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12 The Hartree-Fock approximation

12.1 Properties of single Slater determinants

Before deriving the Hartree-Fock equations is it useful to give some special cases of
some diagonal matrix elements. The eigenstates of H(0) can be ordered with respect
to the total energy E(0), with the lowest energy state being the one in which all of the
particles occupy the lowest energy set of single-particle states allowed by the Pauli
principle. This lowest-energy state will be denoted by | C >. (This notation derives
from the fact that it will be associated with the closed-shell configuration.) The n
single-particle states occupied in | C > will be labeled by α, β, γ. . . . The total energy
E(C) of the state | C > is

E(C) = < C | H | C > =
∑

α

< α | T | α > +
1

2

∑

αβ

< αβ | V | αβ > . (12.1)

I will use i and j to label specific states above or below the fermi surface which
will be considered explicitly in the summations. The total energy of a system with
the configuration | C > plus one particle in the state i above the fermi surface (a
state unoccupied in | C >) is

E(Ci) = < Ci | H | Ci >

= E(C)+ < i | T | i > +
∑

α

< iα | V | iα > . (12.2)

The difference between E(Ci) and E(C) will be denoted by, ǫ(i), the single-particle
energy:

ǫ(i) = E(Ci) − E(C) = < i | T | i > +
∑

α

< iα | V | iα > . (12.3)

The total energy of a system with the configuration | C > plus particles in the states
i and j above the fermi surface is

E(Cij) = < Cij | H | Cij >

= E(C)+ < i | T | i > +
∑

α

< iα | V | iα >

+ < j | T | j > +
∑

α

< jα | V | jα > + < ij | V | ij >

= E(C) + ǫ(i) + ǫ(j)+ < ij | V | ij > (12.4)

The total energy of a system with the configuration | C > with one particle
absent in the state i (normally occupied in | C >) is

E(Ci−1) = < Ci−1 | H | Ci−1 >
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= E(C)− < i | T | i > −
∑

α

< iα | V | iα > . (12.5)

The difference between E(Ci−1) and E(C) will be denoted by, ǫ(i):

ǫ(i) = E(C) − E(Ci−1) =< i | T | i > +
∑

α

< iα | V | iα >, (12.6)

which has the same form as the single-particle energy. Finally, the total energy of a
system with the configuration | C > plus particles absent in the states i and j is

E(Ci−1j−1) = < Ci−1j−1 | H | Ci−1j−1 >

= E(C) − ǫ(i) − ǫ(j)+ < ij | V | ij > (12.7)

12.2 Derivation of the Hartree-Fock equations

In the Hartree-Fock approximation, E(C) is minimized with respect to variation of
the single-particle wave functions φi(~r ) [or equivalently with respect to φi*(~r )]. With
the coordinate space matrix elements of T and V , one obtains

∂

∂φ∗

i (~r )

{

E(C) −
∑

α

λα

∫

| φα(~r1) |
2 dτ1

}

= 0

= Tφi(~r ) − λiφi(~r ) +
1

2

{

∑

β

∫

φ∗

β(~r2) V (~r~r2) φi(~r ) φβ(~r2) dτ2

+
∑

α

∫

φ∗

α(~r1) V (~r1~r ) φα(~r1)φi(~r ) dτ1 −
∑

β

∫

φ∗

β(~r2) V (~r~r2) φβ(~r) φi(~r2) dτ2

−
∑

α

∫

φ∗

α(~r1) V (~r1~r ) φi(~r1) φα(~r ) dτ1

}

, (12.8)

where λ are Lagrange multipliers which are introduced to enforce the normalization.
Using V (~r1 ~r2) = V (~r2 ~r1), this reduces to

Tφi(~r ) +

{

∑

α

∫

φ∗

α(~r1)V (~r~r1)φα(~r1) dτ1

}

φi(~r )

−
∫

{

∑

α

φ∗

α(~r1)V (~r~r1)φα(~r )

}

φi(~r1) dτ1 = λiφi(~r ). (12.9)

