Spectral-Fluctuations Test of the Quark-Model Baryon Spectrum

César Fernández-Ramírez

Instituto de Estructura de la Materia, CSIC Madrid, Spain

Baryons: Historical Perspective

• Δ (1232)

Anderson, Fermi, Long, Nagle, Phys. Rev. 85 (1952) 936

- Proliferation of baryons
- Non-relativistic quark models

Gell-Mann, Zweig, Greenberg, Dalitz, Karl, Koniuk, Isgur, (60's and 70's)

Relativistic quark models

Capstick, Isgur, PRD 34 (1986) 2809 Bonn model, EPJA 10 (2001) 309; 395; 447

Effective QCD-inspired models

Page, Swanson, Szczepaniak, PRD 59 (1999) 034016 Llanes-Estrada, Cotanch, PLB 504 (2001) 15; NPA 697 (2002) 303

Lattice QCD

Bernard et al., PRD 64 (2001) 054506

The Problem of Missing Resonances

- Experimental effort

v.g. at JLab (Halls B & C)

- Lattice QCD and effective QCD-inspired models
- We apply spectral statistics techniques to test quark models and survey the problem of missing resonances

The Low-Lying Baryon Spectrum

EXP: Yao et al., JPG 33 (2006) 1 CI: Capstick, Isgur, PRD 34 (1986) 2809 L1 & L2: Löring et al., EPJA 10 (2001) 309; 395; 447

Classical Chaos

- Study of trajectories
 - \rightarrow Integrable systems
 - Predictable
 - Trajectories restricted to a manifold within the phase space
 - \rightarrow Chaotic systems
 - Unpredictable
 - Chaoticity: Trajectories fill in the phase space

Quantum Chaos

- It is not possible to define trajectories
- Study of spectra → Fluctuations
- Spectra can be split in a smooth and a fluctuating part $\rho(E) = \rho_s(E) + \rho_f(E)$
- Unfolding removes the smooth part
- Universality of fluctuations in chaotic and integrable systems
- Short distance correlations

Spectral Statistics

- It studies how an ordered sequence of numbers (v.g. an energy spectrum) matches an statistical theory
- Two kinds of statistics
 - Nearest neighbors
 - Long distance correlations
- Applied to study the spectrum of many-body systems
- Statistical methods are a powerful tool to study the energy spectrum of quantum systems
- Methods are improved over the last years: Analysis of systems with low number of levels are presently reliable and problems such as the hadron spectrum can be faced

Spectral Fluctuations

- Spectra can be split in a smooth and a fluctuating part $\rho(E) = \rho_s(E) + \rho_f(E)$
- Universality of fluctuations in chaotic and integrable systems
- This allows to consider the system as a black-box without considering the underlaying interaction
- Fluctuations are extracted from the spectrum through an unfolding procedure
- Nearest Neighbors Spacings Distribution is the most utilized

→ Distance between two consecutive levels with the same symmetries (quantum numbers)

Integrability and Chaoticity in Quantum Systems

- Statistical properties of the energy-level fluctuations are universal and determine whether a system is chaotic or integrable
- Integrable and chaotic systems display different fluctuation pattern
- The sequence of spacings {s_i} for an integrable system can be considered as a sequence of independent random variables
- Integrable systems display a non-correlated sequence of levels
- Chaotic systems are characterized by a correlation structure described by RMT (standard set)
- Paradigms of integrable and chaotic systems

\rightarrow Quantum billiards

Fluctuations and Integrable Spectra

- → Integrable systems (uncorrelated)
 - Fluctuations follow Poisson distribution

Berry, Tabor, Proc. R. Soc. London A 356 (1977) 375

- Uncorrelated systems
- Example: Random noise
- Example: Harmonic oscillator (Mean field)

Fluctuations and Chaotic Spectra

- → Chaotic systems (correlated)
 - Flutuations follow Wigner surmise

Bohigas, Giannoni, Schmit, PRL 52 (1984) 1

- Example: Nuclei
- Standard for chaotic systems: Random Matrix Theory (useful for statistical studies)

Examples of Integrable and Chaotic Spectra

Equal spacing	Chaotic	Integrable	

Spectral Fluctuations and Nuclei

Experimental spectrum in nuclei follows RMT (Wigner surmise)

