Assembling a Device for Measuring Alpha-Gamma Coincidences

EXPERIMENTAL NUCLEAR PHYSICS

BELÉN CARO MARROYO ALEJANDRO MARTÍN SÁNCHEZ

DEPARTMENT OF PHYSICS UNIVERSITY OF EXTREMADURA

IV ENCUENTRO DE FÍSICA NUCLEAR EL ESCORIAL, MADRID, 27 TO 29 SEPTEMBER 2010

TABLE OF CONTENTS

- REASONS AND IMPORTANCE OF THIS WORK
- AIMS
- DESCRIPTION OF THE DEVICES
- SETTING UP THE DETECTOR FOR ALPHA PARTICLES

2

- THICKNESS MEASUREMENT OF RADIOACTIVE SOURCES
- SETTING UP THE DETECTOR FOR GAMMA RADIATION
- ALPHA GAMMA COINCIDENCE MEASUREMENTS
- FOUND PROBLEMS
- CONCLUSIONS
- FUTURE WORKS

REASONS AND IMPORTANCE OF THIS WORK

3

• SAFEGUARD MEASUREMENTS FOR THE CONTROL OF RADIOACTIVE TRANSIT

 K. Breitenecker, D. Donohue, H. Eisenwagner, A. P. Maddison, H. Siegmund. *Configuration of* an alpha-gamma coincidence spectrometer for utilization of safeguards measurements. Applied Radiation and Isotopes 67. 2009. 2088-2091

• NUCLEAR DATA REVIEW AND DECAY SCHEMES

- E. García-Toraño, M.T. Crespo, M. Roteta, G. Sibbens, S. Pommé, A. Martín Sánchez, M.P. Rubio Montero, S. Woods, A. Pearce. *Alpha-particle emission probabilities in the decay of ²³⁵U*. Nuclear Instruments and Methods in Physics Research A 550. 2005. 581-592.
- G. Sibbens, S. Pommé, T. Altzitzoglou, E. García-Toraño, H. Janben, R. Dersch, O. Ott, A. Martín Sánchez, M. P. Rubio Montero, M. Loidl, N. Coron, P. de Marcillac, T. M. Smekow. *Alphaparticle emission probabilities in the decay of*²⁴⁰*Pu*. Applied Radiation and Isotopes 68.
 2010. 1459-1466.

DESCRIPTION, SETTING UP AND CALIBRATION OF THE...

Detector for ALPHA PARTICLES

Detector for GAMMA RADIATION DUAL-PARAMETER detection system COLLECTION of the first SPECTRA OF ALPHA – GAMMA COINCIDENCES

DESCRIPTION OF THE DEVICES (I)

5

Software

MCDWIN v 2.93

MPANT for MPA-3 v 1.6

Software used for registering alpha particles (PIPs detector) or gamma radiation (LEGe detector) separately

Software used for the dual parameter detection system RECORDING alpha - gamma coincidence spectra.

ALPHA-PARTICLE STANDARDS

8

T-2

 Stainless steel disk (25mm external diameter) made by Electrodeposition at CIEMAT Stainless steel collimated disk
 (25mm external diameter and
 15mm internal diameter) made by
 deposition at CIEMAT

RADIONUCLIDES	HALF-LIFE(years)	ACTIVITY (Bq)	 RADIONUCLIDES	HALF-LIFE (years)	ACTIVITY (Bq)
U-233	$1.592 \mathrm{x} 10^{5}$	449 ± 9	 U-233	$1.592 \mathrm{x} 10^{5}$	$32.3{\pm}2.3$
Pu-239/240	24065/6537	375 ± 7	 Pu-239/240	24065/6537	$22.9{\pm}2.9$
Am-241	432.2	438 ± 9	 Am-241	432.2	$25.0{\pm}2.5$

Characteristics of sources

THICKNESS MEASUREMENT OF RADIOACTIVE SOURCES

- If the source is rotated an angle ϕ , alpha particles reaching the detector from the innermost part of the source will lost more energy. The result is observed in the spectrum as the **displacement** of peaks to the low energy zone.
- CALCULATION OF THE THICKNESS:

$$e = (E_0 - E_1) / \left\{ \left[\left(\frac{1}{\cos(\phi)} \right) - 1 \right] \left(\frac{dE}{dx} \right) \right\}$$
(1)

13

- Previous studies established the thickness of the T-2 source within the range $300\dot{A} \le e \le 600\dot{A}$.
- Assuming the mass thickness for the U-233 as 0.06 \pm 0.01 mg/cm² and the source is made by uranium oxide with density 10.97 g/cm³.
- The obtained average thickness results:

 $e = (547 \pm 91\dot{A})$

GAMMA-RADIATION STANDARDS

MCR 2000-065-A

AM-25

- Petri's capsule 5 cm in esternal diameter made at UEX from 100 μL of MCR 2000-065 solution onto 5 cellulose filters.
- Stainless steel collimated disk (25 mm outer diameter and 10 mm inner diameter) made at CIEMAT by deposition

RADIONUCLIDES	HALF-LIFE(years)	ACTIVITY (Bq)
Am-241	432.2	$305.90{\pm}4.67$
Co-60	5.27	$273.16{\pm}3.92$
Cs-137	30.02	$364.44{\pm}5.22$

RADIONUCLIDES	HALF-LIFE(years)	ACTIVITY (Bq)	
Am-241	432.2	$109.2{\pm}1.4$	

Characteristics of sources

Choice for the region of interest Calibration and identification of the peaks (II) 16 ²⁴¹Am SPECTRUM. AM-25 SAMPLE (G=25) 102.4keV 241 (98.7keV Np-237) (17 10000 37) (20.997ke m-241 (26.36keV) Am-243 (74.672keV) 62keV COUNTS 1000 240 (45.24keV) 2 u-239 (51 98 100 102 100 10 10 20 90 40 70 100 110 ENERGY (keV)

ALPHA - GAMMA COINCIDENCE MEASUREMENTS

17

Fig.6: a. Alpha detection NIM modules. b. Gamma radiation NIM modules.

Fig.7: Dual parameter multichannel analyzer MPA-3.

Fig.8: Computer controlling the dual parameter system.

Connections

Establishment of conditions for measuring coincidences with the dual parameter system (I)

18

Coincidence De	finition					
Not active	Singles no coinc.	Coinc. with any	- Dependent Group 1	coinc. group Group 2	is Group 3	Group 4
		ADC1A S ADC1B S				
Autopp	>>		move >>			move >>
Aux conn	KK All		<< All	<< All	<< All	<< All
Dig, DAC	Start	t enable 🗌				
ОК	Cancel	Save Sett.	. Remote.			

Fig. 9: Dialog for the establishment of the coincidences with the program MPANT.

ADC Settings and Presets
ADC Settings
Range: 1024 V Set All ADC: ADC1A V
✓ LTimepreset: 1000000.000 sec
R0Ipreset: 10000
ROI min, max: 1 256
☐ RTimepreset: 1000.000 sec
Coincidence (mikrosec)
Coinc.time: • 5.00
DRDY Timeout:
Setup name:
mpa3 Browse
OK Cancel Save Sett. Load

Fig. 10: Dialogue for determining the waiting time for coincidences.

Establishment of conditions for measuring coincidences with the dual parameter system (II) 19 Add Multi... ADC Range Condition No. Туре Name 512x256 MAP 1A x 1B Add Time... F8| F9 F10 F11 F12 Add Calc. ... Edit... Delete Delete All 500 600 700 Multi Display Setting OK . Cancel Conditions.. y Axis x Axis Param.: ADC1B Rate: 4.00 Param.: ADC1A • 176.428 ROI: Range: 512 -Range: 256 -161,766 Net: ADC1B 80524.290 Live: Name : 1A x 1B Condition: Ŧ 0.00 %Dead: 500 Zoom Zoom 2.978.433 Total: TotalSum: 2978496 Cursor x Offset: v Offset: 33.50 Rate: Start Time: 17:00:25 Counts 28,792 ROI: Compr. by 2ⁿ: Compr. by 2ⁿ: 26.370 Net: 🖻 1A x 1B (3) 0K Cancel

Fig. 11: Dialog for the construction of the dual parameter spectrum with the program MPANT.

Optimal configuration

 $\mathbf{20}$

DETECTING ALPHA PARTICLES

Spectroscopy Amplifier
 Gain:

2.5

 ADC

 # channel: 4096
 Offset: 126

DETECTING GAMMA RADIATION

Spectroscopy Amplifier
 Gain:

4.5

- ADC
 - # channel:
 - 1024
 - Offset:

1

COINCIDENCE SPECTRUM

The greatest number of coincidences occurs between the major emissions of alpha particles and gamma radiation.

Fig-12: DUAL PARAMETER COINCIDENCE SPECTRUM.

COINCIDENCE SPECTRUM

The peaks containing the greater number of counts are again those from the most important emissions of the involved radionuclides.

T-2 TRIPLE SOURCE COINCIDENCE SPECTRUM (ANG.45°) 2.4 0.9 1.8 0.6 Counts 1.2 0.6 853 0 3908 4663 4923 583 Gamma Radiation Energy (keV) 5443 5703 Alpha-particles Energy (keV)

Fig.13: DUAL PARAMETER COINCIDENCE SPECTRUM OBTAINED WITH A TRIPLE SOURCE.