This nonlocal differential equation can be used to solve for λi and φi(~r ). It can be
solved in an iterative fashion: (i) choose some initial guess for φi(~r ) and calculate the
integrals as a function of ~r, (ii) solve the differential equation for λi and φi(~r ), (iii)
recalculate the integrals, and (iv) iterate until the λi and φi(~r ) converge.
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Multiplying Eq. (12.9) by φ∗

i (~r ) on both sides and integrating gives

< i | T | i > +
∑

α

< iα | V | iα > = λi = ǫ(i), (12.10)

where the Lagrange multiplier has been equated to the single-particle energy by com-
parison to Eqs. (12.3) and (12.6). The term

∑

α

< iα | V | iα > can be identified as

the expectation value of the mean-field potential U ′.

< i | U ′ | i > = < i | UHF | i > =
∑

α

< iα | V | iα > . (12.11)

Thus, the full Hartree-Fock hamiltonian is

H = H(0) + W, (12.12)

with
H(0) =

∑

k

(T + UHF)k, (12.13)

and
W =

∑

kl

Vkl −
∑

k

UHF
k . (12.14)

The state | C > with the Hartree-Fock condition of Eq. (12.11) enforced will be
denoted by | ΦHF >. The zeroth-order and first-order matrix elements are

E
(0)
HF = < ΦHF |

∑

k

(T + UHF)k | ΦHF >=
∑

α

ǫ(α), (12.15)

and
E

(1)
HF = < ΦHF | W | ΦHF >= < ΦHF |

∑

kl

Vkl −
∑

k

(UHF)k | ΦHF >

=
1

2

∑

αβ

< αβ | V | αβ > −
∑

α

< α | UHF | α >

= −
1

2

∑

αβ

< αβ | V | αβ > . (12.16)

The total unperturbed energy can thus be expressed in several ways:

E
(0)
HF + E

(1)
HF =

∑

α

ǫ(α) −
1

2

∑

αβ

< αβ | V | αβ >

=
∑

α

< α | T | α > +
1

2

∑

αβ

< αβ | V | αβ >
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=
1

2

{

∑

α

ǫ(α) +
∑

α

< α | T | α >

}

. (12.17)

It is to be noted that the Hartree-Fock condition does not make E(1) vanish. The
advantage of the Hartree-Fock procedure is that an important class of matrix elements
< ΦHF | W | Φ > which enter into the second-order corrections vanish − namely, all
of those for which Φ differs from ΦHF by the addition of one particle above the fermi
surface and the removal of one particle below the fermi surface. These are called one-
particle one-hole, 1p-1h, configurations. The most important corrections are those in
which the Φ differs from ΦHF by addition of two-particle above the fermi surface and
the removal of two particles below the fermi surface (2p-2h configurations).

12.3 Examples of single-particle energies

The Hartree-Fock model works best for those nuclei where there is a large gap at the
fermi surface for both protons and neutrons. The total energies for the closed shell,
one-particle and one-hole configurations are the interaction energies E measured for
the respective, nuclei, where BE = −E. For example, if we take 16O as a doubly
closed shell nucleus, then energies obtained from the ground state binding energies
are:

E(16O) = E(C) = −127.619 MeV

E(17O) = E[C, 0d5/2 neutron] = −131.763 MeV

E(17F ) = E[C, 0d5/2 proton] = −128.220 MeV

E(15O) = E[C, (0p1/2)
−1 neutron] = −111.956 MeV

E(15N) = E[C, (0p1/2)
−1 proton] = −115.492 MeV

where the n, ℓ, j values are inferred from the spin-parity of the odd-even ground states.
The experimental single-particle energies for these states are thus:

ǫ(0d5/2 neutron) = E(17O) − E(16O) = −4.144 MeV

ǫ(0d5/2 proton) = E(17F ) − E(16O) = −0.601 MeV

ǫ(0p1/2 neutron) = E(16O) − E(15O) = −15.663 MeV

ǫ(0p1/2 proton) = E(16O) − E(15N) = −12.127 MeV

The single-particle energies for other states can be inferred form the energies E asso-
ciated with excited states in the A=15 and A=17 nuclei.

