El Escorial, Madrid, 27-29 septiembre 2010 Grupo de Física Nuclear

ASSAYING RETROSPECTIVE RADON

CONCENTRATIONS INDOOR BY MEASURING

THE ²¹⁰PO DEPOSITED IN GLASSES

J. de la Torre Pérez and A. Martín Sánchez

Department of Physics. University of Extremadura, Badajoz.

V ENCUENTRO DE FÍSICA NUCLEAR

1. Introduction

- 2. Theoretical considerations
- 3. Building the experimental device
- 4. Determining the activity concentration of ²¹⁰Po on indoor surfaces
- 5. Measurements and results
- 6. Summary and conclusions

"ASSAYING RETROSPECTIVE RADON CONCENTRATIONS INDOOR BY MEASURING THE ²¹⁰Po DEPOSITED IN GLASSES"

V ENCUENTRO DE FÍSICA NUCLEAR

Radon is classified as carcinogenic to human beings in 1988 by the IARC (WHO)

V ENCUENTRO DE FÍSICA NUCLEAR

CONTRIBUCIÓN DE LAS DISTINTAS FUENTES DE EXPOSICIÓN, DE ORIGEN NATURAL Y ARTIFICIAL, A LA DOSIS RECIBIDA POR LA POBLACIÓN • Epidemiological Studies: 20 years latency period

• Travelling in time is very difficult. Retrospective estimations

• Design and construction of the device to estimate retrospective radon concentration

V ENCUENTRO DE FÍSICA NUCLEAR

2. Theoretical considerations

1. Introducción

- 2. Theoretical considerations
- 3. Building the experimental device
- 4. Determining activity concentration of ²¹⁰Po on indoor surface
- 5. Measurements and results
- 6. Summary and conclusions

2. Theoretical considerations

Retrospective estimations

V ENCUENTRO DE FÍSICA NUCLEAR

2. Theoretical considerations

Radon decay and behaviour

²¹⁰Pb usually implanted in surfaces

Relationship between ²²²Rn (air) and ²¹⁰Po (surfaces)

²²²Rn (Bq/m³) = k (m⁻¹) * ²¹⁰Po (Bq/m²)

1. Introduction

- 2. Theoretical considerations
- 3. Building the experimental device
- 4. Determining activity concentration of ²¹⁰Po on indoor surface
- 5. Measurements and results
- 6. Summary and conclusions

a. Aluminum canister.

- a. Aluminum canister.
- b. Silicon detector.
- c. Portable "Bin Power Module".
- d. NIM A576 APAD. Ortec.
- e. MCA. Amp Tek.

a. Aluminum canister.

- 1. To vacuum pump.
- 2. Bulkhead mounted jack.
- 3. PIPS Detector (450 mm²).
- 4. O-ring.

V ENCUENTRO DE FÍSICA NUCLEAR

b) Silicon Detector.

- c) "Bin Power Module".
- a. Aluminum canister.
- b. Silicon Detector.
- c. "Bin Power Module".
- d) NIM A57 APN MAS 76 APAD. Ortec. MCA. Amp Tek.
 - e. MCA. Amp Tek.

b) Silicon Detector.

d) NIM A576 APAD. Ortec.

c) "Bin Power Module".

e) MCA. Amp Tek.

V ENCUENTRO DE FÍSICA NUCLEAR

V ENCUENTRO DE FÍSICA NUCLEAR

1. Introduction

- 2. Theorical considerations
- 3. Building the experimental device
- 4. Determining activity concentration of ²¹⁰Po on indoor surface
- 5. Measurements and results
- 6. Summary and conclusions

A. Calibration.

- 1. Energy calibration.
- 2. Efficiency calibration.
 - i. Geometrical factor (source detector).
 - ii. Intrinsic efficiency.