Bohigas, NPA 751 (2005) 343c

Symmetries in the Baryon Spectrum

- I isospin
- J spin
- π parity
- We drop strangeness due to SU(3) invariance
- From the full spectrum we extract sequences of levels with given $I\left(J^{\pi}\right)$

Unfolding Procedure

• $\rho(E) = \rho_s(E) + \rho_f(E)$

- Unfolding allows to extract the fluctuating part from the level density
- We choose the simplest unfolding prescription

•
$$S_i = E_{i+1} - E_i$$

• We rescale using its average value

$$s_i = S_i / \langle S \rangle$$

- Nearest Neighbor Spacings (NNS)
- This procedure assumes an energy independent behavior of the smooth part of the density $\rho_s(E) = 1/\langle S \rangle$

Pascalutsa, EPJA 16 (2003) 149

Nearest Neighbor Spacing Distribution (NNSD)

Poisson: integrable / uncorrelated

$$P(s) = \exp(-s)$$

• Wigner: chaotic / correlated

$$P(s) = \frac{\pi s}{2} \exp\left(-\frac{\pi s^2}{4}\right)$$

Accumulated NNSD,

$$F(x) = 1 - \int_0^x ds \ P(s),$$

allows a better study of the tail of the distribution

Experimental Baryon Spectrum up to 2.2 GeV

Relativistic Quark Models

Models by Löring *et al*., (sets L1 & L2) EPJA 10 (2001) 309; 395; 447 Capstick and Isgur, (set CI) PRD 34 (1986) 2809

Direct Comparison by means of a Goodness-of-Fit Test

Wilcoxon Rank-Sum Test

Wilcoxon, Biometrics Bull. 1 (1945) 80 Mann, Whitney, Ann. Math. Stat. 18 (1947) 50

	CI	L1	L2	
EXP	0.0487	0.1067	0.1036	

Allows to test whether two populations of different size

are statistically alike.

Unfolding

- Sometimes, very short sequences of levels
- In such cases, unfolding can provide misleading results, making spacings spuriously closer and bringing the NNSD tend to the Wigner surmise
- Unfolding can yield different effects in different spectra: We avoid a direct comparison of the spectral fluctuations
- Complementary analysis: Kolmogorov-Smirnov goodness-of-fit tests

Kolmogorov-Smirnov Goodness-of-Fit Test

- To determine whether two datasets differ significantly
- No assumption about the distribution of data (non-parametric and distribution free)
- Based on the maximum distance between cumulative probabilities

Kolmogorov, Giornale dell'Istituto Italiano degli Attuari 4 (1933) 83 Smirnov, Bull. Moscow Univ. 2 (1933) 3; Ann. Math. Stat. 19 (1948) 279 Feller, Ann. Math. Stat. 19 (1948) 177 NAG Libraries, http://www.nag.co.uk

• We build one Wigner-like and one Poisson-like reference spectra, optimized to study set EXP

We build one Wigner-like and one Poisson-like reference spectra, optimized to study set EXP
For each sequence {s_i}_X we have built two equivalent reference sequences {s'_i}_X with the same length (Wigner-like and Poisson-like) as the experimental one

• We build one Wigner-like and one Poisson-like reference spectra, optimized to study set EXP

For each sequence $\{s_i\}_X$ we have built two equivalent reference sequences $\{s'_i\}_X$ with the same length (Wigner-like and Poisson-like) as the experimental one We unfold each reference sequence independently and calculate the NNSD for each set

• We build one Wigner-like and one Poisson-like reference spectra, optimized to study set EXP

For each sequence $\{s_i\}_X$ we have built two equivalent reference sequences $\{s'_i\}_X$ with the same length (Wigner-like and Poisson-like) as the experimental one

We unfold each reference sequence independently and calculate the NNSD for each set

We run the goodness-of-fit tests

- We build one Wigner-like and one Poisson-like reference spectra, optimized to study set EXP
 - For each sequence $\{s_i\}_X$ we have built two equivalent reference sequences $\{s'_i\}_X$ with the same length (Wigner-like and Poisson-like) as the experimental one We unfold each reference sequence independently and calculate the NNSD for each set

