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Abstract—Nuclear pairing correlations are known to play an important role in various single-particle
and collective aspects of nuclear structure. After the first idea by A. Bohr, B. Mottelson, and D. Pines
on similarity of nuclear pairing to electron superconductivity, S.T. Belyaev gave a thorough analysis of the
manifestations of pairing in complex nuclei. The current revival of interest in nuclear pairing is connected to
the shift of modern nuclear physics towards nuclei far from stability; many loosely bound nuclei are particle-
stable only due to the pairing. The theoretical methods borrowed from macroscopic superconductivity
turn out to be insufficient for finite systems such as nuclei, in particular, for the cases of weak pairing
and proximity of continuum states. We suggest a simple numerical procedure of exact solution of the
nuclear pairing problem and discuss the physical features of this complete solution. We show also how the
continuum states can be naturally included in the consideration bridging the gap between the structure and
reactions. The path from coherent pairing to chaos and thermalization and perspectives of new theoretical
approaches based on the full solution of pairing are discussed. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Nuclear pairing is one of the main and long-
standing pillars of current understanding of nuclear
structure. Pairing provides an important contribution
to the odd–even mass difference in the phenomeno-
logical mass formulas [1]. As an empirical fact, the
pairing was put in the foundation of the shell model
by Mayer and Jensen [2] in order to be able to
predict ground-state spins and other properties of
nonmagic nuclei. In the shell-model framework, the
classification of paired states is usually performed
with the aid of the seniority scheme [3, 4], where
the seniority counts a number of unpaired particles;
a similar scheme is used in atomic spectroscopy [5].
The Bardeen–Cooper–Schrieffer (BCS)microscopic
theory of superconductivity [6] elucidated the main
features of the ground state, excitation spectrum,
transition probabilities, and phase transition in a
Fermi system governed by the attractive pairing.
Immediately after that, Bohr, Mottelson, and Pines
pointed out [7] the similarity between the supercon-
ducting pairing correlations and observed pairing
effects in nuclei. The thorough application of the
BCS approach to the nuclear problem was done by
Belyaev in his seminal paper [8]. It was quantitatively
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demonstrated that the pairing correlations influence
nearly all phenomena in low-energy nuclear physics:
binding energy, single-particle spectra, transition
probabilities, collective vibrational modes, onset of
deformation, rotational moment of inertia, level den-
sity, and thermal properties.
The BCS theory, as well as its advanced form the

Hartree–Fock–Bogolyubov (HFB) method (see [9]
and references therein), is formulated in a way fully
appropriate for macroscopic quantum systems; in
fact, it gives an asymptotically exact solution [10]
in the thermodynamic limit. For mesoscopic sys-
tems, such as nuclei, atomic clusters, quantum
dots, fullerenes, nanotubes, or small metallic grains,
this approach, although qualitatively reflecting the
main physical features, turns out to be insufficient.
The total number N of particles is preserved in
this method only on average. Since we have to
describe the spectroscopy and reactions for a specific
nuclide, we need either to add special projection
procedures [11–14] that fix the exact value of N or
generalize the formalism by approximately including
the matrix elements restoring the particle number
conservation [15–18].
Another drawback of the BCS orHFB approaches

is a sharp phase transition as a function of parameters
or temperature. As pointed out by Belyaev [8], in a
system with a discrete single-particle spectrum, the
Cooper phenomenon requires, in contrast to amacro-
scopic Fermi gas, a certainminimum strength of pair-
ing attraction. For a weaker pairing, the mean-field
approaches, such as BCS or HFB, give only a trivial
normal solution, while in reality the effects of pairing
2003 MAIK “Nauka/Interperiodica”



1782 ZELEVINSKY, VOLYA
correlations still exist. The pairing correlations in the
mean-field framework also vanish immediately after
the thermal phase transition. These predictions are
incorrect for mesoscopic systems. The exact shell-
model calculations show [19] that the pairing corre-
lations do not disappear at the BCS transition point,
revealing instead a long tail of “fluctuational super-
conductivity.”

The main field of interest in nuclear structure is
currently shifted to the nuclei far from stability. As
we move to loosely bound systems, the influence
of the continuum becomes exceedingly important.
Along with that, all attractive correlations are to be
taken into account properly in order to determine
the position of the drip line. The correct treatment
of pairing as the main attractive part of the residual
interaction is absolutely essential for such problems.
Some nuclides, like the notorious 11Li, are bound just
due to the pairing correlations between the outermost
neutrons, an example of a real Cooper pair [20]. The
theory of pairing including both discrete and contin-
uum single-particle levels is still in its infancy [21].

Finally, there is a clear necessity to understand
the interplay of pairing with other parts of the resid-
ual nuclear interactions going beyond the mean-field
approximation of the HFB method. Of course, in the
lower part of the nuclear chart (p, sd, and pf shells),
there are well-developed modern shell-model meth-
ods and reliable effective interactions of the nucleons
in the truncated single-particle space (see, for exam-
ple, [22–25]). With the possibility of incorporating
additional stochastic and statistical elements [26–
28], the shell-model calculations are able to describe
an impressive amount of spectroscopic data. Unfor-
tunately, the qualitative interpretation of results ob-
tained by the large-scale shell-model diagonalization
in terms of simple physical models is getting quite
difficult as the matrix dimensions approach the limit
of current computational strength. In addition, one
needs to mention that the continuum problem is not
solved in the standard shell-model approach based
on the discrete spectrum. Therefore, the gap between
the shell model for nuclear structure and the reaction
theory is widening.

In this situation, it is alluring to first separate the
pairing part of the nuclear interaction and to solve
the corresponding many-body problem exactly. As
was shown in [29], the exact solution is numerically
simple and eliminates all drawbacks related to the
BCS approximation. At the same time, it is still close
enough to the standard images of nuclear structure.
This exact solution can serve as a zero-order step
or a background that allows one to look for new
approaches and approximations to the full problem,
PH
effects of other interactions, inclusion of the contin-
uum, relation to the reaction cross sections, and so
on.

In what follows, we start with sketching the tradi-
tional approaches and the exact solution of the pairing
problem. We compare the exact results with the BCS
approximation, for both the ground and the excited
states; demonstrate the possibility of including the
continuum physics; and consider chaotic aspects of
pairing, a topic practically unexplored in the liter-
ature. We complete the paper with a discussion of
the perspectives of new approximations based on the
exact pairing solution.

2. APPROACHING THE SOLUTION
OF THE PAIRING PROBLEM

A. Pairing Hamiltonian

We formulate the pairing problem in the restricted
single-particle space of fermionic orbitals assuming
the Hamiltonian

Hp =
∑

1

ε1a
†
1a1 −

1
4

∑
1,2

G12p
†
1p2. (1)

Here, the subscripts 1, . . . run over the complete
set of orthogonal single-particle basis states, and
we assume the Kramers double-degeneracy of time-
conjugate orbitals |1) and |1̃). The pair creation, p†1,
and annihilation, p1, operators are defined as

p†1 = a†1a
†
1̃
, p1 = a1̃a1, (2)

and the double time-reversal acts as |˜̃1) = −|1). In
the important case of spherical symmetry of the mean
field that supports degenerate orbitals |jm)with ener-
gies εj , angular momentum j, and projection jz = m,
the pairing Hamiltonian can be conveniently written
as

Hp =
∑

j

εjN̂j −
∑
jj′

Gjj′L
†
jLj′, (3)

where we use the operator notation

N̂j =
∑
m

n̂jm =
∑
m

a†jmajm (4)

for the occupancy operators and (a1̃ → ajm̃ =
(−1)j−maj−m)

Lj =
1
2

∑
m

(−1)j−maj−majm, (5)

L†
j =

1
2

∑
m

(−1)j−ma†jma
†
j−m
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NUCLEAR PAIRING: NEW PERSPECTIVES 1783
for annihilation and creation operators of pairs in a
state with certain quantum numbers of total angu-
lar momentum and its projection, J = M = 0. Es-
sentially the same Hamiltonian (1) can describe the
situation in the deformed mean field.
The pairing interaction is defined in terms of real

matrix elements of diagonal pair attraction, G11 > 0,
and off-diagonal ones, G12 = G21, for pair transfer
between the orbitals 1 and 2. We limit ourselves here
to the pairing of identical particles (isospin T = 1)
in states with zero total pair angular momentum;
consideration of the T = 0 proton–neutron pairing
would require a nonzero spin of the pair.