It will be shown in a homework that Eq. (12.17) is in fact not satisfied by ex-
perimental data in nuclear physics, when the ǫ are taken from experiment and when
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the kinetic energies are calculated. This means that higher-order corrections to the
Hartree-Fock are important. If these corrections are taken into account by using
an effective hamiltonian, this hamiltonian will need to include three-body and/or
density dependent terms. An example is the Skyrme interaction which includes a
density-dependent interaction.
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12.4 Results with the Skyrme hamiltonian

The Skyrme approximation [1], [2] is an s− and p−wave expansion of an effective
two-body interaction together with an s−wave density dependent interaction:

VSkyrme = t0(1 + x0Pσ)δ +
1

2
t1(1 + x1Pσ) (k′2 δ + δ k2)

+t2(1 + x2Pσ)k′ · δ k +
1

6
t3(1 + x3Pσ) ρα(R) δ

+iW0(σi + σj) · k × δk + V Coul, (12.18)

where δ = δ(ri − rj), k = (1/2i)(∇i −∇j) is the relative momentum operator acting
on the wave function to the right and k′ is the adjoint of k. Pσ is the spin-exchange
operator and R = (ri + rj)/2. The form of the Skyrme interaction allows one to
calculate the potentials analytically in terms of the densities which makes the self-
consistent calculations fast.

The Skyrme interaction results in a non-local potential for protons (q = p) and
neutrons (q = n) given by Uq(r) + U ′

q(r) with

Uq(r) = t0

([

1 +
x0

2

]

ρ −
[

x0 +
1

2

]

ρq

)

+
t1
8

([

1 +
x1

2

]

[2τ − 3(∆ρ)] −
[

x1 +
1

2

]

[2τq − 3(∆ρq)]
)

+
t2
2

([

1 +
x2

2

]

[2τ + (∆ρ)] +
[

x2 +
1

2

]

[2τq + (∆ρq)]
)

+
t3
6

([

1 +
x3

2

]

ρ −
[

x3 +
1

2

]

ρq

)

ρα −
W0

2
∇ · (J + Jq)

+UCoul
q (r) + Uso

q (r)[ℓ · σ] (12.19)

and

U ′

q(r) = −∇ ·
{

t1
4

([

1 +
x1

2

]

ρ −
[

x1 +
1

2

]

ρq

)

+
t2
4

([

1 +
x2

2

]

ρ +
[

x2 +
1

2

]

ρq

)}

∇, (12.20)

where the spin-orbit potential is:

Uso
q (r) =

1

r

{

W0

2

[

d

dr
(ρ + ρq)

]

+
1

8
[(t1 − t2)Jq] −

1

8
[t1x1 + t2x2] J

}

(12.21)
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The U ′ term of Eq. (12.20) can be combined with the kinetic energy operator to
write Eq. (12.9) in terms of the a Schroedinger-like equation with an effective mass:

{

−∇ ·
h̄2

2m∗

q(r)
∇ + Uq(r)

}

φi,q(r) = ǫi,q φi,q(r). (12.22)

where the effective mass is defined by:

h̄2

2m∗

q(r)
=

h̄2

2m
+

t1
4

([

1 +
x1

2

]

ρ −
[

x1 +
1

2

]

ρq

)

+
t2
4

([

1 +
x2

2

]

ρ +
[

x2 +
1

2

]

ρq

)

(12.23)

The densities in these equations are

ρq(r) =
∑

α

| φqα(r) |2, (12.24)

τq(r) =
∑

α

| ∇φqα(r) |2 (12.25)

Jq(r) = i
∑

α

φ∗

qα(r)[σ × φqα(r)], (12.26)

ρ(r) = ρp(r) + ρn(r), (12.27)

τ(r) = τp(r) + τn(r), (12.28)

J(r) = Jp(r) + Jn(r), (12.29)

and

(∆f) =
1

r

[

d2

dr2
rf(r)

]

, (12.30)

where the derivative operates only inside the brackets.

