be judged from the excellent reproduction
of the mass excess of 6Be associated with the 2p + α channel.
These new mass measurements are significantly smaller than
the previous values listed in the AME2011 data base, by 64
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TABLE I. Mass excesses for the A = 8 isospin T = 2 quintet and the coefficients obtained from quadric, cubic, and quartic fits.

Nucl. TZ Mass excess a, b, c a, b, c, d a, b, c, d, e

(keV) (keV) (keV) (keV)

He 2 31609.7 (1) a = 32433.9(17) a = 32435.5(17) a = 32435.7(18)
Li 1 31768.0 (55) b = −875.3(43) b = −898.1(63) b = −896.6(75)
Be 0 32435.7 (18) c = 231.6(22) c = 220.3(32) c = 217.7(75)
B −1 33540.5 (90) χ 2/n = 12.3 d = 11.1(2.3) d = 10.4(3.1)
C −2 35030 (30) χ 2/n = 0.1 e = 0.8(2.2)

and 190 keV for the 8C and 7B nuclei, respectively. In addition
to these data from invariant mass determinations, we have also
included a very recent, highly accurate, mass measurement of
8He [12] and the average of two recent measurements of the
7Heg.s. mass [13,14]. Apart from these masses, the remaining
masses are identical to those used in the 1998 study. The
experimental mass excesses for the A = 8 quintet and the
A = 7 quartet are summarized in Tables I and II.

The results of fits to these data as also listed in these tables
and the residuals from quadratic fits are plotted in Figs. 1
and 2. For A = 8 case, the quadratic fit does not reproduce
the data and gives a χ2/n = 12.3. The statistical probability
that this is consistent with a quadratic fit is ∼10−5. To fit
this data, one requires a cubic term with d = 11.1 ± 2.3 keV.
The addition of a quartic term does not improve the fit to
any significant extent (see Table I). The magnitude of d is
approximately twice as large as that for the A = 9 quartet,
indicating that the size of the deviation from the IMME is
larger. If the old mass excess from the 1998 review is used for
8C, then we obtain χ2/n = 8.5 and d = 7.7 ± 2.0 keV.

For the A = 7 quartet, the quadratic fit gives χ2/n = 4.7
and the significance of the deviation is not as strong as for the
A = 8. However, if the mass dependence is truly quadratic, the
statistical probability of finding a χ2/n equal or greater than
this value is only 3%. The cubic coefficient required to fit the
A = 7 data is d = 47 (22) keV, which is very large, however,
the error is also large.

Although the possible deviation for the A = 7 quartet is
large, there are uncertainties in applying the IMME as both the
7Bg.s. and 7Heg.s. line shapes are asymmetric [11,13,14] and
the 7B width is quite wide, � = 801 keV [11]. It is not clear
what characteristic mass associated with these distributions
should be used in the IMME. Some theoretical guidance on
this issue would be useful. The values listed in Table II are
the resonance energies obtained from R-matrix fits [15] with
the background term chosen such that the shift term � is zero
at the resonance energy.

In summary, we demonstrate that the A = 7 quartet and
the A = 8 quintet show significant deviations from quadratic
isobaric multiplet mass equation. The case for the A = 8 is
particularly strong. Large cubic coefficients, d = 11.1 ± 2.3
(A = 8) and 47 ± 22 keV (A = 7), are required to fit the
experimental masses. Together with the A = 9 quartet where
deviations from the IMME are well known, these multiplets
contain particle-unstable members, suggesting that this may
be an important ingredient in understanding the deviations.

TABLE II. Mass excesses for the A = 7 isospin T = 3/2 quartet
and the coefficients obtained from quadric and cubic fits.

Nucl. TZ Mass excess a, b, c a, b, c, d

(keV) (keV) (keV)

He 3/2 26506 (10) a = 26411 (24) a = 26412 (24)
Li 1/2 26148 (30) b = −540 (9) b = −642 (48)
Be −1/2 26779 (30) c = 206 (13) c = 204 (13)
B −3/2 27677 (25) χ 2/n = 4.7 d = 47 (22)

ZT
−2 0 2

) 
[k

eV
]

2 Z
+c

T
Z

 M
− 

(a
+b

T
Δ −100

0

100
C8 B8 Be8 Li8 He8

A=8

FIG. 1. (Color online) Deviation from the fitted quadratic form
of the IMME for the A = 8 quintet.
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FIG. 2. (Color online) Deviation from the fitted quadratic form
of the IMME for the A = 7 quartet.
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