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The first excited 0+ state in 12C (Hoyle state) has been predicted to be a dilute self-bound gas of
bosonic α-particles, similar to a Bose-Einstein condensate. I order to clarify this conjecture precise
electron scattering data on form factors of the ground state and the transition to the Hoyle state are
presented and compared with results of the Fermionic Molecular Dynamics model, a microscopic
α-cluster model and an α-cluster model with reduced degrees of freedom (in the spirit of a Bose-
Einstein condensed state). The data indicate clearly a dilute density with large spatial extension for
the Hoyle state. A closer inspection of the model calculations, which reproduce the experimental
findings, reveals that the term Bose-Einstein condensation of three α-particles must not be taken
too literally.

PACS numbers: 25.30.Dh,21.10.Dr,21.60.Gx,27.20.Gn

The production of the element carbon is a key reaction
of stellar nucleosynthesis. Its most abundant isotope,
12C, is created in the fusion of three α particles through
the formation of the short-lived 8Be ground state as in-
termediate state [1]. Early on, Hoyle recognized that the
observed abundance requires an accelerating mechanism
and he postulated [2] the existence of a Jπ = 0+ excited
state in 12C close to the threshold for 8Be + 4He fusion.
Indeed, such a state at an excitation energy E∗ = 7.654
MeV in 12C was experimentally confirmed soon after-
wards [3]. Despite its astrophysical relevance, to date the
production rate through the above mechanism is known
with insufficient precision only [4, 5].

In nuclear structure this so-called ‘Hoyle state’ is play-
ing a prominent role as a prototype of α-cluster states in
light nuclei. Unlike the ground state its description poses
a continuing challenge to shell model approaches. Even
the most advanced no-core calculations using very large
model spaces fail [6]. In fact, this state is not tangible in
models using a harmonic oscillator basis. On the other
hand, cluster models have been popular for describing
the spectrum of 12C (for some recent work see e.g. [7–
10]). Recently it has been pointed out that the Hoyle
state can be viewed as a dilute gas of weakly interacting
α particles resembling the properties of a BEC [11–16].

The purpose of this letter is to investigate the struc-
ture of the Hoyle state with experimental data on electron
scattering which is the ideal method to map the charge
distribution of nuclei. Extensive data up to high momen-
tum transfers q ≈ 3 fm−1 exist for elastic electron scat-
tering on 12C (see [17] and references therein) as well as
for the transition to the Hoyle state [18] including some
recent measurements [19] at the superconducting Darm-
stadt electron linear accelerator S-DALINAC extending
previous data at low q [20]. The most appropriate ex-
periment would be a study of elastic electron scattering
on the Hoyle state itself which, however, is impossible

because of its short lifetime. Instead one has to revert to
the available data summarized above.

These data are then compared with the predictions
of different theoretical models. The first model is the
Fermionic Molecular Dynamics (FMD) approach [21]
which spans the many-body Hilbert space with Slater de-
terminants built on single-particle wave packets of Gaus-
sian shape. To recover the symmetries of the Hamil-
tonian the intrinsic Slater determinants are projected
on angular and total linear momentum. The effective
nucleon-nucleon interaction VUCOM employed here is de-
rived from the realistic Argonne V18 potential by means
of the Unitary Correlation Operator Method (UCOM)
[22] which explicitly treats the effects of short-ranged re-
pulsive and tensor correlations. It is augmented with a
phenomenological correction (total strength about 15%
of VUCOM) adjusted to reproduce the binding energies of
4He, 16O, 40Ca, 24O, 34Si and 48Ca as well as the charge
radii of 4He, 16O and 40Ca. This model reproduces many
features of nuclei up to mass number A ≈ 60.

The variational parameters of the FMD wave functions
are the parameters of the single-particle states. The
FMD states are very flexible and can describe cluster
states as well as shell-model like configurations. In the
present calculation the many-body basis consists of 16
intrinsic states obtained in a variation after angular mo-
mentum projection procedure (projecting on 0+ and 2+

states) with constraints on the radii and additional 57
states that have been iteratively selected to minimize the
energies of the first three 0+ states. These states are
chosen out of a set of 42 FMD states obtained in varia-
tion after parity projection with constraints on radii and
quadrupole deformation and 165 explicit α-cluster trian-
gle configurations. An α cluster is defined here as a prod-
uct of four Gaussian single-particle states with total spin
and isospin equal to zero. The Antisymmetrized Molec-
ular Dynamics (AMD) model (see [23] for a recent dis-
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cussion of 12C) uses similar wave functions but imposes
a fixed width parameter for the Gaussian wave packets.
As shell-model like states and cluster states prefer dif-
ferent widths in 12C this is an important downside when
compared to the FMD approach.

