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Theory of nuclei

Ultimate goals

■ Comprehensive and unified description of all nuclei

■ From basic interactions between nucleons + link to QCD

■ Understand states of nuclear matter in astrophysical environments

Difficulties

■ Self-bound, two-components quantum many-fermions system

■ Complex interaction from low-energy regime of QCD

■ Tensor and spin-orbit components

■ Unnaturally large scattering lengths

■ NNN unavoidable

■ Repulsive core and strong tensor at short distances?

■ Unified description from deuteron to SHE nuclei to NS

■ Need to extrapolate to unknown regions
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Ultimate goal

Ground state

Mass, deformation

Spectroscopy

Spectroscopy

Collective modes

RPA, QRPA, GCM

Reaction properties

Fusion, transfer...

Heavy elements

Fission, fusion, SHE

Exotic behaviors

Drip-lines, halos

Astrophysics

NS, SN, r-process
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Which theoretical method(s)?

■ No “one size fits all” theory for nuclei

■ All theoretical approaches need to be linked

Non-Empirical Pairing Energy Functional for nuclei
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Energy Density Functional (EDF) approaches

Basic elements

■ Approaches not based on a correlated wave-function

■ Energy is postulated to be a functional of one-body density (matrices)

■ Symmetry breaking is at the heart of the method

■ Two formulations (i) Single-Reference (ii) Multi-Reference

Pros

■ Use of full single-particle space

■ Quantal + collective picture

■ Universality of EDF (A ' 16)

■ Ground-state description

■ Static (smooth) correlations

Difficulties

■ No universal parametrization

■ Empirical 6= predictive power

■ Spectroscopy / odd nuclei

■ Dynamical (fluctuating) correlations

■ Limited accuracy (σmass
2135 ≈ 700 keV)

Non-Empirical Pairing Energy Functional for nuclei
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Pairing correlations in nuclei

T = 1 pairing in nuclei

■ nn/pp superfluidity impacts all low-energy properties of nuclei

■ Non-perturbative channel to be treated explicitly

Most impacted observables

■ Lowest two-qp states in even-even nuclei ≈ measures the "gap"

■ Odd-even mass staggering (OEMS) ≈ measures the "gap"

■ Collective excitations

■ Moment of inertia of rotational bands
■ Low-lying vibrational states
■ Shape isomers from intruders

■ Pair transfer

■ Competition of pro- and anti-halo effects on the one-body density

■ Neutron star physics

■ Glitches in the inner crust
■ Neutrino emission process
■ Heat diffusion
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Single-reference EDF methods (1)

Elements of formalism

■ E [ρ,κ∗,κ] = functional of one-body density matrices

ρji = 〈Φ|c†i cj |Φ〉 ; κji = 〈Φ|cicj |Φ〉

■ |Φ〉 = auxiliary/symmetry-breaking/product state of reference

■ Minimizing E [ρ,κ∗,κ] leads to Hartree-Fock-Bogoliubov-like equations

(

h−λ ∆
−∆∗ −h∗+λ

)(

Ui

Vi

)

= Ei

(

Ui

Vi

)

■ Effective potentials and vertices are defined through

hĳ ≡
δE
δρji
≡
∑

kl

v
ph
ikjl
ρlk ; ∆ĳ ≡

δE
δκ∗ĳ
≡ 1

2

∑

kl

v
pp
ĳkl
κkl

■ vph/vpp = Consistent many-body expansion in terms of NN/NNN

■ Quasiparticle w.f. (Ui ,Vi), energy Ei , densities. . .
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Single-reference EDF methods (2)

Empirical parameterizations of E [ρ,κ,κ∗] ; e.g. Skyrme or Gogny

E [ρ,κ,κ∗]≡ +
vρρ

Skyrme, Gogny...

+

DDDI, Gogny...

vκκ

■ Tremendous successes for known nuclei

■ Existing parameterizations are over/under constrained

■ "Asymptotic freedom" as one enters "the next major shell"

Pairing part: example of EDF from DDDI

Eκκ =
∑

q

∫

d~r A
ρ̃ρ̃(~r) |ρ̃q (~r)|2 ≡−

∑

q

∫

d~r ∆q(~r) ρ̃∗q (~r)

∆q
ĳ ≡ δEκκ

δκ
q ∗
ĳ

=

∫

d~r Ψq∗
ĳ (~r)∆q(~r)

■ ρ̃q(~r) = local pair density / Aρ̃ρ̃(~r) = density-dependent coupling

■ (Quasi-) local pairing EDF must be regularized/renormalized
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Single-reference EDF methods (3)

Performance of existing pairing EDFs

■ Moment of inertia of super-deformed bands = success story of the 90’

■ OEMS ≈ ok but missing systematic/detailed characterization

■ QP excitations = missing systematic characterization

■ Divergence of predictions in the "next major shell"

Crucial undergoing works

■ Enrich the analytical structure of empirical functionals

■ Improve fitting protocols = data, algorithm and post-analysis

One can also propose a complementary approach. . .