B. BCS Approach

In the BCS theory, the ground state |0〉BCS of the
paired system with Hamiltonian (1) is determined by
minimizing the ground-state energy with a trial wave
function

|0〉BCS = Π1>0(u1 − v1p
†
1)|0〉 (6)

= Π1>0u1 exp
(
− v1

u1
p†1

)
|0〉,

where the variational parameters for each pair of time-
conjugate orbitals, u1 and v1, can be taken as real
numbers subject to the normalization u2

1 + v2
1 = 1.

In our discussion, we denote |N ; s . . . 〉 as the lowest
in energy N-particle state with quantum numbers
s, . . . . We use the notation |s〉BCS for the BCS state
with s quasiparticles that has an uncertain particle
number; for this reason, N is not shown; however, it
is assumed that the state corresponds to an average
particle number N̄ . The restriction 1 > 0 means that
the time-conjugate orbitals are not counted twice.
The exponential form of the variational wave function
shows that this state is generated as a coherent state
of fermionic pairs; this feature can be put in a founda-
tion of methods going beyond the BCS [30, 31].

The variational solution is given via the occupation
amplitudes

v2
1 = n1 =

1
2

(
1 − ε1

e1

)
, (7)

u2
1 = 1 − n1 =

1
2

(
1 +

ε1
e1

)
,

where e1 =
√
ε21 + ∆2

1 is the quasiparticle energy and
∆1 is the BCS energy gap. The gap equation arising
from the minimization of energy is

∆1 =
1
2BCS

〈0|
∑

2

G12p
†
2|0〉BCS =

∑
2

G12

2e2
∆2. (8)
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The ground state and low-lying excited states of
paired systems can be classified introducing quasi-
particle creation operators

α†
1 = u1a

†
1 − v1a1̃. (9)

This transformation is canonical due to the correct
normalization of u and v. The BCS vacuum |0〉BCS
in (6) can be defined as α|0〉BCS = 0. The Bogolyubov
transformation (9) mixes particle and hole states.
One of the problems in the BCS application to

small systems is particle-number nonconservation,
which follows from the form of the wave function (6).
A common practice to fix the number of particles is to
introduce a chemical potential µ by the shift of single-
particle energies ε→ ε− µ. The right total particle
number is restored on average through the condition∑

1

n1(µ) = N̄ . (10)

The uncertainty of the total particle number is given
by

(∆N2) = N2 − N̄2 =
∑

1

n1(1 − n1). (11)

Practically, this fluctuation is of the order of√
(∆N2) ≈ 2. Given that relative fluctuations go

down with increasing N , the BCS solution is asymp-
totically exact in the thermodynamic limit of macro-
scopic systems [10]. The contribution to the energy
from the fluctuation is quadratic in the number of
particles [32] and thus gives an extra correction
of the monopole type. Special methods, such as
Lipkin–Nogami [11, 12] techniques, were invented
in order to suppress the particle-number fluctuations.
The particle-number violation in the BCS is an

example of spontaneous symmetry breaking with
respect to phase rotations generated by the number
operator, U(φ) = exp(−iφN̂/2). While the pair-
ing Hamiltonian is invariant under this rotation,
[Hp, U(φ)] = 0, the trial ground state |0〉BCS has a
preferred orientation, with the usual consequences
of the appearance of Anderson–Goldstone–Nambu
modes, whose properties are influenced by the meso-
scopic nature of the nuclear systems [33]. A number
of projection techniques have been developed within
the framework of the symmetry-violation treatment
(see [34] and references therein).

C. Recursive Method with Particle-Number
Conservation

Instead of introducing the pair condensate of the
pairs with an uncertain particle number, another pos-
sibility was explored [15, 17, 35], where the matrix
elements of relevant operators explicitly keep memory
03



1784 ZELEVINSKY, VOLYA
of the exact particle number. The gap is defined now
as a matrix element of the pair-annihilation operator
between the ground states |N ; 0〉 of the neighboring
even systems,

∆1(N) =
1
2
〈N − 2; 0|

∑
2

G12p2|N ; 0〉. (12)

Similarly, the particle-number dependence enters the
single-particle transition amplitudes between adja-
cent even and odd systems,

v1(N) = 〈N − 1; 1̃|a1|N ; 0〉, (13)

u1(N) = 〈N + 1; 1|a†1|N ; 0〉.
Here, one needs to consider a sequence of ground
states |N ; 0〉 with energies E(N). It is assumed that
the spectra of adjacent odd nuclei start with energies
E(N ± 1; 1) of the states |N ± 1; 1〉 containing one
unpaired nucleon with quantum numbers 1.
The exact operator equations of motion for the

single-particle operators a1 and a
†
1,

[a1,H] = ε1a1 +
1
2

∑
2

G12a
†
1̃
p2, (14)

[a†1,H] = −ε1a†1 −
1
2

∑
2

G12p
†
2a1̃, (15)

can be used to construct recursive in N equations
for the gap (12) and single-particle transition am-
plitudes (13). The approximation of no condensate
disturbance by an extra particle [15, 35],

〈N − 1; 1|
∑

2

G12a
†
1̃
p2|N ; 0〉 (16)

≈ 〈N − 1; 1|a†
1̃
|N − 2; 0〉

× 〈N − 2; 0|
∑

2

G12p2|N ; 0〉 = 2∆1(N)u1̃(N − 2),

leads to the recursion relation connecting adjacent
even nuclei,

|v1(N − 2)|2 = 1 − |∆1(N)|2

[e1(N) − ε′1(N)]2
|v1(N)|2 ,

(17)

where the N-dependent chemical potential is intro-
duced,

µ(N) =
1
2

(E(N) − E(N − 2)) , (18)

and quasiparticle excitation energy is defined as

e21 = ε′1(N)2 + |∆1(N)|2, (19)

with shifted single-particle energies

ε′1(N) = ε1 −
G11

2
− µ(N). (20)
PH
The analogs of the number-conservation equation
and the gap self-consistency condition now read

Ω −N + 2 =
∑

1

|∆1(N)|2

[e1(N) − ε′1(N)]2
|v1(N)|2 ,

(21)

where Ω is the total capacity of fermionic space, and

∆1(N) =
1
2

∑
2

G12
∆2(N) |v2(N)|2

e2(N) − ε′2(N)
. (22)

The pairing problem formulated in this manner
allows a recursive solution in both directions, starting
from the empty shell or from the completely filled
shell. This solution reduces to the BCS under as-
sumption that the gap does not change in the tran-
sition from N to N − 2, the same approximation of
particle-number uncertainty that leads to the BCS
particle-number fluctuation (11). Based on this fea-
ture, the BCS energy can be efficiently corrected
by the substitution N̄ → N̄ − 1 [36]. Corrections to
such iterative methods via inclusion of pair-vibration
excitations in the intermediate states of Eq. (16) with
further diagonalization are also possible [17], as well
as the treatment of the excitations with random phase
approximation (RPA) techniques [37, 38].
The particle-conserving treatment does not re-

solve another problem of the BCS solution, namely,
the sudden disappearance of pairing correlations
when coupling becomes tooweak. The gap equations,
(8) and (22), have only trivial ∆ = 0 solutions if
the pairing strength G is too small compared to the
single-particle energy spacings. The point of this
phase transition is roughly at the critical coupling
strength Gc,

GcνF = 1, (23)

where both the pairing strength and the density of
single-particle states νF are taken at Fermi energy.
Many nuclear systems in the shell-model picture are
close to or even below the point of the BCS instability,
although the pairing correlations still do exist [29].
As will be discussed later, near the phase transition,
in the so-called pair-vibrational regime, the fluctua-
tions drive pair scattering to an almost chaotic level,
leading to a sharp increase in the mixing between
the states of the same seniority. This randomness
makes the approximation (16) or any truncation of
states mixed by the pair vibrations inappropriate. Var-
ious projection techniques also seriously suffer in the
region of weak pairing. More advanced approaches,
such as HFB+RPA, break down in the vicinity of the
phase transition, though the pairing solution can still
be continued into the region beyond the critical point
using the RPA based on the Hartree–Fock solution
YSICS OF ATOMIC NUCLEI Vol. 66 No. 10 2003



NUCLEAR PAIRING: NEW PERSPECTIVES 1785
for a normal state. This treatment drastically im-
proves the prediction for the ground-state energy [18].
The methods of equations of motion [32, 39] and
variational techniques can be used to better account
for the RPA ground-state correlations [40]. Being
applied to superfluid Fermi systems, these methods
demonstrated a considerable improvement [40, 41].