Eq. (12.22) can be rewrittin in terms of the Schroedinger equation with an energy-
dependent potential [3]:

{

−
h̄2

2mq
∇2 + U∗

q (r, ǫ)
}

φi,q(r) = ǫi,q φi,q(r), (12.31)

where

U∗

q (r, ǫ) =
m∗

q(r)

m

[

Uq(r) +
1

2

(

d2

dr2

h̄2

2m∗

q(r)

)

−
m∗

q(r)

2h̄2

(

d

dr

h̄2

2m∗

q(r)

)2
]

+

[

1 −
m∗

q(r)

m

]

ǫi,q (12.32)
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Table 1: Values of the Skyrme parameters obtained with SKX .
Parameter SKX SKX error

α 0.5
t0 −1444.0 1.0
t1 251.3 1.9
t2 −131.4 1.2
t3 12043.9 18.1
Wo 149.4 2.7
x0 0.364 0.021
x1 0.521 0.171
x2 0.131 0.013
x3 0.088 0.051

The goal of the Skyrme HF formulation is to write the HF equations in terms
of a few parameters (the ten in Eq. (12.18)) that can be obtained from a least-
squares fit to some selected set of experimental data. In principle one would like
to derive the Skyrme parameters from the experimental nucleon-nucleon interaction.
This involves understanding the effect of the trucation of the actual many-body wave
function to the closed-shell structure assumed in the derivation. It also requires an
understanding of the contributions of real three-body forces. There has not yet been
a quantitative derivation of the Skyrme parameters from the first principles. The
Skyrme formulation is a specific type of density-functional model which have been
widely used in atomic, molecular and condensed matter physics. One can show that
such functionals exist even if they cannot be explicitly derived [4], [5].

The have been many attemps to obtain the Skyrme parameters from various
types of experimental data. In this book I will concentrate on two recent results.
One is the SKX hamiltonian which is obtained by applying the above equations
to the eleven closed-shell nuclei: 16O, 34Si, 40Ca, 48Ca, 48Ni, 88Sr, 100Sn, 132Sn and
208Pb. The data include the binding energies of these nuclei, together with five rms
charge radii and 65 single-particle energies. Ten parameters in Eq. (12.18) were
varied (although only six linear-combinations are well determined). The SKX spin-
orbit energy-density leaves out terms involving t1, t2, x1 and x2, and a generalized
two-parameter spin-orbit force based upon the Hartree reduction was used [6]. SKX
uses the Friedman-Pandharipande neutron matter equation of state [7] as a constraint
(it has recently been shown that the neutron skin is sensitive to the properties of the
neutron equation of state [8], [9] ). SKX also introduces a new parameter which is
needed to reproduce the mirror displacement energies by the addition of a charge
symmetry breaking (CSB) interaction (SkXcsb [10] ). The values of the Skyrme
parameters for SKX are given in Table 1.
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Goriely et al. [11] obtained the parameter set called MSk7. In addition to
the formulation given above for closed-shell nuclei, the effect of nuclear pairing and
deformation were also taken into account. The MSk7 parameters are based on a fit
to the binding energies of 1772 nuclei (the radii or single-particle energies were not
included). Of the ten parameters in Eq. (12.18), seven were varied (x0 and x1 were
fixed at −0.5 and α was fixed at 1/3). The spin-orbit energy density retains the terms
involving t1, t2, x1 and x2, a four-parameters δ-function pairing force was added, and
a two-parameter Wigner correction term was added. The MSk7 interaction was used
to calculate the binding energies and shapes of 9200 nuclei [11]. The results were
shown as the HF1 calculation in Chapter 1.

The relativistic mean-field is an alternative to the Skyrme HF. The relativistic
description of nuclear systems uses a field theoretical approach (quantum hydrody-
namics) where the interaction of nucleons is described by an exchange of mesons. [12]
I will use the non-linear parameter set NL3 [13] which gives a good description of
binding energies and radii.

12.4.1 Binding energies

The binding energies for the region of nuclei up to A = 60 vary by hundreds of MeV,
yet we consider theoretical calculations which reproduce experiment to the level of
several hundred keV to an MeV. The “coast to coast” situation for all nuclei between
the drip lines is illustrated in Fig. (12.1) where the BE obtained with the MSk7 HF
calculations [11] are shown for all nuclei between the proton and neutron drip lines
centered on Z = 20 (left-hand side) and N = 20 (right-hand side) and compared to
experiment where known.

