First measurements with a beta delayed neutron detector at the JYFL Penning trap

M. B. Gómez Hornillos, V. Gorlychev, R. Caballero, A. Riego G. Cortés, A. Poch, C. Pretel, F. Calviño SEN, UNIVERSIDAD POLITÉCNICA DE CATALUÑA Barcelona, SPAIN

J.L. Taín, A. Algora, J. Agramunt and Gamma Spectroscopy Group IFIC- Valencia, SPAIN

D. Cano, T. Martínez, A. García and Nuclear Innovation Group CIEMAT-Madrid, SPAIN

J. Rissanen, T. Eronen, I. Moore, J. Aysto, A. Jokinen, H. Pentilla and IGISOL-JYFLTRAP Group JYFL-Jyvaskyla, FINLAND

EFN 2010

UNIVERSITY OF JYVÄSKYLÄ

SUMMARY

- ✓ Motivation: Beta Delayed Neutron Emission
- ✓ Detector Layout
- ✓ Simulations
- ✓ Experiment at JYFL

Beta decay of neutron rich nuclei

- For many neutron-rich nuclei S_n lies below Q_β
- If the decay proceeds to states above S_n , neutron emission dominates over γ -ray de-excitation

Far enough from the stability, β-delayed neutron emission becomes the dominant decay process

 ${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + e^{-} + \widetilde{\upsilon}$

IMPORTANCE OF BETA DELAYED NEUTRON EMITTERS

Nuclear power safety:

Some fission products undergo Beta Delayed Neutron Emission which is essential to control the reaction.

Nuclear Energy Agency (NEA) highlights the importance of experimental measurements and data evaluation of delayed neutron emission in its working group 6 "Delayed neutron data" [WPEC-SG6].

Rapid neutron-capture process of stellar nucleosynthesis:

Stellar abundances: delayed neutron emission probability (P_n) of r-process isobaric nuclei define the decay path towards stability during freeze-out, and provide a source of late time neutrons.

Nuclear Structure:

Additionally the measured half-lives $(T_{1/2})$ and β -delayed neutron-emission probabilities (P_n) can be used as first probes of the structure of the β -decay daughter nuclei in this mass region.

STUDY OF BETA DELAYED NEUTRON EMITTERS Mechanisms of detecting neutrons are based on indirect methods 2-He-3(n,p) ENDF/B-VII.0 10+5 10+4 Cross Section (b) 10+3 3 He + n \rightarrow 3 H + 1 H + 765 keV 10+2 10 + 1100 10-1 10-5 10-4 10-3 10-2 10-1 100 10+1 10+2 10+3 10+4 10+5 10+6 10+7 Incident Neutron Energy (eV) Polyethylene n β decay ions **Proportional counter** n

The idea is to detect the beta decay and the neutron detection and correlate both

Moderation time in the polyethylene is very long ~hundreds of μ s. It needs to be taken into account in the simulation since it requires a long correlation time/trigger window between the beta decay and the neutron detection.

M. B. Gómez et al.

SEN, UPC, Barcelona

BEta deLayEd Neutron detector

Detector consists of two crowns of (8+12) ³He detectors embedded in a polyethylene matrix with total dimensions 90x90x80 cm³ and a r=5 cm beam hole

Neutron energy (MeV)

Counter	Gas	Maximum length (mm)	Effective length (mm)	Maximum diameter (mm)	Effective diameter (mm)	Gas pressure (torr)	Cathode material
2527 LND inc	³ He	686.84	604.8	25.4	24.38	15200	Stainless Steel

UPC, Barcelona

Energy deposition and time correlation in GEANT4

Neutron detection reaction: ${}^{3}\text{He} + n \rightarrow {}^{3}\text{H} + p + 764 \text{ keV}$

Energy deposited in the ³He gas in the first and second crown.

Particles other than proton and tritons have a very small contribution compared to the neutron detection events.

M. B. Gómez et al.

UPC, Barcelona

Energy deposition and time correlation in GEANT4

Correlation time from the emission of the neutron (β decay of precursor) and neutron detection in the ³He gas. This time is of the order of 100s μ s and it is due to the moderation process in the polyethylene.

A different slope can be appreciated for the two crowns.

Nal detector for prompt fission y. CIEMAT

UPC, Barcelona

SIMULATION VALIDATION WITH ²⁵²Cf SOURCE IN UPC LAB

40000 <mark> </mark>	
35000 <mark>⊨</mark> ∫ ∖	
30000 🗄 ິ	²⁵² Cf neutron energy
25000	distribution
	1
15000	
10000	
5000	
	×1
0 2	4 6 8 10 12 Neutron energy (MeV)
⁸ 1200 –	
	Lab test
² ₈₀₀ ⊏ Noise	
	Outer Counter
600	Wall effect
400	575 keV
E Wa	ll effect
200 7	JU KEV
~0 5	0 100 150 200 250 Laboratory Energy Deposited (ch)