3. EXACT SOLUTION OF THE PAIRING
PROBLEM

Historically, a few suggestions were put forward
for the exact solution of the pairing problem. The
Richardson method, described in the series of pa-
pers [42, 43], provides a formally exact way for solving
the pairing Hamiltonian. This method reduces the
large-scale diagonalization of a many-body Hamilto-
nian matrix in a truncated Hilbert space to a set of
coupled equations (Ωj = 2j + 1)

∑
j

Ωj

2εj − zλ
−

∑
λ′ �=λ

4
zλ′ − zλ

=
2
G

(24)

for unknown parameters zλ, their number being equal
to that of valence particle pairs. The ground-state

energy is then equal to E(N) =
∑N/2

λ zλ.
Recently, this solution was revived and reinter-

preted [44] with the aid of the electrostatic analogy,
similar to that used by Dyson in his theory [45] of ran-
dom level ensembles. Unfortunately, the Richardson
solution is only valid for special pairing forces—for
example, Gjj′ = G = const. It also requires serious
numerical efforts rapidly growing with the number
of particles. Recently, exact solutions have also been
approached with sophisticated mathematical tools as
infinite-dimensional algebras [46]. Such formally ex-
act solutions have a certain merit from a mathemat-
ical point of view and might be useful for developing
simple models [47, 48]. However, they are not very
promising for practical problems in nuclear physics.
The natural way of solving the pairing problem

is related to the direct Fock space diagonalization.
For deformed nuclei with doubly degenerate single-
particle orbitals, this approach supplemented by the
appropriate use of symmetries and truncations was
already shown to be quite effective [49, 50]. The diag-
onalization of the general pairing Hamiltonian (3) is
much simpler than that of the full shell-model Hamil-
tonian due to the possibility of classifying many-body
states within the seniority scheme [3, 4, 51], especially
in the case of spherical symmetry (3). Long ago, it
was shown [51, 52] that this approach is useful not
only in the exactly solvable degenerate model but
in a realistic shell-model context as well. With a
perspective to complement the pairing problem with
the subsequent account of other parts of the residual
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 10 20
interaction, we consider this path promising and quite
practical.
It is well known that the pair annihilation Lj , pair

creation L†
j , and occupation number operator (shifted

to the middle of the j subshell)

L◦
j =

1
2
N̂j −

1
4
Ωj, Ωj = 2j + 1, (25)

form an SU(2) algebra of “quasispin” for each j sub-
shell,

[Lj , L
◦
j′ ] = δjj′Lj, [L†

j, L
◦
j′ ] = −δjj′L†

j , (26)

[Lj, L
†
j′ ] = −2δjj′L◦

j .

Therefore, the pairing Hamiltonian (3) preserves all
partial quasispins Λj ,

L2
j = (L◦

j )
2 +

1
2
(L†

jLj + LjL
†
j) = Λj(Λj + 1). (27)

The partial seniority quantum numbers,

sj = Ω/2 − 2Λj , (28)

are also conserved. They express the number of un-
paired, and therefore not participating in the pairing
interaction (3), particles. The fully paired j level cor-
responds to themaximum partial quasispinΛj = Ω/4
and lowest partial seniority sj = 0.

The pair transfer L†
j′Lj between the levels j →

j′ changes the occupancies, i.e., projections L◦
j and

L◦
j′ , keeping intact the lengths of quasispins Λj and

Λj′ , and, whence, seniorities sj and sj′ . The space is
decomposed into sectors with given partial seniorities
sj , and the basis states within each sector can be la-
beled by the set of occupanciesNj under a constraint∑

j Nj = N , the total valence particle number. The
passive (unpaired) particles occupy fixed orbitals and
create nonzero seniorities. They influence the dynam-
ics indirectly, through the Pauli blocking. The states
with zero total seniority s =

∑
j sj have the total spin

J = 0, while for s 
= 0 the further decomposition with
respect to the rotation group is possible, and some
many-body states with different angular momentum
coupling but the same seniorities remain degenerate.
Using the states with given values of sj and var-

ious possible occupancies Nj as a basis, it is easy to
construct the Hamiltonian matrix that is essentially
the matrix with respect to the sets ofNj . The diagonal
matrix elements are

〈{sj}, {Nj}|Hp|{sj}, {Nj}〉 (29)

=
∑

j

[
εjNj −

Gjj

4
(Nj − sj)(Ωj − sj −Nj + 2)

]
.
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1786 ZELEVINSKY, VOLYA
Table 1. Single-particle energies and pairing matrix ele-
ments V0(jj; j′j′) (inMeV) for the shell-model space from
100Sn to 132Sn (matrix elements are determined from G-
matrix calculations)

g7/2 d5/2 d3/2 s1/2 h11/2

εj −6.121 −5.508 −3.749 −3.891 −3.778

g7/2 0.9850 0.5711 0.5184 0.2920 1.1454

d5/2 0.7063 0.9056 0.3456 0.9546

d3/2 0.4063 0.3515 0.6102

s1/2 0.7244 0.4265

h11/2 1.0599

Each term in the square brackets gives a full solu-
tion for the pairing problem on a degenerate j level.
Clearly, as long as seniority is small, sj  Ωj , each
unpaired particle increases energy by∆j = GjjΩj/4,
and this quantity plays the role analogous to that of
the energy gap in the BCS theory. The off-diagonal
matrix elements for the pair transfer j′ → j are

Hj′→j = −Gjj′

4
[(Nj′ − sj′)(Ωj′ − sj′ −Nj′ + 2)

(30)

× (Ωj − sj −Nj)(Nj − sj + 2)]1/2.

The highest matrix dimension is encountered for
the lowest possible total seniority, s = 0 for an even
number of particles and s = 1 for an odd number of
particles. But, even for heavy nuclei, this dimension
does not exceed a few thousand (in modern shell-
model computations, one has to deal with dimensions
108 and higher in the m scheme). In addition, the
Hamiltonian matrix is very sparse. As a result of the
numerical diagonalization, we obtain the spectrum of
states for a given set of seniorities. For example, for
an even system, the condition s = 0 selects all zero
partial seniorities, sj = 0. All those states correspond
to pair condensates that differ by the distribution
of the average partial occupancies {Nj} among the
subshells. In a standard language of the BCS the-
ory supplemented by the RPA, the excited states for
s = 0 are various pair vibrations. However, here we
do not make any assumptions of boson character or
harmonic spectrum of excitations. The next section
illustrates the typical results of the diagonalization.

4. EXAMPLE: A CHAIN OF EVEN ISOTOPES

The longest known chain of tin isotopes is a sub-
ject of extensive experimental and theoretical studies.
Even considering the proton subsystem, Z = 50, as
PH
an inert core, we have to deal with a neutron model
space that is too large for a direct diagonalization.
Modern computational techniques that use the Lanc-
zos iteration method allow for exact determination of
a few low-lying states in systems with up to 12 va-
lence particles [53]. These results are essential for
testing the approximate techniques. It is known that
pairing correlations play a major role in forming the
ground-state wave functions of tin isotopes.
Unlike in many other nuclear systems, pairing in

tin isotopes is quite strong and stable, being suffi-
ciently above the point of the BCS phase transition.
There is only a relatively minor weakening in themass
region near 114Sn due to a gap between d5/2 and
g7/2 and the rest of the single-particle orbitals. We
specifically would like to explore this region in order
to discuss the physics of the BCS phase transition.
For tin isotopes ranging in mass number from

A = 100 to 132, we assume a configuration space
between the two neutron magic numbers 50 and
82. The valence neutron space contains here five
single-particle orbitals, h11/2, d3/2, s1/2, g7/2, and
d5/2. We adopt parameters shown in Table 1, the
single-particle energies taken from experimental da-
ta and the interaction matrix elements from the G-
matrix calculation [53]. The interaction parameters V0

in Table 1 are related to the pairing strengths Gjj′ as

Gjj′ = V0(jj; j′j′)
2√

(2j + 1)(2j′ + 1)
. (31)