The drip line is reached in each case when the derivative of the BE curve with
respect to proton or neutron number goes to zero. One observes in the bottom panels
of Fig. (12.1) an apparently featureless and smooth curve with the data in agreement
with theory. However, we are interested in a much higher level of detail which is
illustrated in the top panel by subtracting a smooth curve given by the liquid drop
model (LDM) from theory and experiment. This top curve brings out the detail
related the microscopic aspects of the nuclear shell model.
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Figure 1: Theoretical (squares) and experimental (filled circles) binding energy
for Z = 20 as a function of neutron number (left-hand side) and for N = 20 as
a function of proton number (right-hand side). In the upper panels a smooth
curve given by the liquid drop model is subtracted from theory and experiment.
The magic numbers N = 20, N = 28 and Z = 20 are indicated by dashed lines.
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Figure 2: Experimental and theoretical neutron single-particle energies for 16O
and 40Ca. The orbits are labeled by (n, ℓ, 2j), and the dashed line is the Fermi
energy.
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ergies for 48Ca. The orbits are labeled by (n, ℓ, 2j), and the dashed line is the
Fermi energy.
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Figure 4: Experimental and theoretical proton and neutron single-particle en-
ergies for 132Sn. The orbits are labeled by (n, ℓ, 2j), and the dashed line is the
Fermi energy.

12.4.2 Single-particle energies

The experimental single-particle energies for 16O, 40Ca, 48Ca, 132Sn and 208Pb are
compared with the SKX Hartree-Fock and NL3 Dirac Hartree calculations in Figs.
(12.2), (12.3), (12.4), and (12.5). Both mean-field calculations are in qualitative
agreement with experiment. For light nuclei the NL3 results are in better, but for
heavy nuclei the SKX results are better. The difference between SKX and NL3 is
mainly related to the effective mass (m∗/m), which is about 1.0 for SKX and 0.6 for
NL3. The effective mass for the Skyrme interaction can be tuned by the parameters [2]
and those for SKX are determined primarily from the SPE of heavy nuclei where the
spacing around the Fermi surface requires an effective mass of about 1.0 [14]. For NL3
on the other hand, an effective mass of about 0.6 is intrinsic to the model. An effective
mass of 0.6 gives SPE in heavy nuclei which are spread out compared to experiment
as shown by NL3 in Figs. (12.4) and (12.5). Typical Brueckner G matrix interactions
also give an effective mass of about 0.6, and the reason for an empirical value of near
unity in heavy nuclei is attributed to configuration mixing due to coupling of the
single-particle states to surface vibrations [15], [16]. For a hamiltonian like SKX with
an effective mass of unity, these surface vibrations effectively included in terms of a
modified (renormalized) hamiltonian.

Experimental values of the SPE are usually used as input to shell-model calcula-
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Figure 5: Experimental and theoretical proton and neutron single-particle en-
ergies for 132Sn. The orbits are labeled by (n, ℓ, 2j), and the dashed line is the
Fermi energy.

tions. For nuclei near the drip lines where the experimental SPE are not known, one
needs a theoretical model for predicting or extrapolating the SPE. The HF parameter
model such as SKX and NL3 provide perhaps the most reliable way to extrapolate
the SPE from nuclei near stability to the most exotic nuclei near the drip lines. The
predictions for the 60Ca and 78Ni SPE are given in Figs. (12.6) and (12.7), respec-
tively. Other recent predictions for 60Ca are given in [17]. It will remain for future
experiments to test these extrapolations.

As a guide to the ordering of the single-particle states as a function of N and Z,
I show in Fig. (12.8) the single-particle energies for nuclei with N = Z obtained from
with SKX . Fig. (12.9) shows the SKX single-particle energies for the calcium isotopes
as a function of neutron number. Beyond 60Ca one observes that the 0g9/2 orbital
becomes bound, and thus 70Ca will be bound with SKX . The even-even calcium
nuclei between 60Ca and 70Ca will probably be bound due to pairing (which has been
neglected in this particular SKX HF calculation).