In a second model (labeled α-cluster) we restrict our-
selves to the α-cluster triangle configurations. Conver-
gence for the first three 0+ states is achieved with a sub-
set of 55 states. In this case we essentially implement a
microscopic α-cluster model using Brink-type [24] wave
functions. However, with the α-cluster states alone a sig-
nificant underbinding is observed when the FMD Hamil-
tonian is used. Therefore, we employ the modified Volkov
V2 interaction proposed in [25] which is fine-tuned to
reproduce the ground and Hoyle state energies in 12C
within an α-cluster model. One has to keep in mind that
this interaction is especially tailored and can not be used
in other nuclei, for example for 16O it already leads to
an overbinding of about 25 MeV. The addition of a spin-
orbit force would destroy the reproduction of the 12C
ground state properties. Therefore the predictive power
is limited.

The same interaction is used in the third model (la-
beled ‘BEC’) by Funaki et al. [12]. Here the number
of degrees of freedom is reduced even further by using
basis states where the center-of-mass coordinates of all
the α-clusters are given by the same (deformed) wave
function like in a Bose-Einstein condensate. Of course
the state has to be antisymmetrized finally. The bosonic
nature of the wave function therefore only survives when
the density of the α clusters is low enough such that an-
tisymmetrization is not important. This is certainly not
the case for the ground state and only to a certain ex-
tent for the Hoyle state. A detailed analysis [26] within
an α-cluster model, using a slightly different interaction,
shows that the probability to find all α clusters in the
same S-wave orbit is about 30% for the ground state and
about 70% for the Hoyle state. Thus the attribute ‘Bose-
Einstein condensate’ should not be taken too literally.

A comparison of the three models for energies, radii
and transition strengths in 12C is shown in Table I. The
α-cluster results agree very well with the ‘BEC’ approach
and also with resonating group method (RGM) calcula-
tions [25]. All models give very large radii for the Hoyle
state as well as for the 0+

3 and the 2+
2 state. In the clus-

ter models the absence of spin-orbit forces leads to the
well known underestimation of the 2+

1 energy indicating
again their schematic nature.

To quantify the degree of α-clustering within the FMD
wave functions, which are obtained by a multiconfigura-
tion mixing calculation containing shell-model like and
cluster states, we calculate the overlap of the eigenstates
with the α-cluster model space. For that we construct
a projection operator Pα using the 165 α-cluster tri-
angle configurations. We obtain 〈0+

1 |Pα|0
+
1 〉 = 0.52,

〈0+
2 |Pα|0

+
2 〉 = 0.85, 〈0+

3 |Pα|0
+
3 〉 = 0.92, 〈2+

1 |Pα|2
+
1 〉 =

TABLE I: Energies, radii and transition strengths. Units of
energies are MeV, of radii fm, M(E0) efm2, and B(E2) e2fm4.
Data are from [27], ‘BEC’ results from [12].

Exp FMD α-cluster ‘BEC’

E(0+
1 ) -92.16 -92.64 -89.56 -89.52

E∗(0+
2 ) 7.65 9.50 7.89 7.73

E(0+
2 ) − E(3α) 0.38 0.44 0.38 0.26

E∗(0+
3 ) (10.3) 11.90 10.33

E∗(2+
1 ) 4.44 5.31 2.56 2.81

E∗(2+
2 ) (11.16) 11.83 9.21

E(3α) -84.89 -83.59 -82.05 -82.05

rcharge(0
+
1 ) 2.47±0.02 2.53 2.54

r(0+
1 ) 2.39 2.40 2.40

r(0+
2 ) 3.38 3.71 3.83

r(0+
3 ) 4.62 4.75

r(2+
1 ) 2.50 2.37 2.38

r(2+
2 ) 4.43 4.02

M(E0, 0+
1 → 0+

2 ) 5.4 ± 0.2 6.53 6.52 6.45

B(E2, 2+
1 → 0+

1 ) 7.6 ± 0.4 8.69 9.16

B(E2, 2+
1 → 0+

2 ) 2.6 ± 0.4 3.83 0.84

0.67 and 〈2+
2 |Pα|2

+
2 〉 = 0.99. A restriction to α-cluster

configurations is obviously not sufficient for a description
of the ground state. The spin-orbit force breaks the α-
clusters and a large shell-model component is found in
the FMD ground state. The Hoyle state on the other
hand is dominated by α-cluster contributions but still
has a sizable component of shell-model nature.

In Fig. 1, we compare calculated electron scattering
form factors with measured data and show the corre-
sponding charge densities for the ground state, the Hoyle
state, and the transition between them. The data are
given as the ratio of the measured cross section to the
Mott cross section. The comparison between experimen-
tal and theoretical cross sections is performed in distorted
wave Born approximation (DWBA) [29]. Although the
transparent relation between form factors and charge
densities as Fourier transforms of each other obtained
in plane wave Born approximation (PWBA) is lost, it is
preferred because the corrections are sizable, in particu-
lar at higher momentum transfers.