The shell-model calculations with these parameters
reproduce the spectroscopy of tin isotopes in the re-
gionA = 120 to 130with a good accuracy. In parallel,
we discuss similar effects in calcium isotopes, where
we used a well-established FPD6 interaction [24].
The fp neutron valence space covers calcium iso-
topes from 40Ca to 60Ca. The weakening of pairing in
Ca occurs near 48Ca, i.e., for the f7/2 subshell closure.
Results of the calculation for the 114Sn region are
shown in Table 2 and for the 48Ca region in Table 3.
An important consequence of the proximity to the

BCS phase transition is a reduction of pairing corre-
lation energy predicted by the BCS but not confirmed
by the exact solution. In the tin example, the BCS
underpredicts the binding energy by about 0.4 MeV,
while for calcium this number reaches 0.6 MeV. A
similar difference appears in one-nucleon separation
energy Sj(N) = E(N − 1) −E(N) (index j here de-
notes the orbital of the unpaired nucleon in an odd-N
system), as can be seen from the comparison of rows
(e) and (f) with the corresponding BCS prediction,
lines (m) and (n), Tables 2 and 3. As stressed in [29],
this discrepancy can be crucial for the nuclei near drip
lines. Unfortunately, the BCS can hardly be improved
YSICS OF ATOMIC NUCLEI Vol. 66 No. 10 2003
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Table 2. The results of the exact pairing solution (EP)
compared to the BCS solution for the 114Sn nucleus
(the interaction matrix elements are determined by the
G-matrix calculations—see text; the separation energies
Sj , quasiparticle energies ej , and the pairing gaps ∆j are
given in MeV)

g7/2 d5/2 d3/2 s1/2 h11/2

EP

(a) Nj(N) 6.96 4.46 0.627 0.356 1.6

(b) nj(N) 0.870 0.744 0.157 0.178 0.133

(c) u2
j(N) 0.128 0.252 0.838 0.817 0.863

(d) v2
j (N) 0.865 0.736 0.155 0.177 0.131

(e) Sj(N + 1) 2.8 3.13 3.14 3.39 3.29

(f) Sj(N) 6.86 6.55 7.25 6.98 7.12

(g) |〈N + 2; 0|P †
j |N ; 0〉| 0.68 0.779 0.617 0.514 1.03

(h) |〈N ; 0|Pj |N − 2; 0〉| 0.81 0.93 0.524 0.396 0.845

BCS

(i) Nj(N) 6.71 4.14 0.726 0.507 1.91

(j) nj(N) 0.839 0.69 0.181 0.254 0.159

(k) ∆j 1.31 1.43 1.43 1.38 1.25

(l) ej 1.78 1.55 1.86 1.59 1.71

(m) Sj(N + 1) 2.89 3.21 3.11 3.21 3.26

(n) Sj(N) 6.89 6.64 7.2 7.03 7.06

(o) BCS〈0|Pj |0〉BCS 0.734 0.801 0.545 0.435 0.896

Note: EP: E(114Sn) = −86.308, E(116Sn) = −95.942,
E(112Sn) = −75.831. BCS: E(114Sn) = −85.938,
µ = −5.035.

with respect to the treatment of weak pairing. Even
for the complicated particle-number projection tech-
niques accompanied by variational procedures on a
broader set of mean-field states, it remains unclear to
what extent it is possible to describe the pairing phase
transition, and whether the high-lying pair vibrations
are included, the step needed to account for missing
correlation energy.

Another related feature is the difference in pre-
dicted occupation numbers that can be inferred from
comparing rows (a) and (b) with (i) and (j) in Tables 2
and 3. A proper account of this difference can partially
help to correct the binding energy. In the presence
of additional interactions, the monopole contribution
to the energy can be particularly sensitive to the
precise occupation numbers. Furthermore, in the use
of mean-field methods for paired systems, a good
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 10 20
Table 3. Properties of the weakly paired 48Ca nucleus
(the FPD6 interaction was used in these calculations; all
energies are given in MeV)

j 7/2 3/2 5/2 1/2

εj −8.39 −6.5 −1.9 −4.48

EP

(a) Nj(N) 6.87 0.85 0.173 0.111

(b) nj(N) 0.858 0.212 0.0288 0.0557

(c) u2
j(N) 0.133 0.779 0.97 0.939

(d) v2
j (N) 0.848 0.212 0.0281 0.0555

(e) Sj(N + 1) 4.48 5.78 1.55 4.09

(f) Sj(N) 9.64 9.75 14.1 11.5

(g) 〈N + 2; 0|P †
j |N ; 0〉 0.706 0.928 0.289 0.309

(h) 〈N ; 0|Pj |N − 2; 0〉 1.07 0.612 0.288 0.232

BCS

(i) Nj(N) 6.5 1.22 0.155 0.124

(j) nj(N) 0.813 0.304 0.0258 0.062

(k) ∆j 1.66 1.44 1.73 1.53

(l) ej 2.13 1.56 5.45 3.18

(m) Sj(N + 1) 4.5 5.66 1.64 4.1

(n) Sj(N) 9.64 9.51 13.8 11.3

(o) BCS〈0|Pj |0〉BCS 0.78 0.651 0.275 0.241

Note: EP: E(48Ca) = −71.215, E(50Ca) = −85.149,
E(46Ca) = −55.501. BCS:E(48Ca) = −70.591, µ = −7.335.

reconstruction of the density matrix generated by the
pairing is of critical importance.
The exact pairing treatment (EP) becomes in-

creasingly important in considering the reaction am-
plitudes with paired nuclei. The one-nucleon tran-
sition amplitudes defined in the exact solution via
Eq. (13) can be compared with the corresponding
BCS quantities. Since, similar to the recursive ap-
proach, these amplitudes connect different nuclei, the
standard BCS relations v2

j = nj , u2
j = 1 − nj , and

u2
j + v2

j = 1 are no longer true. Deviations from these
equalities are clearly enhanced in the phase transition
region, where adding an extra particle can make a
sharp difference. The BCS theory with an uncertain
particle number does not account for such effects.
The pair emission amplitudes generated by normal-
ized pair transfer operators Pj = Lj

√
2/(2j + 1) ex-

hibit even larger differences. Rows (g) and (h) of
Tables 2 and 3 show these amplitudes for adjacent
even systems. The numbers are noticeably different
03
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[in the BCS approach, they are replaced with a sin-
gle set shown in row (o)]. These discrepancies are
particularly crucial for weakly bound nuclei, since not
only the binding energy is affected by the improved
treatment of pairing, but also there are significant
corrections to the reaction amplitudes.
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PH
Further insight into the situation can be gained
by varying the coupling strength. For this purpose,
we consider a “ladder” model that contains ten dou-
bly degenerate single-particle orbitals equally spaced
with the interval of a unit of energy. The valence space
is assumed to be half-occupiedwithN = 10 particles.
The most interesting region is near the Fermi sur-
face, εF = 5. For Fig. 1, we consider the first single-
particle level above the Fermi energy. As in the pre-
vious example, the BCS result deviates significantly
from the exact solution near the phase transition,
around G = 0.5, as seen from Fig. 1a. In the same
region, one can observe a slight difference between
v2
j , 1 − u2

j , and nj in the exact solution. For the pair
emission process, the differences between the BCS
and exact solution become more pronounced. Here,
the particle-number uncertainty is crucial, since the
level under consideration is above the Fermi energy
forN = 10, but below it forN = 12.
Contrasting the exact solution with the mean-

field picture, we can notice that the occupation-
number operators N̂j in general may have nonzero
off-diagonal matrix elements between states of the
same seniority. In Figs. 2 (114Sn) and 3 (the ladder
model), the matrix elements between the ground
state and all s = 0 states are shown as a function
of excitation energy. In all cases, the off-diagonal
matrix elements rapidly fall off. In the case of weak
pairing (Fig. 3, circles), one can still see the structure
of excited states based on the equidistant single-
particle spectrum. For stronger pairing (compared to
YSICS OF ATOMIC NUCLEI Vol. 66 No. 10 2003
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Fig. 4. Schematic picture of lowest seniority states and possible decays in oxygen isotopes. Dotted arrows indicate the decays
blocked by seniority conservation.
the single-particle level spacing), Fig. 3, triangles, as
well as in the realistic case for spherical symmetry,
Fig. 2, the decrease in matrix elements is more
uniform and can be approximated on average by
an exponential function of excitation energy. This
indicates chaotization of motion even in the sector
with seniority s = 0 [54]. Only a very few states
with relatively large matrix elements may carry pair-
vibrational features. As follows from the extended
shell-model analysis [55], the exponential tails of
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 10 20
the strength functions are typical for many-body

quantum chaos [56]. The property of exponential

convergence was demonstrated in [28], and the ex-

trapolation based on this property was later used [57–

59] as a practical tool for getting reliable quantitative

results in shell-model calculations of intractable large

dimensions.
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Table 4. Seniority s = 0 and s = 1 states in oxygen iso-
topes (Energies and neutron decay widths are shown.
Results are compared to the known data. Ground-state
energies relative to the 16O core are given in bold. The rest
of the energies are excitation energies in a given nucleus)