12.4.3 Rms charge radii and charge densities

In this section I will discuss the results for rms charge and charge densities obtained
with the Skyrme parameter sets SKX [14] and SKM* [18]
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Figure 6: Theoretical proton and neutron single-particle energies for 60Ca. The
orbits are labeled by (n, ℓ, 2j), and the dashed line is the Fermi energy.
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The experimental and theoretical rms charge radii are compared in Fig. (12.10).
The experimental radii are from Refs. [19] and [20], with those with the smallest errors
selected in the case of more than one data set. The error in the experimental data is
typically smaller than the size of the data points. The Hartree-Fock results for the
two interactions SKM* (bottom panel) and SKX (top panel) are obtained with the
CM (fractional) occupations (those obtained with ESP occupations are essentially
the same). The excellent overall agreement between experiment and theory is not
surprising since these rms charge radii are used to constrain the values of the Skyrme
parameters. The deviations increase for light nuclei going up to 5% for 12C. In general
one may expect the mean-field approximation to be less valid for light nuclei.

In order to illustrate how the features of the charge density are built out of the
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Figure 11: The point-proton density (points) of 40Ca in the SKX model with
a closed shell configuration. The total density is decomposed in terms of the
contributions from the individual filled orbitals. In the upper panel the densities
for protons in the orbitals just above the Fermi-surface of 40Ca are shown, for
eight protons in the 0f7/2 orbit and for four protons in the 1p3/2 orbit.

specific shell model orbitals which are filled, we show in Fig. (12.11) the point-proton
density of 40Ca (points) obtained with SKX with the assumption that the 0s, 0p, 1s
and 0d orbits are filled. The individual contributions of the filled orbits to the proton
density are shown. The 0s and 1s are the contributions from two protons in each of
these orbits respectively. The 0p indicates the sum of the four protons in the 0p3/2

orbit and two protons in the 0p1/2 orbit. The 0d indicates the sum of the six protons
in the 0d5/2 orbit and four protons in the 0d3/2 orbit. In the top panel the densities
associated with the (unfilled) valence orbits above the Fermi-surface are shown; 0f
for eight protons in the 0f7/2 orbit and 1p for four protons in the 1p3/2 orbit.

For comparison between experimental and theoretial charge densities I consider
in Fig. (12.12) a set of data for nuclei that cover a wide mass range and which for
which there is the good electron scattering data: 28Si from Ref. [21], 32S from Ref.
[22] (circles) and Ref. [23] (squares), 40Ca and 48Ca from Ref. [24], 50Ti and 52Cr
from Ref. [25], 54Fe from Ref. [26], 58Ni from Refs. [27] (circles) and [26] (squares),
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the text.

88Sr from Ref. [28], 90Zr from Ref. [29], 92Mo from Ref. [30], 204Hg from Ref. [31],
and 208Pb from Refs. [32] (circles) and [33] (squares). The data are compared to the
SKX (dashed lines) and SKM* (solid lines) are calculations. Both SKX and SKM*
nicely reproduce the nucleus-dependent oscillations. The hamiltonian parameters are
obtained from fits to the rms charge radii, binding energies and excited state energies
of these nuclei. Thus the good agreement between experiment and theory for the
nucleus-dependent oscillations observed in Fig. (12.12) are not a result of a “fit” to
these data but arise naturally from the underlying shell structure.

The main difference between the SKX and SKM* results is that the interior den-
sity is about 5% higher with SKM* compared to SKX, with SKM* in best overall
agreement with experiment. Close inspection of the curves in Fig. (12.12) in the region
where the density falls off reveals a slightly larger surface diffuseness for SKM* com-
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pared to SKX (the dashed line for SKX is slightly steeper than the line for SKM* in
the surface). The correlation between the increased interior height with the increased
diffuseness (when the rms radius is the same) is consistent with what is expected
from the Fermi model shown in Fig. 3.2. The change between SKX and SKM* corre-
sponds to a ∆a = 0.036 fm for 208Pb. The change in the diffuseness is connected to
the difference in the density-dependent part of the hamiltonians, namely [ρ(r)]1/2 for
SKX and [ρ(r)]1/6 for SKM*. There is agreement between experiment and theory to
an accuracy of about 2% or better for r > 1 fm with SKM*. As discussed above, this
is about the level of the accuracy with which these densities can be experimentally
determined.