■ Known data hardly constrain non-trivial characteristics of pairing EDF

■ Interesting not to rely entirely on fitting data

Non-Empirical Pairing Energy Functional for nuclei
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Constructing non-empirical EDFs for nuclei

Long term objective

Build non-empirical EDF in place of existing models

Empirical

Predictive?

Finite nuclei
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Constructing non-empirical EDFs for nuclei

Long term objective

Build non-empirical EDF in place of existing models

Empirical

Predictive?

Non-empirical

Predictive...

Low-k NN+NNN QCD / χ-EFT

Finite nuclei
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Long term project and collaboration

Design non-empirical Energy Density Functionals

■ Bridge with "ab-initio" many-body techniques

■ Calculate properties of heavy/complex nuclei from NN+NNN

■ Controlled calculations with theoretical error bars

SPhN T. Duguet, J. Sadoudi

IPNL K. Bennaceur, J. Meyer

TRIUMF A. Schwenk, K. Hebeler

NSCL S. K. Bogner, B. Gebremariam

OSU R. J. Furnstahl, L. Platter

ORNL T. Lesinski
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First step: pairing part of the EDF

Motivations for a non-empirical approach

■ Empirical schemes lack predictive power

■ Microscopic origin of superfluidity in finite nuclei?

■ Contribution from the direct term of VNN (1S0, 1D2, 3PF2)?
■ Coupling to density/spin/isospin fluctuations: 40%?
■ Absolute value/isotopic trend is of great interest

Start with vpp built at 1st order in VNN (nuclear + Coulomb)

■ Single channel (1S0) dominates at sub-nuclear densities

■ Virtual state at E ≃ 0 makes VNN almost separable in 1S0

Non-Empirical Pairing Energy Functional for nuclei
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Nuclear interactions and the Renormalization Group

Approach

■ V (~k,~k ′,Λ =∞) = V hard(~k,~k ′)

■ Run down Λ

■ Keep δ
SLJ (k) and EDeuteron

General Properties

■ Vacuum interaction

■ Universal VNN (Λ≈ 2)≡ Vlow k

■ Vlow k is perturbative

Crucial points

■ H = VNN (Λ) + VNNN (Λ) + . . .

■ ∂ΛA 6= 0⇒ missing pieces

■ Ex: omitted NNN(Λ)

Convergence of the RG flow

Λ = 5.0 fm−1

Λ = 2.4 fm−1

Λ = 3.0 fm−1

Λ = 1.8 fm−1
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Finite nuclei calculations

Low-momentum interactions for finite nuclei calculations

■ High-precision bare interactions with regularized hard-core

■ Good starting point for structure calculations through EDF method?

Vlow k is given as tables of numbers

Produce analytical operatorial representation

■ Why?

■ Interest to understand encoded operatorial structure
■ Perform integrals analytically in codes

■ Which representation?

■ Gaussian/Gogny-like (V. Rotival)
■ Sum of separable terms (T. Lesinski)

Non-Empirical Pairing Energy Functional for nuclei
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Separable representation of Vlow k(Λ)+ VCoul

■ High precision separable representation of rank n

V
1S0
n (k,k′,Λ) =

n
∑

α,β=1

gα(k) λαβ gβ(k′)

■ Fit of gα(k) and λαβ to V
1S0

low k(k,k′,Λ) and δ
1S0 (k)

■ For Λ = 1.8/4.0/”∞” fm−1 (rank 2/4/15) and smooth cutoff
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Coulomb interaction

Need to incorporate Coulomb effects on proton gaps

■ Only one such published calculation so far: Madrid group (Gogny)

■ Simplified treatment of e.m. interaction (Coulomb)

Truncate the Coulomb interaction at r = a > 2Rnucleus

■ A separable expansion exists (keep 1S0 part here)

V
a
Coul,ℓ=0(k,k′) = 4πe2

a
2
∞
∑

n=0

(2n + 1) j
2
n

(

ak

2

)

j
2
n

(

ak′

2

)