In the FMD and the α-cluster model we calculate the
densities of point-like protons and neutrons which are
then folded with proton and neutron charge densities to
obtain the densities shown in Fig. 1. The same proton
and neutron charge densities are used to calculate the
densities from the matter densities obtained within the
‘BEC’ model [16].

A good reproduction of the ground state form factor is
a precondition to draw sound conclusions on the charge
distribution of the Hoyle state from the transition form
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FIG. 1: (Color online) L.h.s.: FMD (dashed lines), α-cluster (solid lines), and ‘BEC’ (dashed-dotted lines) predictions of the
charge form factors in 12C in comparison to experimental data (full squares). Top: elastic scattering on g.s., middle: transition
to the Hoyle state, r.h.s.: elastic scattering on the Hoyle state. R.h.s.: Corresponding charge density distributions. ‘BEC’
results are from [16].

factor because both states enter the transition matrix
element on equal footing. As can be seen from Fig. 1 the
ground state form factor is described well by the FMD
model. The results for the α-cluster and ‘BEC’ models
are almost identical and show a slightly worse agreement
with the data. Modifications by neglected contributions
from meson exchange currents are expected to be small
[30, 31].

The α-cluster model and the ‘BEC’ very nicely repro-
duce the shape of the transition form factors but some-
what underestimate the magnitude of the form factors.
The FMD model on the other hand gives a good descrip-
tion of the first maximum but has its node at q = 2.2fm−1

while the experimental minimum is at q = 2.0 fm−1. The
differences in the transition form factors are mainly due

to differences in the Hoyle state. The FMD charge den-
sity of the Hoyle state has a smaller surface thickness
and a lower central density, leading to a stronger oscil-
lation in the transition density. These differences also
show up in the form factors of the Hoyle state where the
models show noticeably differences at medium and high
momentum transfers. We suspect that minor modifica-
tions of the FMD interaction, taking α-α scattering data
into account, could result in an improved description –
investigations are under way.

Charge densities and form factors are essentially one-
body observables and do not reflect many-body correla-
tions existing in the many-body state. Therefore the form
factors provide no direct information on the α-cluster
structure, neither in the ground state nor in the Hoyle
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state. However, as shown below a cluster nature of the
Hoyle state is also supported by the FMD calculations,
where the Hamiltonian can choose between shell-model
like and cluster configurations. An analysis of the FMD
Hoyle state shows that its leading components displayed
in Fig. 2 are cluster-like and resemble 8Be + α config-
urations. Two of the α particles are typically close to
each other and the third one is further away. The ground
state is dominated by more compact configurations which
have a large overlap with shell-model states (see r.h.s of
Fig. 2). In the 0+

3 and 2+
2 states we also find the leading

components to be of 8Be + α nature but featuring more
prolate open triangle configurations.

To summarize, high precission electron scattering data
for elastic scattering and the transition to the Hoyle state
at E∗ = 7.654 MeV with Jπ = 0+ serve as an important
test of the nature of the 0+ states in 12C. The data are
in accord with a Hoyle state that has low density, in
the centre about half of that of the ground state, and a
large spatial extension with a rms-radius that is about 1.5
times bigger than that of the ground state. These type
of density profiles are predicted by Fermionic Molecular
Dynamics and α-cluster models. While the latter more
schematic models presuppose the α-structure, FMD does
not but still predicts the Hoyle state to be dominantly
composed of three weakly bound α particles. The FMD
calculations also show that the relative positions of the
α-clusters are correlated mostly resembling 8Be plus α

configurations. This correlation and the fact that anti-
symmetrization is not negligible is in contradiction to a
näıve interpretation of the ‘BEC’ wave function as a true
Bose-Einstein condensate.

A final conclusion on the nature of the Hoyle state
certainly requires further experimental and theoretical
efforts. The model calculations should be extended to
test further observables like decay features or scattering
with hadronic probes. It might also be interesting to in-
vestigate the problem in other ‘ab initio’ approaches like
the Green’s Function Monte Carlo method [32]. Finally,
the Hoyle state could be a prototype for a whole class
of such states near the α-particle thresholds in light self-
conjugate 4n nuclei like in 16O [11] or even more exotic
states [33]. Electron scattering will be an indispensable
tool to resolve these questions and experimental studies
of other candidate states are underway.

We are very much indebted to H. Crannell for pro-
viding us with many unpublished (e, e′) data and to
P. Schuck and Y. Funaki for the α-cluster condensate
model results. This work has been supported by the DFG
under contract SFB 634.
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FIG. 2: (Color online) Intrinsic one-body densities of the four FMD states which contribute most to the Hoyle state and their
respective amplitudes for the ground state (0+

1 ) and the Hoyle state (0+
2 ). The fifth state, obtained by variation after projection

on angular momentum, is the leading component in the ground state. Note that the FMD states are not orthogonal.