In the overview of Fig. (12.12) one can observe several interesting features asso-
ciated with how the quantum waves change with shell structure and mass. Between
28Si and 32S in the sd shell there is a large increase in the interior density due to
the filling of the 1s1/2 orbital (see also [23]). Likewise between 204Hg and 208Pb there
is a large increase in the interior related to the filling of the 2s1/2 orbital. Between
40Ca and 48Ca one observes a redistribution of the charge (proton) density due to
the interaction with the valence 0f7/2 neutrons. The theoretical density distributions
for the sequence 48Ca, 50Ti, 52Cr and 54Fe show a smoothly varying trend due to
dominance of the proton 0f7/2 subshell filling.

12.4.4 Displacement energies

The displacement energy is the binding energy difference between mirror nuclei (those
with the same atomic number A but with the proton number Z and neutron number
N interchanged). For a given mass A and isospin T the displacement energy is:

D(A, T ) = BE(A, T <
z ) − BE(A, T >

z ), (12.33)

where T = | T <
z |= | T >

z |, BE(A, T <
z ) is the binding energy of the proton-rich nu-

cleus and BE(A, T >
z ) is the binding energy of the neutron-rich nucleus. If the nuclear

force is charge symmetric, then this binding energy difference can be related to the
well-understood Coulomb interaction between the protons. However, it was shown
by Nolen and Schiffer [34] that there is a systematic increase in the experimental
displacement energies compared to those calculated with a charge symmetric strong
interaction (the Nolen-Schiffer anomaly). In the usual HF calculation one has both di-
rect and exchange terms in the Coulomb-energy density functional. For the exchange
one uses the Fermi-gas approximation which is a good approximation to the exact
calculation [35]. The ground-state displacement energies obtained with the Coulomb
plus Coulomb-exchange HF approach (from the SKXce interaction of [14]) are shown
on the right-hand side of Fig. (12.13). One observes the systematic deviation between
experiment and theory associated with the Nolen-Schiffer anomaly. For the heaviest
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nuclei the ratio shown in Fig. (12.14) goes to a constant value of about 1.06. It is
well known [34] that the displacement energies are sensitive to the rms charge radii;
the SKX interactions reproduce the experimental charge radii of 16O, 40Ca and 48Ca
to better than one percent (see Fig. 10 of [14]). The displacement energies are also
sensitive to the rms radius of the valence orbits, and the SKX interactions give radii
for the d5/2 orbit in 17O and the 0f7/2 orbit in 41Ca which are within 2% of those
deduced from the magnetic electron scattering form factors [36].

In the fit to closed-shell nuclei the displacement energy is represented by the
pair of nuclei 48Ni-48Ca. The binding energy of 48Ni is not measured but can be
extrapolated to within an uncertainly of a few hundred keV from the 0f7/2 shell
displacement energy systematics [37], [38], [39], [40], [41]. The recent discovery of
48Ni [42] is consistent with the mass obtained from the 0f7/2 extrapolations.

In order to improve agreement with experiment it was found that the HF theory
could be improved in two ways. One of them consists of leaving out the Coulomb
exchange term, with the result shown in the middle panel of Figs. (12.13) and (12.14).
This may be interpreted as a correction from nuclear correlation (configuration mix-
ing) which happens to cancel the exchange term. This has been discussed in the
general HF framework by Bulgac and Shaginyan [43], [44], [45] in terms of a surface-
vibration contribution to the Coulomb correlation energy. I note that the relativistic
approach leaves out the Coulomb exchange by default, and that most Woods-Saxon
programs [46], [47] leave out the Coulomb exchange.



12 THE HARTREE-FOCK APPROXIMATION 131

R
a
ti
o

0.8

0.9

1.0

1.1

1.2

SKXce SKX SKXcsb
D

if
fe

re
n
c
e
 (

M
e
V

)

-1

0

1

0 20 40 60

Mass (A)

0 20 40 60 0 20 40 60

Figure 14: Top: the ratio experiment/theory for the data shown in Fig. (12.13);
Bottom: the difference experiment–theory. The symbols are filled circles for
T = 1/2, crosses for T = 1, squares for T = 3/2 and plus signs for T = 2.