A J E, MeV Γ, keV Eexp, MeV Γexp, keV

16 0 –0.00 0 –0.00 0

17 5/2 –3.94 0 –4.14 0

17 1/2 0.78 0 0.87 0

17 3/2 5.59 96 5.08 96

18 0 –12.17 0 –12.19 0

19 5/2 –15.75 0 –16.14 0

19 1/2 1.33 0 1.47 0

19 3/2 5.22 101 6.12 110

20 0 –23.41 0 –23.75 0

21 5/2 –26.67 0 –27.55 0

21 1/2 1.38 0

21 3/2 4.60 63

22 0 –33.94 0 –34.40 0

23 1/2 –35.78 0 –37.15 0

23 5/2 2.12 0

23 3/2 2.57 13

24 0 –40.54 0 –40.85 0

25 3/2 –39.82 14

25 1/2 2.37 0

25 5/2 4.98 0

26 0 –42.04 0

27 3/2 –40.29 339

27 1/2 3.42 59

27 5/2 6.45 223

28 0 –41.26 121

5. CONTINUUM EFFECTS

As the main interest of low-energy nuclear physics
is moving to nuclei far from the valley of stability, the
continuum effects become exceedingly important for
a unified description of the structure of barely stable
nuclei and corresponding nuclear reactions. The pair-
ing part of the residual interaction in some cases is
the main source of the nuclear binding; spectroscopic
factors and reaction amplitudes are also critically de-
pendent on pairing.
PH
As a demonstration of a realistic shell-model cal-
culation combining the discrete spectrum and the
continuum, we consider oxygen isotopes in the mass
region A = 16 to 28. In this study, we use a uni-
versal sd-shell model description with semiempirical
effective interaction (USD) [25]. The model space in-
cludes three single-particle orbitals 1s1/2, 0d5/2, and
0d3/2 with corresponding single-particle energies of
−3.16,−3.95, and 1.65MeV. The residual interaction
is defined in the most general form with the aid of
a set of 63 reduced two-body matrix elements in
pair channels with angular momentum L and isospin
T , 〈(j3τ3, j4τ4)LT |V |(j1τ1, j2τ2)LT 〉, that scale with
nuclear mass as (A/18)−0.3.
In the discrete spectrum, the full shell-model

treatment is possible for such light systems. Aim-
ing at the study of the continuum effects, which
significantly increase the computational load, here
we truncate the shell-model space to include only
seniority s = 0 and s = 1 states. This method, “exact
pairing + monopole,” is known [29] to work well
for shell-model systems involving only one type of
nucleons (in the case of the oxygen isotope chain,
only neutrons and the interaction matrix elements
with isospin T = 1 are involved). The two important
ingredients of residual nuclear forces are treated by
this method exactly: the monopole interaction that
governs the binding energy behavior throughout the
mass region, and pairing that is responsible for the
emergence of the pair condensate, renormalization of
single-particle properties, and collective pair vibra-
tions.
In the resulting simplified shell-model description,

the set of the original 30 two-body matrix elements in
the T = 1 channel is reduced to 12 most important
linear combinations. Six of these are the two-body
matrix elements for pair scattering in theL = 0 chan-
nel describing pairing, and the other six correspond to
the monopole force in the particle–hole channel,

V̄j,j′ ≡
∑
L�=0

(2L+ 1)〈(j, j′)L1|V |(j, j′)L1〉, (32)

where j and j′ refer to one of the three single-particle
levels.
We assume here that the 0d3/2 orbital belongs to

the single-particle continuum and, therefore, its en-
ergy has an imaginary part. In this model, we account
for two possible decay channels |c〉 for each initial
state |Φ〉, a one-body channel, c = 1, and a two-body
channel, c = 2. The one-body decay changes the se-
niority of the 0d3/2 orbital from 1 to 0 in the decay
of an odd-A nucleus and from 0 to 1 for an even-
A nucleus. The two-body decay with zero angular
momentum of the pair removes two paired particles
and does not change the seniority. The two channels
YSICS OF ATOMIC NUCLEI Vol. 66 No. 10 2003



NUCLEAR PAIRING: NEW PERSPECTIVES 1791
lead to the lowest energy state of allowed seniority
in the daughter nucleus; transitions to excited pair-
vibrational states are ignored. This results in

e3/2(Φ) = ε3/2 −
i

2
α3/2(EΦ − E(1))5/2 (33)

− iα3/2(EΦ − E(2))5/2,

where we assumed that one- and two-body decay pa-

rameters γ(c)
j are related as γ(1)

3/2 = γ
(2)
3/2/2 ≡ γ3/2 and

the particles are emitted in the d-wave with + = 2. The
energy dependence of the widths near decay thresh-
olds E(c) is very important; α3/2 is the reduced width
parameter that differs from γ3/2 by the absence of the
energy factor. Three states with the valence particle
at one of the single-particle orbitals can be identified
as the 5/2+ ground state and 1/2+ and 3/2+ excited
states in the spectrum of 17O. Their energies rela-
tive to 16O correspond to the single-particle energies
in the USD model. Experimental evidence indicates
that the 3/2+ state decays via neutron emission with
the width Γ(17O) = 96 keV. This information allows
us to fix our parameter α3/2 = Γ(17O)/(ε3/2)5/2 =
0.028 (MeV)−3/2. The other two states are particle-
bound, γ1/2 = γ5/2 = 0.

With complex single-particle energies, the non-
Hermitian effective Hamiltonian for the many-body
system is constructed in a regular way [60, 61].
The Hamiltonian includes the Hermitian pairing and
monopole terms as well as the energy-dependent
non-Hermitian effective interaction through the open
decay channels, the structure of which is dictated
by unitarity [61]. Energy dependence is determined
by the proximity of thresholds [Eq. (33)]. We move
along the chain of isotopes starting from 16O. In
this way, for each A the properties of the possible
daughter systems A− 1 and A− 2 are known. The
chain of isotopes under consideration is shown in
Fig. 4, which includes s = 0 and s = 1 states and
indicates possible decays. The decays indicated by
the dotted arrows are blocked in our model due to the
exact seniority conservation. Nonpairing interactions
in the full shell model mix seniorities, making these
decays possible. Since the effective Hamiltonian
depends on energy and all threshold energies have
to be determined self-consistently, we solve this
extremely nonlinear problem iteratively. We start from
the shell-model energies Es.m. corresponding to a
nondecaying system. Then, the diagonalization of the
Hamiltonian at this energy allows us to determine
the next approximation to the complex energies E =
E − (i/2)Γ that give the position and the width of a
resonance. This cycle is repeated until convergence,
which is usually achieved in less than ten iterations.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 10 20
The results of the calculations and comparison
with experimental data for oxygen isotopes are shown
in Table 4. Despite numerous oversimplifications re-
lated to seniority truncation, limitations on the con-
figuration mixing, and restrictions on possible decay
channels and final states, the overall agreement ob-
served in Table 4 is quite good. If experimental data
are not available, the results can be considered as
predictions. The main merit of this calculation is in
demonstrating the power and practicality of the EP
method extended to continuum problems. The same
calculation also predicts [62] the cross sections of the
processes related to the included channels, providing
the unified description of the structure and reactions
with loosely bound nuclei.

6. THERMAL PROPERTIES

A. BCS Approach

The properties of the dense spectrum of highly ex-
cited states are usually described in statistical terms
of level density, entropy, and temperature. The shell-
model analysis [19, 63] revealed a certain similarity
between many-body quantum chaos and thermal-
ization. In particular, the Fermi liquid approach to
the complex many-body system modeled as a gas of
interacting quasiparticles turns out to be applicable
not only in the vicinity of the Fermi surface, but even
at high excitation energy.