B. Method.

V ENCUENTRO DE FÍSICA NUCLEAR

1. Energy calibration.

V ENCUENTRO DE FÍSICA NUCLEAR

- 2. Efficiency calibration.
 - ii. Ghomistricelfactencysolifice'- detector).

$$Fg_m = \Omega/4\pi = 0.06943 \pm 0.003$$

V ENCUENTRO DE FÍSICA NUCLEAR

- 2. Efficiency calibration.
 - ii. Intrinsic Efficiency "Ef_{int}"

$$Ef_{int} = \frac{cps_p - cps_f}{A_p * Fg_p}$$

$$Fg_p = \Omega/4\pi = 0.1636 \pm 0.0004$$

A _p (Bq)	Área total	t medida patrón (s)	Área del fondo	t medida fondo (s)	Fgp
80.2 ± 0.4	7935	600	25	16 <mark>1</mark> 086,47	0.1636 ± 0.0004

 $Ef_{int} = 1.01 \pm 0.01$

V ENCUENTRO DE FÍSICA NUCLEAR

B. Method.

$$A = \frac{\left(\frac{N_m}{t_m} - \frac{N_f}{t_f}\right)}{S * Ef_{int} * Fg_m} \text{ [Bq/m^2]}$$

- A = Concentración de actividad de 210 Po (Bq/m²).
- $N_{\rm m}$ = Área total de la emisión del $^{210}{\rm Po}$ obtenida en el espectro.
- t_m = Tiempo de medida de la muestra (en segundos).
- $N_{\rm f}$ = Área total del fondo en el rango de la emisión del $^{210}\text{Po}.$
- t_f = Tiempo de medida del fondo (en segundos).
- S = Superficie de captación de la cámara (m²).
- Fg_m = Factor geométrico fuente detector (tanto por uno).
- Ef_{int} = Eficiencia intrínseca del detector (tanto por uno).

$$AMD = \frac{LID}{t_m * S * Ef_{int} * Fg_m}$$

$$LID = 2.71 + 4.65$$

$$\mu_b = C_f \cdot t_m$$

V ENCUENTRO DE FÍSICA NUCLEAR

1. Introduction

- 2. Theorical considerations
- 3. Building the experimental device
- 4. Determining activity concentration of 210Po on indoor surface
- 5. Measurements and results
- 6. Summary and conclusions

Selection of sampling points.

Measuring the concentration of radon (Charcoal canisters).

V ENCUENTRO DE FÍSICA NUCLEAR

V ENCUENTRO DE FÍSICA NUCLEAR

Measurement

V ENCUENTRO DE FÍSICA NUCLEAR

Sala	Tiempo de medida (s)	Cuentas totales pico de ²¹⁰ Po	Actividad de ²¹⁰ Po ± 1 σ (Bq/m ²)	Concentración retrospectiva ²²² Rn ± 1 σ (Bq/m ³)
B000	88912	14	< 1.2	< 48
B001 (1)	70357	13	< 1.7	< 67
B001 (2)	106244	23	< 1.5	< 59
B002	90272	24	< 1.7	< 69
B013 (1)	264105	217	5.34 ± 0.51	213 ± 21
B013 (2)	252720	205	5.03 ± 0.52	201 ± 21
B014	251710	467	12.6 ± 0.9	503 ± 36
B015	313369	446	9.8 ± 0.7	391 ± 29
Sótano	91732	21	< 1.7	< 68

V ENCUENTRO DE FÍSICA NUCLEAR

Results

V ENCUENTRO DE FÍSICA NUCLEAR

6. Summary and conclusions

1. Introduction

- 2. Theorical considerations
- 3. Building the experimental device
- 4. Determining activity concentration of ²¹⁰Po on indoor surface
- 5. Measurements and results
- 6. Summary and conclusions

6. Summary and conclusions

SOMMARSIONS

□ Measurements of ²²²Rn are very important.

□ Retrospective estimations are possible.

Design and construction of the measuring device.

Calibrations.

Comparisons with other procedures.

6. Summary and conclusions

CONCLUSIONS

□ The device designed and constructed to estimate the retrospective concentration of ²²²Rn works well.

□ The results are qualitatively in agreement with values obtained by other procedures.

El Escorial, Madrid, 27-29 septiembre 2010

Grupo de Física Nuclear

Thank you !!!

V ENCUENTRO DE FÍSICA NUCLEAR