

Medical Applications and Microdosimetry with GEANT4

Miguel A. Cortés-Giraldo

Dep. Física Atómica, Molecular y Nuclear Facultad de Física, University of Sevilla, Spain

> V Encuentro de Física Nuclear (EFN10) El Escorial, Madrid

> > September 29th, 2010

Outline

- Introduction
- IMRT treatment verification project (Radia)
- Optimization of a GEANT4 code for proton therapy
- Radiation Effects in Integrated Circuits
- *mini-SeD* prototype simulation
- Conclusions

- Introduction
- IMRT treatment verification project (Radia)
- Optimization of a GEANT4 code for proton therapy
- Radiation Effects in Integrated Circuits
- *mini-SeD* prototype simulation
- Conclusions

Introduction

- GEANT4 (GEometry ANd Tracking) Monte Carlo toolkit is a very powerful tool for the simulation of the passage of radiation through matter.
- It can be used in a wide range of applications, from high-energy physics to scintillation detectors.
- This talk is structured to show an overview of the GEANT4 applications developed in our group recently.

Introduction

GETER Grupo de Estudios de Transporte y Efectos de la Radiación Working Group on Radiation Transport and Effects

http://atomix.us.es/institucional/geter/

- Introduction
- IMRT treatment verification project (Radia)
- Optimization of a GEANT4 code for proton therapy
- Radiation Effects in Integrated Circuits
- *mini-SeD* prototype simulation
- Conclusions

IMRT treatment verification project (Radia): Motivation

- The increasing sophistication of Intensity-Modulated Radiation Therapy (IMRT) treatments is a major challenge for Treatment Planning Systems (TPS). Therefore, verification of empirical dose distribution is highly advisable prior real dose delivery to patient.
- The goal is the validation of a novel method for measuring the dose map before treating patients with Intensity-Modulated Radiation Therapy (IMRT).
- These simulations are devoted to estimate the sensitivity of a Micron SSSSD detector in different situations.
- We use a SSSSD detector to measure the dose at different angles. This information is reconstructed to get the actual dose map.

IMRT treatment verification project (Radia): Experimental setup

Siemens PRIMUSTM linac

IMRT treatment verification project (Radia): GEANT4 simulation of the treatment head

IMRT treatment verification project (Radia): GEANT4 simulation of the treatment head

IMRT treatment verification project (Radia): Phantoms

Water-equivalent slabs

Phantom by Inabensa, Ltd. (polyethylene)

IMRT treatment verification project (Radia): Results

Calibration with water-equivalent slab phantom

Crossplane profile calibration $10 \times 10 \text{ cm}^2$ field $SSD = 100 \text{ cm}, z_M = 1.53 \text{ cm}$

Penumbra test $5 \times 10 \text{ cm}^2 \text{ field (right)}$ $SSD = 90 \text{ cm}, z_M = 1.53 \text{ cm}$

IMRT treatment verification project (Radia): Results

• Comparing Geant4 simulation with Philips Pinnacle TPS

– Rotation angle = 0 deg

Dose in strips $10 \times 10 \text{ cm}^2$ field

IMRT treatment verification project (Radia): Results

 Comparing Geant4 simulation with Philips Pinnacle TPS Rotation angle = 45 deg
Rotation angle = 90 deg

Geant4 dose calculations are 4% lower than TPS dose calculations Calibration factors and material composition are under review

- Introduction
- IMRT treatment verification project (Radia)
- Optimization of a GEANT4 code for proton therapy
- Radiation Effects in Integrated Circuits
- *mini-SeD* prototype simulation
- Conclusions

Optimization for proton therapy applications: Motivation

Motivation

 To decrease the CPU time needed to generate a phase-space file in Monte Carlo simulations of a passive scattering proton therapy nozzle.

Development of speed-up techniques useful for other nozzles with a similar geometry.