Here, we consider the thermalization properties of
the paired system. Related subjects have been re-
cently discussed in the literature by a number of au-
thors (see [64] and references therein). The BCS op-
erates with the quasiparticle thermal ensemble. The
expectation value for an occupancy of a given single-
particle state is

n = 〈a†a〉 = u2〈α†α〉 + v2〈α̃α̃†〉 + uv〈α†α̃† + α̃α〉.
(34)

Under the assumption of the thermal-equilibrium
quasiparticle distribution, the last term in (34) dis-
appears, while the first and the second terms give

〈α†
jαj〉 = νj , 〈α̃jα̃

†
j〉 = 1 − νj̃. (35)

The occupation numbers for quasiparticles are de-
fined by the Fermi distribution with zero chemical
potential,

νj(T ) = [1 + exp(βej)]−1, β = 1/T, (36)

and temperature-dependent quasiparticle energies

ej(T ) =
√

(εj − µ)2 + ∆2
j(T ). (37)
03
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The thermal evolution of the pairing gap ∆(T ) is
determined by the self-consistent BCS equation with
the quasiparticle blocking factor included,

∆j(T ) =
∑
j′

Gjj′
[1 − νj′(T ) − νj̃′(T )]∆j′(T )

2ej′(T )
.

(38)

The occupation numbers of original particles are
given by

nj = u2
jνj + v2

j (1 − νj), (39)

where the coherence factors u and v also depend
on temperature via ej(T ). (This discussion is closely
related to [65].) As a result, we obtain equations for
the gap (38) and chemical potential using Eq. (39)
at a given external temperature T that governs the
quasiparticle distribution.

B. Statistical Spectroscopy of Pairing
The form of the pairing Hamiltonian allows for a

relatively simple calculation of its spectroscopic mo-
ments. In this section, we limit our consideration to
the zero seniority block of a ladder system of total
capacity Ω with doubly degenerate orbitals; the gen-
eralization for more realistic cases is straightforward.
In the ladder system, the diagonal matrix elements
simply renormalize single-particle energies. It is con-
venient to set the chemical potential to zero and use
variables ε1 = ε1 −G11/2 following Eq. (20). We also
denote the off-diagonal pairing matrix elements as
G12 = (1 − δ12)G12.
The centroid of the distribution is determined by

the single-particle spectrum,
〈〈E〉〉 = Nε̄. (40)

Here, the double brackets imply averaging over
all many-body states, while the overline means av-
eraging over single-particle states according to the
definition

Gk =
2
Ω
tr(Gk). (41)

The second moment of the distribution, the variance,
is a sum in quadratures of the single-particle width
and the width due to pairing,

σ2 = 〈〈(E − 〈〈E〉〉)2〉〉 =
2N(Ω −N)

Ω − 2
(42)

×
(

(ε− ε̄)2 +
1
4
G2

)
.

The third moment, the skewness, indicates deviations
from the normal distribution. It is given by

〈〈(E − 〈〈E〉〉)3〉〉 = −N(Ω −N)(Ω −N − 2)
(Ω − 2)(Ω − 4)

G3.

(43)
PH
All odd central moments are asymmetric in G and
thus vanish for G = 0. The skewness is also a special
case since in the ladder system it does not depend
on single-particle energies. For attractive pairing, the
skewness is always negative, indicating a longer tail
of the distribution towards lower energies. This sup-
ports the pairing character of the low-lying states that
due to their collective nature are pushed further down
from the centroid of the distribution.
The density of states ρ(E) allows for a thermody-

namical determination of the temperature,

1
T

=
∂

∂E
ln (ρ(E)) . (44)

Despite the presence of higher moments, the density
of states of paired systems, as in a more general
class of two-body Hamiltonians [19], can be closely
approximated by a Gaussian distribution. An actual
distribution ρ(E) is shown in Fig. 5. Assuming a
Gaussian distribution with the mean value (40) and
the width σ, Eq. (42), the temperature as a function of
energy can be found [19] using (44),

T (E) =
σ2

〈〈E〉〉 − E
. (45)

The negative-T branch is an artifact of the finite
Hilbert space.
The Gaussian distribution gets distorted when the

pairing becomes strong and the low-lying states be-
come very collective. A minor manifestation of this
collectivity is seen in Fig. 5b for G = 1. As G grows,
the deviations from the Gaussian shape become more
transparent, clearly revealing the seniority structure,
as seen in Fig. 6.

C. Quasiparticle Temperature

As was discussed in detail in [19, 63], there is no
unique definition of temperature in a self-sustaining
isolated mesoscopic system. Complementary to the
thermodynamic (microcanonical) definition of the
previous subsection, we can find the effective value
of temperature for each individual many-body state
by fitting the occupation numbers found in the EP
solution to those given by the thermal ensemble
[Eq. (39)]. We can refer to this assignment as a mea-
surement with the aid of a quasiparticle thermometer
and denote the resulting temperature as T .
The correspondence between excitation energy

and quasiparticle temperature T for each eigenstate
in the 12-level model is presented in Fig. 7. The
scattered points clearly display a regular trend to
thermalization in agreement with the hyperbolas pre-
dicted by Eq. (45). Although the thermodynamic and
quasiparticle temperatures are well correlated (Fig. 8)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 10 2003
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their numerical scales are different, T ≈ 2.5T . Fur-
thermore, the concept of quasiparticle thermalization
is meaningful only for relatively weak pairing, where
large fluctuations due to the proximity of the phase
transition are present. The quality of thermalization
deteriorates as stronger pairing makes the dynamics
more and more regular. The inability of the strongly
paired system to fully thermalize the dynamics was
demonstrated earlier [54]. The role of nonpairing
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 10 20
interactions is essential for equilibration. But the
failure of the single-particle thermometer to reflect
correctly the spectral evolution in the limit of very
strong interaction is a general feature [19, 63].

D. Pairing Phase Transition

In Fig. 9, the pairing gap is plotted as a function
of quasiparticle temperature. The gap was calculated
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using Eq. (38) with the quasiparticle temperature
replacing the BCS external temperature parameter.
This makes the consideration consistent with the
occupancies given by Eqs. (36) and (39). The half-
occupied, 12-level ladder model was again used for
this example. The choice of a larger system not only
results in the increased number of s = 0 states, but,
more importantly, reduces the particle-number fluc-
tuations that can disrupt the fitting procedure, espe-
cially in the pairing phase transition region.

Figure 9 demonstrates the phase transition from
the paired state at lower temperature (or excitation
energy) to a normal state at higher temperature.
Few low-lying states have a considerable pairing
gap, whereas the gap disappears in sufficiently ex-
PH
cited states. The invariant entropy [66] can be an

alternative method for visualizing the phase tran-

sition [54, 67]. This quantity is basis-independent

and reflects the sensitivity of a particular eigenstate
to the changes in a parameter of the many-body

Hamiltonian, here, the pairing strength G. The peak

in the invariant entropy points out the location of

the pairing phase transition as a function of G and

excitation energy E of a particular state. However,

it is important to note that the phase transition

pattern is strongly influenced [19, 63] by other parts
of residual interaction.
YSICS OF ATOMIC NUCLEI Vol. 66 No. 10 2003
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7. NEW THEORETICAL PERSPECTIVES

A. Hartree–Fock Approximation Based on the Exact
Pairing Solution

Instead of the normal Fermi occupation picture
with a Slater determinant as a trial many-body func-
tion for the mean-field approximation, the EP solu-
tion with its specific single-particle occupancies pro-
vides a new starting point for the consistent consider-
ation of other parts of the residual interaction. In this
subsection, we illustrate this point with the help of
Belyaev’s [68] pairing plus quadrupole (P +Q) model
Hamiltonian for a single-j level,

H = −GL†L− χ

2

∑
κ

M†
2κM2κ, (46)

where the multipole operators are defined as

MKκ =
∑

m1m2

(−1)j−m1


 j K j

−m1 κ m2


 a†2a1.