,

λαβ = e
2
a

2 (2α+ 1)δαβ

gα(k) =
√

4π j
2
α

(

ak

2

)

Gα(r) =
1√
πa2r

Pα
(

1−2( r
a )2) for r ≤ a

■ ∼ 15 terms needed (peanuts !)
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EDF calculations in spherical nuclei (1)

■ Separable force in coordinate-space [r = r1− r2, R = (r1 + r2)/2]

〈r′1r
′
2|V

1S0
n |r1r2〉 =

n
∑

α,β

Gα(r ′) λαβ Gβ(r) δ(R′−R),

■ Coordinate-space form factor Gα(r) = fourier transform of gα(k)

■ Pairing functional

Eκκ =
∑

q

1

2

∫

d
3
R

n
∑

α,β=1

˘̃ρ
q∗
α (R) λαβ ˘̃ρ

q
β(R)

■ One defines effective pair densities ˘̃ρ
q
α(R) through

˘̃ρ
q
α(R) =

∫

d
3
r Gα(r)

∑

σ

(−)
1
2−σ κq (R + r/2,σ;R− r/2,−σ)

➨ Incorporate the finite range/non-locality of the interaction

➨ Induce non-local pairing field and density

➨ BUT the functional depends only on effective pair densities locally !
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EDF calculations in spherical nuclei (2)

■ Define reduced two-body wave-functions (spin-singlet part)

Ψ̆qα
ĳ (R) ≡

∫

d
3
r Gα(r)Ψq

ĳ(R + r/2,R− r/2)

Ψq
ĳ(r,r′) ≡

∑

σ

(−)s−σφi(r,σ,q)φj(r
′,−σ,q).

■ The φi are basis functions : the Ψ̆qα
ĳ (R) are computed once

■ Build densities and pairing field matrix elements

∆̆q
α(R) ≡ 1

2

n
∑

β

λαβ ˘̃ρ
q
β(R)≡ 1

2

n
∑

β

λαβ
∑

ĳ

Ψ̆qβ
ĳ (R) κq

ĳ

∆q
ĳ =

n
∑

α

∫

d
3
R Ψ̆q,α

ĳ (R) ∆̆q
α(R)

➨ Pseudo-local pairing problem!
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EDF calculations in spherical nuclei (3)

■ New spherical code BSLHFB (T. Lesinski, unpublished)

■ Handle finite-range/non-local forces for systematic calculations

■ Calculations almost as cheap as for a local EDF

■ Basis of spherical bessel functions jℓ(kr)

■ Well suited for drip-line physics

■ Calculations

■ Results for 470 nuclei predicted spherical (Gogny-D1S)

■ Pairing complemented with (SLy5) Skyrme EDF ; m∗0 = 0.7m

■ kmax ∼ 4.0 fm−1, Rbox = 20 fm, jmax = 45/2

■ Comparison of theoretical and experimental pairing gaps

✔ Reminder: nothing in the pairing channel is adjusted in nuclei

[T. Duguet and T. Lesinski, Eur. Phys. J. Special Topics 156 (2008) 207]

[T. Lesinski, T. Duguet, K. Bennaceur, J. Meyer, arXiv:0809.2895]
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Gaps from v
pp = VNN (Λ = 1.8)

[T. Duguet and T. Lesinski, Eur. Phys. J. Special Topics 156 (2008) 207]

[T. Lesinski, T. Duguet, K. Bennaceur, J. Meyer, arXiv:0809.2895]
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■ Neutron gaps ∆n are consistently close to experimental data

■ Proton gaps ∆p overestimates experimental data systematically
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Gaps from v
pp = VNN (Λ = 1.8)+ V

a
Coul,ℓ=0

[T. Duguet and T. Lesinski, Eur. Phys. J. Special Topics 156 (2008) 207]

[T. Lesinski, T. Duguet, K. Bennaceur, J. Meyer, arXiv:0809.2895]
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■ Coulomb decreases ∆p by ∼ 40% to bring them close to experiment

■ Few masses in the next major shell will be extremely valuable
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Gaps from v
pp = VNN (Λ = 1.8)+ V

a
Coul,ℓ=0+ CSB

[T. Duguet and T. Lesinski, Eur. Phys. J. Special Topics 156 (2008) 207]

[T. Lesinski, T. Duguet, K. Bennaceur, J. Meyer, arXiv:0809.2895]
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■ NN is different in Tz =±1 ⇐⇒ CSB

■ Effect of CSB on ∆p negligible compared to Coulomb
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Gaps from v
pp = VNN (Λ = 1.8)+ V

a
Coul,ℓ=0+ CSB

[T. Duguet and T. Lesinski, Eur. Phys. J. Special Topics 156 (2008) 207]

[T. Lesinski, T. Duguet, K. Bennaceur, J. Meyer, arXiv:0809.2895]
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■ NN is different in Tz =±1 ⇐⇒ CSB

■ Effect of CSB on ∆p negligible compared to Coulomb

Neutron gap in 120Sn from SLy4 + AV18 - Milan group

■ ∆n
AV18/∆

n
low k ≈ 2/3!?