Optimization for proton therapy applications: Initial status

Original MC phase-space code

Optimization for proton therapy applications: Initial status

Optimization for proton therapy applications: Speed-up techniques – tracking

Tracking Optimization

Optimization for proton therapy applications: Speed-up techniques – tracking

Optimization for proton therapy applications: Speed-up techniques – production cuts

Production Cuts per Region

Double scattering system

- Production cuts set to 0.2 mm in hollow regions (snout, magnets, jaws).
 - (sa∨ing 5% on time).
- Lower value (0.05 mm) for scattering and modulation systems.

A too high **global** cut value may vary the energy distribution at the nozzle exit!

> HARVARD MEDICAL SCHOOL

Optimization for proton therapy applications: Main results

Optimization for proton therapy applications: Main results – verification

- Introduction
- IMRT treatment verification project (Radia)
- Optimization of a GEANT4 code for proton therapy
- Radiation Effects in Integrated Circuits
- *mini-SeD* prototype simulation
- Conclusions

Radiation Effects in Integrated Circuits: Motivation

- Ionization tracks on CMOS circuits produce so called Single Event Effects (SEE). Microelectronic devices are sensitive to crossing ionizing particles due to the nanometric scale of their components.
- Measuring the absorbed energy per event in the micro-structures of an integrated circuit is difficult. Therefore, Monte Carlo simulations are useful.
- The goal of this work is to assess the deposited energy in every element of a CMOS AMISC5 flip-flop.

Radiation Effects in Integrated Circuits: Flip-flop geometry

• Geometry imported from FASTRAD (CAD application) via GDML.

FASTRAD model

GEANT4 model

Radiation Effects in Integrated Circuits: Experimental setup

- Proton (18 MeV) and deuteron (9 MeV) beams produced at IBA-CNA cyclotron.
- Ion beams produced at 3-MV tandem accelerator at CNA (alpha, carbon, oxygen and silicon).

Experimental data acquisition (by courtesy of F. R. Palomo, Univ. Sevilla)

Target (by courtesy of F. R. Palomo, Univ. Sevilla)

Radiation Effects in Integrated Circuits: Results

Energy deposited (proton @ 18 MeV)

V Encuentro de Física Nuclear, 2010

Radiation Effects in Integrated Circuits: Results

Energy deposited (alpha @ 9 MeV)

V Encuentro de Física Nuclear, 2010

Radiation Effects in Integrated Circuits: Results

Energy deposited (oxygen @ 18 MeV)

V Encuentro de Física Nuclear, 2010

Radiation Effects in Integrated Circuits: Work in progress

 This GEANT4 application is currently in use to simulate a new neutron source facility planned at CNA. Concretely, a ⁹Be target will be placed at IBA-CNA cyclotron exit.

• This new facility will support fast neutron irradiation of microelectronic devices.

- Introduction
- IMRT treatment verification project (Radia)
- Optimization of a GEANT4 code for proton therapy
- Radiation Effects in Integrated Circuits
- *mini-SeD* prototype simulation
- Conclusions

Mini-SeD prototype simulation Overview

Experimental scheme

Scheme by courtesy of M.A.G. Alvarez and B. Fernández (University of Sevilla)

Geometry

time distribution for e-

- Introduction
- IMRT treatment verification project (Radia)
- Optimization of a GEANT4 code for proton therapy
- Radiation Effects in Integrated Circuits
- *mini-SeD* prototype simulation
- Conclusions

Conclusions

- We have used GEANT4 in different research fields. Monte Carlo simulations have become a very powerful tool in our group.
- In medical field, our goal is to use Monte Carlo simulations as a tool to verify radiotherapy treatments which may be challenging for TPS algorithms. Time spent by CPU is a key issue.
- In the study of the radiation effects in integrated circuits, we use GEANT4 as a tool to evaluate the energy deposited in each element of the circuit, and to give support to the experimental results (predictable malfunctions, pulses...)
- This 'virtual lab' helps us to optimize a testing detection setup.

And that's all...

THANKS FOR YOUR ATTENTION