Another way to improve agreement with experiment is to add a charge-symmetry
breaking (CSB) term to the Skyrme interaction which can be expressed as a change
to the proton-proton (pp) and neutron-neutron (nn) s-wave interactions:

V pp
Skyrme = t0(1 − x0)(1 + xa)δ

and
V nn

Skyrme = t0(1 − x0)(1 − xa)δ, (12.34)

where xa is a parameter to be determined.

The A = 48 closed shell nuclei require xa = −0.014±0.002 for the interaction
called SKXcsb The results for the all displacement energies are shown on the right-
hand side of Figs. (12.13) and (12.14).

A correct description of the displacement energies within the mean field approx-
imation is obviously important for understanding the position of the proton drip
lines. A = 99 is the heaviest T = 1/2 isobaric doublet for which the proton-rich
nucleus is expected to be bound. The calculated displacement energies for A = 99
are −13.54 MeV (SKXce), −14.03 MeV MeV (SKX) and −14.15 MeV (SKXcsb).
The introduction of the extra terms in the Skyrme hamiltonian which are needed for
the displacement energies, also has an influence on the neutron drip line; for example
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the binding energy of 176Sn is predicted to be −1158.0 MeV (SKXce), −1149.0 MeV
(SKX) and −1148.4 MeV (SKXcsb).

The SKXcsb interaction should ultimately be related to the CSB nucleon-nucleon
(NN) scattering data. Analysis of the NN scattering data together with a model for
the NN interaction gives [48], [49] a value of ∆aCSB = app − ann = 1.5 ± 0.5 fm for
the difference in the pp and nn scattering lengths. Modern NN potentials such as
the AV18 [50] and CDbonn99 [51] are designed to reproduce this difference. It is not
easy to interpret the CSB contribution to the displacement energies directly in terms
of a NN potential due the short-range nuclear correlations and their dependence on
the strong NN potential. Probably the most realistic way to do this is to consider the
CSB contribution to the displacement energies obtained with the variational Monte
Carlo approach for A = 7 [52] and the BHF approach for A = 15 and A = 17 [51].
For example, the CSB displacement energy for the A = 17, d5/2 state is 92 keV with
AV18 [51] to be compared with 355 keV with SKXcsb. From these comparisons one
finds that the effect of the empirical CSB interaction obtained for SKXcsb is a factor
of 3−4 larger than expected from AV18 or CDbonn99. Thus one concludes that
either there is a significant NNN or many-body CSB contribution whose origin is
unknown, or that a major part of the displacement energy anomaly is due to nuclear
correlations. Possible many-body CSB effects at the quark level have recently been
examined [53], [54].

The systematics associated with the Coulomb displacement energies can be used
to obtain theoretical binding-energies of proton-rich nuclei from the experimental
binding energies of neutron-rich nuclei. The displacement energies of Eq. (12.33) can
be modeled on smooth systematics [38], [39], [55]; shell-model configuration mixing
which contains the Coulomb and CSB interactions [37], [40], [41]; or on the mean-
field models. One can combine the experimental binding energy for the neutron-
rich nucleus BE(A, T >

z )exp together with the calculated value for D(A, T ) to give an
extrapolation for the proton-rich binding energy:

BE(A, T <
z ) = D(A, T )theory + BE(A, T >

z )exp. (12.35)

For most of the nuclei out to the proton drip line the binding energy BE(A, T >
z )exp

of the mirror neutron-rich nucleus is known to 100 keV or better. This method has
been used to predict the binding energies and the drip line for Z = 19− 28 [37], [41],
[38] and Z = 28 − 38 [41], [56]. The latter calculations have been used [56] to study
the rapid-proton (rp) capture path in the astrophysical explosive hydrogen burning
process [57]. The rp-process in light nuclei depends upon theoretical calculations of
the displacement energies of ground and excited states and upon the spectroscopic
factors which enter into the (p,γ) reaction [58], [59].
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