■ Is there an inconsistency? What are the reasons for such a difference?
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Dependence of ∆q on the RG cut-off Λ
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■ Calculations with SLy4 + VNN (Λ) for varying Λ

■ No variation for Λ ∈ [1.8,4] fm−1 but arises for Λ> 4 fm−1 with ∆q ց
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Consistency of ph and pp self-energies

The Λ dependence of physical observable characterizes

■ Missing pieces in the Hamiltonian one keeps at each Λ

■ Correlations missing in the many-body calculation

■ Effects of bad approximations at the level one is working at

Fully microscopic calculations in infinite nuclear matter - K. Hebeler et al.

■ Different many-body expansions for large and small Λ

■ Results at large and small Λ likely to be different at a given order

■ vph and vpp must be produced at same Λ

■ Impact of using empirical vph such that m∗τ (k
τ
F)∼= m∗τ (k ≈ kτF,kF)
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Outline

1 Introduction
Nuclear theory: goals and methods
Energy Density Functional methods

2 Non-empirical energy functional
The pairing part of the EDF as a first step
Low momentum interactions
Separable operator representation of Vlow k + VCoul

3 Pairing gaps in finite nuclei
Implementation for finite nuclei calculations
Results including nuclear, Coulomb and CSB terms

4 Results for soft versus hard NN interactions
Dependence of pairing gaps on the RG scale Λ
Fully microscopic calculations in infinite nuclear matter

5 Summary and outlook
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Summary

Pairing gaps in finite nuclei from vacuum NN + Coul.

■ Based on low-momentum interactions from RG methods

■ First systematic calculations in finite nuclei

First set of results

■ Lowest order accounts for the magnitude of experimental gaps

■ Coulomb essential for proton gaps (∼ 40%)

■ Effects beyond lowest-order seems negligible or cancel each other

Microscopic calculations in SNM and PNM

■ Soft and hard interactions rely on different many-body expansions

■ Lowest and higher-order contributions differ in each scheme

■ Results for soft interaction in finite nuclei confirmed

■ Momentum averaging of m∗(k,kF) reliable for soft interaction

■ Fine tuning needed to design m∗Sk(kτF) for hard interaction
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Outlook

Works in progress or envisioned

■ Extensive study including other observables (T. Lesinski)

■ Extension to deformed nuclei (T. Lesinski)

■ Fine-tuned Skyrme appropriate to hard NN (T. Lesinski, A. Pastore)

■ Equivalent semi-empirical DDDI functional (J. Margueron)

■ Incorporate NNN (T. Lesinski)

■ Construct ph part (B. Gebremariam)
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Thank you !
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Self energies from many-body expansion

Expansion for soft VNN = small Λ

Perturbative

1st order

Σ(1) =

∆(1) =

2nd order (∆2/εF → 0)

Σ(2) = + +

∆(2) = +

Expansion for hard VNN = large Λ

Hole lines/pp-irreducible vertex

1st order

Σ(1) =

∆(1) =

2nd order (∆2/εF → 0)

Σ(2) = +

∆(2) = +
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Σ(1) =

∆(1) =

2nd order (∆2/εF → 0)

Σ(2) = +

∆(2) = +

■ Second order extendable to all orders in screening bubbles

■ Category of diagrams different depending on the starting VNN (Λ)

■ Work here at 1st order for both soft and hard VNN
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First order - soft interaction - Hartree-Fock (HF)

Self energy

Basic vertex =
〈

k
′
∣

∣V
ττ ′J

lS |q〉

Σ
(1)
τ (p,ω,kF) = 2

∑

q,τ ′

n(q,kτ
′

F )
〈

p−q

2

∣

∣

∣
V
ττ ′
∣

∣

∣

p−q

2

〉

Single-particle energy

ετp ≡ p2

2
+ Re Σ

(1)
τ (p)

■ Non self-consistent problem
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First order - hard interaction - Brueckner-Hartree-Fock (BHF)