We run the goodness-of-fit tests

• We proceed in the same way for CI, L1, and L2 sets

- We build one Wigner-like and one Poisson-like reference spectra, optimized to study set EXP
 - For each sequence $\{s_i\}_X$ we have built two equivalent reference sequences $\{s'_i\}_X$ with the same length (Wigner-like and Poisson-like) as the experimental one We unfold each reference sequence independently and calculate the NNSD for each set We run the goodness-of-fit tests
 - We proceed in the same way for CI, L1, and L2 sets
- Each reference spectra is distorted by the unfolding in the same way as sets EXP, CI, L1, and L2 are

Kolmogorov-Smirnov Test

Probability to obtain, under the null hypothesis, a value of the Kolmogorov-Smirnov test statistic as the one observed

Spectrum	EXP	CI	L1	L2
Poisson	0.51	0.49	0.25	0.53
Wigner	0.80	0.18	0.05	0.01

Null hypothesis: Both distributions display equal spectral fluctuations

We study 500 realizations to have enough statistics

Cumulative Probabilities: The K-S Test in more Detail

Spectral-Fluctuations Test of the Quark-Model Baryon Spectrum - March 21, 2007 - JLab Theory Center Informal Seminar - p.24/33

Deviations from Wigner Surmise

Due to

- Uncertainties in the masses (error bars)
 - → Errors mean random noise, which brings the NNSD closer to a Poisson distribution
- Existence of missing states
 - \rightarrow Missing resonances

Error Bars (Toy Model Simulation): NNSD

Spectral-Fluctuations Test of the Quark-Model Baryon Spectrum – March 21, 2007 – JLab Theory Center Informal Seminar – p.26/3

Error Bars (Toy Model Simulation): Accumulated NNSD

Spectral-Fluctuations Test of the Quark-Model Baryon Spectrum – March 21, 2007 – JLab Theory Center Informal Seminar – p.27/3

Missing Levels in a Spectrum

Statistical tools allow to identify the existence of missing states Bohigas, Pato, PLB 595 (2004) 25; PRE 74 (2006) 036212 Molina, Retamosa, Muñoz, Relaño, Faleiro, PLB 644 (2007) 25

Missing levels cause the spectral fluctuations of a spectrum with Wigner distribution look more like a Poisson distribution

We can use this property to identify missing levels in a spectrum

If we assume that the *real* distribution is 100% Wigner we can speculate on the maximum amount of missing states

- We remove levels randomly from a Wigner distribution until we get values for the K-S test closer to what is observed
- Very rough estimation: <20% of missing levels

 The statistical techniques developed to study the chaotic character of quantum systems have evolved into powerful and reliable techniques that can provide new insight in hadron physics

- The statistical techniques developed to study the chaotic character of quantum systems have evolved into powerful and reliable techniques that can provide new insight in hadron physics
- From the spectral fluctuations of the *experimental* baryon spectrum one can conclude the importance of correlations in the underlying physics

- The statistical techniques developed to study the chaotic character of quantum systems have evolved into powerful and reliable techniques that can provide new insight in hadron physics
- From the spectral fluctuations of the *experimental* baryon spectrum one can conclude the importance of correlations in the underlying physics
- From the analysis of *theoretical* spectra from constituent quark models, one can conclude that, as presently built, they do <u>not</u> describe the basic statistical properties of the low-lying baryon spectrum and they need to include more correlations

• This result is model-independent

- This result is model-independent
- There is room for missing resonances at the 20% level

- This result is model-independent
- There is room for missing resonances at the 20% level
- Predictions of missing states derived from constituent quark models are not reliable

- This result is model-independent
- There is room for missing resonances at the 20% level
- Predictions of missing states derived from constituent quark models are not reliable

F-R, Relaño, PRL 98 (2007) 062001

What's Next?

- Extend this analysis to other models: Lattice QCD and Effective QCD-inspired models
- Improve quark models to account for fluctuations properties (re-thinking the interaction?)
- Test the universality of fluctuations
- Further experimental research on baryon states
- Study the spectral properties of other quantities beyond energy levels (helicity amplitudes, decay widths), both from baryon models as well as from experimental data

Acknowledgments

- Co-author: Armando Relaño (IEM-CSIC, Spain)
- Thanks to: F.J. Llanes-Estrada, E. Moya de Guerra, J. Retamosa, J.M. Udías (UCM, Spain), R.A. Molina (IEM-CSIC, Spain), and T. van Cauteren (U. Ghent, Belgium)

Work partly funded by Ministerio de Educación y Ciencia, Universidad Complutense de Madrid and CSIC (Spain)