(47)

Only the ratio χ/G of the strength of quadrupole–
quadrupole interaction to the pairing strength is im-
portant since the energy scale can be fixed so that
G = 1.
In the pure pairing limit, χ = 0, the degenerate

pairing model is recovered with the ground-state en-
ergy (Ω = 2j + 1)

E = G
N

4
(Ω −N + 2). (48)

Pairing correlation energy in the BCS with constant
pairing is given by ∆2/G. For the exact solution, we
define the correlation energy as the ground-state ex-
pectation value of the pairing part of the Hamiltonian
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 10 20
with the monopole contribution subtracted. In the
degenerate case,

Ecorr = G
N

4
(Ω −N). (49)

The opposite limit with no pairing can be treated
by making a transition to a deformed mean field in
the Hartree approximation [69]. For axially symmetric
deformation, the expectation value of the quadrupole
moment is

〈M20〉 =
∑
m

2[3m2 − j(j + 1)]√
Ω(Ω2 − 1)(Ω2 − 4)

nm (50)

in terms of the occupation numbers nm = 〈a†mam〉 in
the intrinsic frame with the z axis oriented along the
symmetry axis. In this case,

〈M2−2〉 = 〈M22〉 = 0. (51)

The deformed single-particle energies in the body-
fixed frame can be obtained via the usual self-
consistency requirement,

εm = −χ 2[3m2 − j(j + 1)]√
Ω(Ω2 − 1)(Ω2 − 2)

〈M20〉. (52)

The energy minimum for an even-N system cor-
responds to the Fermi occupation of the N/2 low-
est pairwise degenerate orbitals |m| = 1/2, 3/2, . . . ,
(N − 1)/2 for prolate or |m| = j, j − 1, . . . , j −
(N − 2)/2 for oblate shape. The corresponding quad-
rupole moment is then given by

〈M20〉 = −1
2

N(Ω2 −N2)√
Ω(Ω2 − 1)(Ω2 − 4)

(53)

for prolate deformation and

〈M20〉 =
1
2
N(2Ω −N)(Ω −N)√

Ω(Ω2 − 1)(Ω2 − 4)
(54)
03
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for oblate deformation. Deformation energy is quad-
ratic in 〈M20〉, so that the oblate deformation is pre-
ferred for N < Ω/2 and the prolate one for N > Ω/2.
In the special case of a half-occupied system, the de-
formation energies corresponding to oblate and pro-
late shapes become equal.
The full problem is driven by the competition be-

tween pairing and deformation. While deformation
tends to split the single-particle energies (Nilsson
orbitals), Eq. (52), the pairing can resist such a shape
transition by creating a particle distribution unfavor-
able for deformation. In the single-j model, these
effects have been discussed by Baranger and Ku-
mar [69] with the help of the BCS and the Hartree
approximation. However, as demonstrated earlier, the
BCSmay be unreliable in the transitional region. The
use of the projected HFB and the resulting improve-
ment against traditional HFB for a similar single-j
model have recently been discussed in [70]. Our goal
here is to supplement the Hartree treatment with the
exact pairing solution.
Similar to the Hartree+BCS approach in [69], we

look for a self-consistent solution, where the occu-
pation numbers in the deformed basis agree with the
exact solution to the pairing problem [71]. Prior to
calculations, one can estimate the ratio χ/G corre-
sponding to the BCS phase transition. Assuming for
example an oblate shape with N ≤ Ω/2, we have the
Fermi energy at m = j − (N − 2)/2 with the den-
sity of single-particle states found approximately as
νF = 2/(εm−1 − εm), which for a half-occupied sys-
tem leads to

(χ/G)crit ≈ 3.6Ω. (55)

In Fig. 10, we present the results for a model with
j = 19/2. The particle numberN = 8was selected to
avoid an exactly half-occupied shell when particle–
hole symmetry and oblate-to-prolate shape change
lead to special features that are of no interest for our
goal. For this model, the transition from spherical to
deformed shape takes place at χ/G ≈ 70 [Eq. (55)].
The pairing correlation energy shown in Fig. 10a as
a function of χ/G starts near χ/G = 0 with a value
prescribed by the degenerate model. As the relative
strength of the quadrupole–quadrupole interaction
increases, the deformation inhibits pairing. However,
in Fig. 10a, we see a key difference between the BCS
and exact treatment. Within the BCS, the pairing
correlation energy goes to zero quite sharply once the
system becomes deformed. In contrast, the exact so-
lution finds that pairing correlations decay very slowly
and extend far into the deformed region. In Fig. 10b,
the expectation value of 〈M20〉 is shown as a function
of χ/G. In the pairing limitχ/G → 0, the deformation
is zero, whereas in the deformed limit the value 〈M20〉
PH
is expressed via Eq. (54) or (53). Here again, the exact
treatment produces a softened and extended phase
transition.
The Hartree approximation ignores another im-

portant effect relevant to our consideration, namely,
the contribution of the exchange terms to the pairing
channel. This contribution is particularly strong in
small systems and leads to an additional enhance-
ment of the pairing strength G → G+ 2χ/Ω2 [72].
The results of Hartree–Fock + EP calculations that
include this additional term are shown in Fig. 11.
Due to the exchange term, pairing correlations never
disappear. The presence of pairing correlations in
a pure quadrupole–quadrupole Hamiltonian is also
confirmed by an exact solution in the full shell-model
diagonalization [72]. The BCS treatment, however,
fails to reproduce this effect.

B. New Random Phase Approximation

Here we show how the RPA-like approximation
can be developed starting from the exact solution of
the pairing problem. There are two main types of
RPA used in the literature (and a variety of close
approaches distinguished by the details of the formal-
ism), the RPA based on the vacuum of noninteracting
particles or that of the BCS, or HFB, quasiparticles
(the so-called QRPA). We will try to describe col-
lective vibrations generated by the residual interac-
tion on top of the exact ground state of the pairing
problem. The formalism of the generalized density
matrix [73, 74] seems to be suitable for this purpose.
The generalized density matrix (GDM) is the set

of the operators

R12 = a†2a1 (56)

acting in the full Hilbert space of a many-body sys-
tem; this set at the same time forms a matrix labeled
by single-particle subscripts (1, 2).We do not perform
any canonical transformation to the quasiparticle op-
erators and therefore work invariably within a system
of a certain particle number. The one-body observ-
ables as operators in many-body space are traces of
the GDM operator over single-particle indices,

Q =
∑

a

qa ⇒ Q =
∑
12

q12a
†
1a2 = tr(qR).

(57)

With the Hamiltonian of the system taken as a sum
of independent particle energies in the mean field, ε1,
and the general residual two-body interaction V12;34,
the exact operator equations of motion for the GDM
can be symbolically written as

[R,H] = [S,R], (58)
YSICS OF ATOMIC NUCLEI Vol. 66 No. 10 2003
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where S is the generalized self-consistent field oper-
ator (a linear functional of the GDM),

S = ε+W{R}, W14{R} =
∑
23

V12;34R32, (59)

and the interaction matrix elements are antisym-
metrized.

Now, we assume that the Hamiltonian contains
the pairing part (1) as well as other residual interac-
tions,H = Hp +H ′. Correspondingly, we can set

R = R◦ +R′, W = W ◦ +W ′, (60)

W ◦ = W{R◦}, W ′ = W{R′}.
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 10 20
The assumption of the exact solution of the pairing
problem means that we found the occupancies, R◦,
and the pairing potential,W ◦, satisfying

[R◦,Hp] = [ε+W ◦, R◦]. (61)

This stage of the solution provides the states |s, a〉
with seniority s and energy Esa, where a numbers the
states within the subset of certain seniority; if needed,
we also can explicitly indicate rotational quantum
numbers Ja and Ma. The remaining part R′ of the
GDM should satisfy

[R′,Hp] + [R◦,H ′] + [R′,H ′] (62)

= [W ′, R◦] + [ε+W ◦, R′] + [W ′, R′].
03
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The commutators in such expressions are to be un-
derstood as, for example,

[W ′, R′]12 =
∑

3

(W ′
13R

′
32 −R′

13W
′
32). (63)