Self energy

〈

k
′
∣

∣G
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∣
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∣
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ττ ′(|p + q|,ω+ ετ
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q )

∣

∣

∣

p−q

2

〉

Single-particle energy

ετp ≡ p2

2
+ Re Σ

(1)
τ (p, ετp)

■ Self-consistent problem

Non-Empirical Pairing Energy Functional for nuclei



Introduction Formalism Results Consistency of RG scales Summary

Effective masses

Effective k-mass and e-mass

m
∗(1)
τ,k (p,kF)

m
≡
[

1 +
1

p

∂ReΣ
(1)
τ (ω,p,kF)

∂p

∣

∣

∣

∣

∣

ω=ετp

]−1

m
∗(1)
τ,e (p,kF)

m
≡ 1− 1

m

∂ReΣ
(1)
τ (ω,p,kF)

∂ω

∣

∣

∣

∣

∣

ω=ετp

Total effective mass from ΣΛ(k, εk)

m∗τ
(1)(p,kF)

m
≡

m
∗(1)
τ,k (p,kF)

m

m
∗(1)
τ,e (p,kF)

m

■ Σ
(1)
soft from soft VNN provides k-mass only

■ Σ
(1)
hard from hard VNN provides both k-mass and e-mass
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Momentum dependence of the effective mass, k
τ
F = 1.2 fm−1

= 1.8fm - 1

= 6fm - 1
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Soft - HF

■ Mild p-dependence

■ Smaller in SNM than in PNM

■ Limited to p . Λ = 1.8 fm−1

Hard - BHF

■ e-mass enhancement at kτF

■ Stronger p-dependence

■ Extend to p . Λ = 6 fm−1

■ Larger overall
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Reducing the momentum dependence

Remember

Skyrme EDF provides at best m∗τSk (kτF) independent of momentum

Averaging procedure of X = m∗τ (p,k
τ
F) or Zτ (p,k

τ
F)

■ Evaluation on the Fermi surface

Xpe(kτF)≡ X(p = k
τ
F)

■ Averaging around the Fermi surface

Xav(kτF)≡
∫

f (q,Λ)q2dq X(q)u(q,kτF)v(q,kτF)
∫

f (q,Λ)q2dq u(q,kτF)v(q,kτF)

■ Other variants

Questions

■ Are the results sensitive to the averaging procedure?

■ Is there a qualitative difference between hard and soft interactions?
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Momentum independent effective masses for soft interaction

[K. Hebeler, T. Duguet, T. Lesinski, A. Schwenk, in preparation)]
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Only slight difference between av and pe at HF level

■ SLy4 gives reasonable account of m∗HF
k (kτF ≈ 1.36 fm−1) in SNM

■ Wrong isovector m∗1 of SLy4 [T. Lesinski et al. 2006)]

Non-Empirical Pairing Energy Functional for nuclei



Introduction Formalism Results Consistency of RG scales Summary

Momentum independent effective masses in SNM for hard interaction

[K. Hebeler, T. Duguet, T. Lesinski, A. Schwenk, in preparation)]
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Difference between av/pe much larger than for soft cutoff interaction

■ Momentum dependence stronger

■ Larger momentum-space for averaging procedure
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Pairing gaps

Gap equation

■ After pole approximation

∆̂(k) =−
∫

d3k′

(2π)3

Z(k)VNN(k,k′;Λ)Z(k′)∆̂(k′)

2
√

(εk′ −µ)2 + ∆̂2(k′)

■ ∆̂(k) = Z(k)∆(k) = physical gap of the excitation spectrum

■ Effective mass approximation relates to εk′ −µ in the denominator

Questions of interest regarding results in finite nuclei

■ Impact of using m∗τ (k,kF)≈m∗τ (k
τ
F)?

■ Is there a qualitative difference between hard and soft interactions?
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Pairing gaps from soft interactions - PNM and SNM

[K. Hebeler, T. Duguet, T. Lesinski, A. Schwenk, in preparation]
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Gaps from full m∗HF
τ (k,kF )

■ Close to SLy4 + VΛ=1.8 for kn
F ∈ [1.1,1.4]

■ Trace of wrong m∗1 of SLy4 in PNM

Gaps from m∗HF
τ (k,kF )≈m∗τ (k

τ
F )

■ Reproduce well gaps from m∗HF
τ (k,kF)

■ No sensitivity to averaging procedure

■ Variation ≪ bandwidth of SLy4 calc.