	Exp %	MCNPX %	GEANT4 %
Inner crown	21.3 ± 3.2	21.3 ± 1.5	25.0 ± 1.6
Outer crown	4.9 ± 0.7	6.0 ± 0.8	5.4 ± 0. 7
Tot	26.1 ± 3.9	27.3 ± 1.7	30.4 ± 1.7

Experimental uncertainty due to source activity uncertainty (15%)

UPC, Barcelona

EXPERIMENT JYFL

M. B. Gómez et al.

SEN, UPC, Barcelona

First experiment with BELEN-20 at JYFL: IGISOL+JYFLTRAP

Measurement of ⁸⁸Br, ^{94,95}Rb, ¹³⁸I, ¹³⁸Te

JYFLTRAP = Isotopically pure beams!

November 2009

Delayed Neutron	Half life	Qβ	β-n branching	Daughter Nucleus	Half life
Precussor		(MeV)	%		
⁸⁸ 35Br	16.3 s	8.96	6.58	⁸⁸ 36Kr	2.84 h
⁹⁴ 37 Rb	2.70 s	10.31	10.4	⁹⁴ 38Sr	75.3 s
⁹⁵ 37Rb	377.5 ms	9.29	8.73	⁹⁵ 38Sr	23.9 s
¹³⁸ 53I	6.23	7.82	5.56	¹³⁸ 54Xe	14.1 m
M. B. Gómez et al.				UPC,	Barcelona

Decay properties of β delayed neutron emitters ⁸⁸Br, ⁹⁴Rb, ⁹⁵Rb, ¹³⁸I

Simulation of the expected neutron detection efficiency for each neutron energy distribution. ENDF/B VII (and Greenwood [NSE 91, 305 (1985)] for 95Rb)

Decay properties of β delayed neutron emitters ⁸⁸Br, ⁹⁴Rb, ⁹⁵Rb, ¹³⁸I

The expected efficiency of the detector was calculated using the energy distributions from ENDF/B VI as neutron source in the simulations.

This simulation results will be compared to the experimental one, once the data analysis is finished.

Nucleus	GEANT4(%)		MCNPX(%)	
	Value	Unc	Value	Unc
⁸⁸ Br	31.7	1.8	30.1	1.7
⁹⁴ Rb	32.3	1.8	29.9	1.7
⁹⁵ Rb	32.2	1.8	29.8	1.7
138	31.5	1.8	30.0	1.7

BEta deLayEd Neutron detector

IGISOL

An isotopically pure beam was obtained using the JYFLTRAP Penning trap setup at the IGISOL facility and it was implanted on a movable tape placed in the centre of the neutron detector.

EXPERIMENT @ JYFL

Beta delayed neutron emissor precursors were implanted on a tape in the centre of the neutron detector.

A Si detector was placed next to the implantation point in the tape in order to detect the beta decay and be able to correlate this signal with the one from the neutron counters.

M. B. Gómez et al.

SEN, UPC, Barcelona

IFIC Triggerless DACQ for neutron detector

- Experiments will be run with triggerless DACQ. Full flexibility to modify correlation time neutron emission-detection => clean data.
- •New triggerless DACQ developped by IFIC Struck VME SIS3302 10MHz
- ADC signal above filter threshold (time mark) => energy filter (amplitude signal)
- Independent Time-Energy pairs for each channel.
- Data transfer to PC via the Struck SIS1100/3100 PCI/VME interface.

M. B. Gómez et al.

UPC, Barcelona

Online spectra

The P_n values of ⁸⁸Br and ⁹⁵Rb were used as references to calculate the efficiency of BELEN-20 since there is good agreement in their values. The average efficiency for BELEN-20 is (27.1 ± 0.8) %.

Isotope	٤ _n	unc
⁸⁸ Br	0.276	0.007
⁹⁵ Rb	0.266	0.008

Using the above average efficiency, the P_n for ⁹⁴Rb and ¹³⁸I were calculated and they are in good agreement with values from other authors.

Isotope	P _n (%)	unc	Author
⁹⁴ Rb	10.28	0.31	This work
	10.01	0.23	Rudstam
	9.1	0.11	Pfeiffer
138	5.32	0.20	This work
	5.46	0.18	Rudstam
	5.17	0.36	Pfeiffer

SUMMARY

✓ Beta Delayed Neutron detector has been designed through Monte Carlo simulations with MCNPX and GEANT4.

✓ GEANT4 has been used to study the spectrum of the energy deposited in the ³He gas and the time correlation between neutron emission and detection.

✓ This detector will be used with a Triggerless DACQ designed by IFIC group. Flexibility to modify correlation time.

✓ First experiment at JYFL to measure beta delayed neutron emission.

✓ Expected detector efficiencies according to neutron energy distributions.
have been calculated with MCNPX and GEANT4

 \checkmark The results of the preliminary analysis are in good agreement with previous measurements from other authors.

M. B. Gómez et al.

UPC, Barcelona