This is the point where we can make RPA-like ap-
proximations.
For definiteness, we consider the transitions from

the paired states s = 0, J = 0 to the states with s = 2,
J 
= 0 in the next sector. We are looking for a col-
lective mode that is related to such excitations. This
means that there exist states, in our case coherent
combinations of excited states with certain J , that
have large off-diagonal matrix elements of excitation
by a one-body multipole operator from the ground
state. The latter can in turn be renormalized by the
collective mode. Let us characterize this branch of
the spectrum with the help of collective coordinates
α and conjugate momenta π (we omit in this sym-
bolic derivation their quantum numbers of angular
momentum and its projection). These variables are
Hermitian quantum operators that satisfy the com-
mutation relation [α, π] = i so that no procedure of
subsequent requantization is needed. The collective
Hamiltonian of the mode can be written as

H ′ =
1
2
Cα2 +

1
2B

π2 + . . . , (64)

where the scalar contraction of the tensor operators is
implied and the dots include high-order anharmonic
terms important for the soft mode [75, 76].
We are looking for the operator solution of Eq. (62)

in the form of an expansion in collective operators α
and π,

R′
12 = r

(10)
12 α+ r

(01)
12 π + . . . (65)

and

W ′
12 = w

(10)
12 α+ w

(01)
12 π + . . . , (66)

where the superscripts (n,m) refer to the compo-
nent containing n collective coordinate andm collec-
tive momentum operators. The dots again denote the
higher order parts, n+m > 1, symmetrized in due
way [75, 76]. The collective operators producing the
transition in many-body space are written explicitly,

whereas the coefficients r(nm)
12 and w(nm)

12 are the c
numbers to be found as single-particle amplitudes
of the coherent superposition that forms a collec-
tive mode. The operator expansion (65), (66) does
not assume the smallness of anharmonic effects—
wemerely decompose the problem in various operator
structures. In the present context, we limit ourselves
to the harmonic part, although it can be used [75, 76]
for situations of strong anharmonicity as well.
The operator R, by definition (56), has seniority

selection rules |∆s| = 2. We take in the operator
PH
Eq. (62) matrix elements 〈0|c〉 between the ground
state |0〉 and the collective state |c〉 in the adjacent
sector s = 2 with angular momentum corresponding
to that of collective operators α and π. Now, we eval-
uate the matrix elements of various terms in Eq. (62)
aiming at the segregation of terms linear in α and π.
The first term on the left-hand side gives, according
to Eq. (65),

[R′
12,Hp] = (Ē◦

c − Ē◦
0)(r(10)

12 α+ r
(01)
12 π). (67)

Here, the barred energies are the centroids of the
energy distribution of the actual ground state and
the one-phonon state in the sectors s = 0 and s = 2,
respectively. The second term on the left in Eq. (62)
does not have the required matrix elements, where-
as in the commutator [R′,H ′] we need to perform
commutation explicitly using the assumed form of the
collective operators (65)–(67),

[R′
12,H

′] =
i

B
r
(10)
12 π − iCr

(01)
12 α. (68)

The situation with the terms [W ◦, R′] and [W ′, R◦]
is more complicated. Within each sector of given s,
the pairing solution GDM R◦ has not only diagonal
but also off-diagonal elements between the eigen-
states ofHp. As shown in Figs. 2 and 3, very few pair-
vibrational states have significant off-diagonal matrix
elements of this type. For our illustrative purposes,
here we neglect the off-diagonal terms within a given
sector and take into account only diagonal elements
of R◦ and W ◦. The neglected contributions corre-
spond to the anharmonic admixtures of pair vibra-
tions to multipole modes and can be easily included
in the consideration. Because of the specific charac-
ter of the monopole pairing interaction, the matrix
elements of R◦ and W ◦ are diagonal over single-
particle subscripts as well. Higher order structures in
the collective Hamiltonian and in the GDM, as well
as terms generated by the commutator [W ′, R′], do
not contribute to matrix elements linear in α and π
and with the selection rule ∆s = 2. But, similar to
Eq. (67), the commutators with R◦ and W ◦ bring in
the differences of the single-particle occupancies and
pairing potentials averaged over the states contribut-
ing to the collective mode.
As a result, we come to the coupled equations

for the coordinate and momentum RPA amplitudes
(these contributions can be distinguished by their
behavior under time-reversal operation in the sector
with J 
= 0):

r
(10)
12 Ω12 − iCr

(01)
12 = [n̄2(c) − n̄1(0)]w

(10)
12 , (69)

r
(01)
12 Ω12 +

i

B
r
(10)
12 = [n̄2(c) − n̄1(0)]w

(01)
12 . (70)
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Here, the generalized frequencies are introduced,

Ω12 = Ē◦
c − Ē◦

0 + ε2 − ε1 + W̄ ◦
c − W̄ ◦

0 . (71)

This set of equations leads to a formal solution, anal-
ogous to that in the conventional RPA,

r
(10)
12 =

[n̄2(c) − n̄1(0)]
Ω2

12 − ω2
(Ω12w

(10)
12 + iCw

(01)
12 ), (72)

r
(01)
12 =

[n̄2(c) − n̄1(0)]
Ω2

12 − ω2
(Ω12w

(01)
12 − i

B
w

(10)
12 ), (73)

where the unknown collective frequency is ω =
(C/B)1/2.
The collective elements of the GDM are to be

found from the integral Eqs. (72) and (73) with
the specific choice of the residual interaction self-
consistently generating the field W ′ [Eq. (60)]. This
can be done explicitly in the case of the factoriz-
able multipole–multipole force; the frequency ω and
correct normalization of the mode are also obtained
in this process similar to the standard procedure in
terms of the barred quantities. Having at our disposal

the phonon amplitudes r(10)
12 and r(01)

12 , we can self-
consistently find the barred quantities averaged over
the collective wave functions. This procedure, which
reminds one of the thermal RPA built on the equi-
librium density matrix but with occupation numbers
and mean-field corrections defined by the interaction
rather than by an external heat bath, can be performed
in an iterative manner. The cranking description for
the deformed nucleus can also be reformulated in the
same spirit; it is interesting to note that the pure EP
solution predicts [54] an yrast-line with the moment
of inertia close to the rigid-body value.

8. CONCLUSION

The pioneering work by Belyaev [8] carried out a
detailed analysis of pairing phenomena in nuclei. Ap-
plying the BCS techniques in the nuclear shell-model
environment, he demonstrated the effects of pairing
on various nuclear properties, including the ground-
state structure, single-particle transitions, collective
vibrations, onset of deformations, and rotations. It
was shown that the Cooper phenomenon in systems
with a discrete single-particle spectrum does require,
in contrast to large systems, a certain strength of the
pairing interaction. The drawbacks of the BCS ap-
proximation, related to the particle-number violation
and the sharp disappearance of pairing correlations at
the phase transition point, were also pointed out.
The development started with Belyaev’s work and,

supported by similar studies [77, 78], was continued
throughout the next forty years. Now, the pairing
problem is alive and well, being one of the main
PHYSICS OF ATOMIC NUCLEI Vol. 66 No. 10 20
chapters of modern nuclear physics and mesoscopic
physics in general. The interest in pairing is con-
stantly revived by the accumulation of data and espe-
cially by the advances towards nuclei from stability,
where the pairing is a key tool that determines the
binding of a system and its response to the excitation.
At this point, it becomes increasingly important to
get rid of the shortcomings of the BCS approximation
and unify the description of the structure and reac-
tions.

We presented a way of solving the pairing problem
essentially along the lines similar to that of Belyaev’s
paper, replacing the BCS approximation by the exact
solution simplified by the seniority symmetry. As a
magnifying glass, this solution reveals and fixes the
weak points of the standard approach. We saw the
importance of the exact treatment for the ground
state, low-lying excitations, coupling through the
continuum, and spectroscopic factors associated with
single-particle removal and pair emission (transfer)
reactions. We could also discuss on the new basis the
global properties of the spectrum, thermalization, and
the phase transition region. In many cases, this exact
treatment of pairing is in practice simpler than solving
the BCS equations with necessary corrections.

Certainly, the pairing problem is only a part of the
physics of strongly interacting self-sustaining sys-
tems. Other interactions, with their own coherent and
chaotic features, should be included in the considera-
tion. We gave preliminary answers to the questions of
further approximations necessary for the cases when
the full problem does not allow for a complete solu-
tion. New generalizations of the mean-field approach
and random-phase approximations can be developed
on the background of the exactly found paired state.
The interplay of pairing and other residual interac-
tions can be an exciting and practically important
topic of future studies.

The inspiring influence of Belyaev’s ideas is grate-
fully acknowledged by the authors, who belong to the
first and third generation of his pupils.
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