■ Could optimize m∗Sk(kτF)
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Pairing gaps from hard interactions - SNM

[K. Hebeler, T. Duguet, T. Lesinski, A. Schwenk, in preparation]
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Gaps from full m∗BHF
τ,e/k (k,kF )

■ Lower than SLy4 + VΛ=15 for all kn
F

■ Very small if considering Zτ (k,kF )

Gaps from m∗BHF
τ,e/k (k,kF)≈m∗τ (k

τ
F)

■ Strong sensitivity to averaging procedure

■ Variation & bandwidth of SLy4 calc.

■ Fine tuning needed to design m∗Sk(kτF)

→ Collaboration with Milan group
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Analysis
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■ Consider matrix elements VΛ=1.8/6(kn
F ,p)

■ Write gap equation schematically as

∆̂(kn
F)≡
∫

dq Y (kn
F ,q)

Gap generated

■ Around the Fermi surface for soft Λ

■ Mainly at large momenta for hard Λ

Effect of m∗τ (k
τ
F ) = constant - ’pe’ values here

■ Good approx for soft Λ around kn
F

■ Bad approx for hard Λ at relevant p & 2 fm−1

Non-Empirical Pairing Energy Functional for nuclei



Introduction Formalism Results Consistency of RG scales Summary

∆n
1S0

(kF ,kF ,Λ) in INM from Vlow k(Λ)

Neutron gaps with ǫk = h̄2k2/2m (m∗ = m)
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■ Gaps of numerical Vlow k reproduced perfectly without direct fitting

■ True for ∆n
1S0

(k,kF ,Λ) ∀ k . Λ

■ ∂Λ∆n
1S0

(kF ,kF ,Λ) = 0 [K. Hebeler, A. Schwenk, B. Friman, 2007]
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∆q
1S0

(kF ,kF ,Λ) in INM Vlow k(Λ)+ VCoul

Neutron/proton gaps with ǫk = h̄2k2/2m (m∗ = m)
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■ Coulomb reduces proton gaps by ∼ 40%

■ Comparatively CSB effects are negligible
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Effective masses

Effective k-mass, e-mass and total mass from ΣΛ(k, εk)

m∗τ
(1)(p,kF)

m
≡

m
∗(1)
τ,k (p,kF)

m

m
∗(1)
τ,e (p,kF)

m

■ Σ
(1)
soft from soft VNN provides k-mass only

■ Σ
(1)
hard from hard VNN provides both k-mass and e-mass

Remember

Skyrme EDF provides at best m∗τSk (kτF) independent of momentum

Momentum-dependence averaging m∗τ (k,kF )≈m∗τ (k
τ
F)

■ Result insensitive to procedure for soft VNN

■ Result very sensitive to procedure for hard VNN
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Reducing the momentum dependence

Remember

Skyrme EDF provides at best m∗τSk (kτF) independent of momentum

Averaging procedure of X = m∗τ (p,k
τ
F) or Zτ (p,k

τ
F)

■ Evaluation on the Fermi surface

Xpe(kτF)≡ X(p = k
τ
F)

■ Averaging around the Fermi surface

Xav(kτF)≡
∫

f (q,Λ)q2dq X(q)u(q,kτF)v(q,kτF)
∫

f (q,Λ)q2dq u(q,kτF)v(q,kτF)

■ Other variants

Results

■ Provides exact same m∗τ (k
τ
F) for soft interaction

■ Result very sensitive to procedure for hard interaction
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Pole approximation to the gap equation

General gap equation with Γirr = V

∆(k) =

∫

d3k′

(2π)3

∫

dω′

2πi
V (k,k′)F(k′,ω′)

■ Neglect imaginary part of Σ

■ Find pole Ek by solving F−1(k,ω) = 0

■ Expand propagator around these poles

■ Perform the energy integral analytically in the limit ∆≪ εF

∆(k) =−
∫

d3k′

(2π)3

V (k,k′)Z(k′)∆(k′)

2
√

[

ε0
k′
−µ+ 1

2 [Σ(k′, εk′) + Σ(k′,2µ− εk′)]
]

2 + ∆2(k′)

with Z(k) = m−1
e (k).
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Reference: Definition of Fermi momenta

k
p
F =

[

3π2

2
(1−β)ρ

]1/3

k
n
F =

[

3π2

2
(1 +β)ρ

]1/3

β = (ρn−ρp)/ρ

ρ = ρn +ρp =
1

3π2

[

(kn
F)3 + (kp

F)3]

In SNM we have k
p
F = kn

F ≡ kF =
[

3π2ρq
]1/3

.
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