Analysis of exclusive inelastic breakup of halo nuclei within the CDCC framework

M. Rodríguez-Gallardo

Instituto de Estructura de la Materia

C.S.I.C.

Departamento de Física Atómica,

Molecular y Nuclear

Universidad de Sevilla

Outline

- \Rightarrow Motivation: halo nuclei like ¹¹Be or ⁶He
- Continuum-Discretized Coupled-Channels (CDCC)) framework:
 - ➡ How can we study the inelastic breakup of halo nuclei within CDCC formalism?
 - Application to reactions ¹¹Be+target: ¹¹Be+⁹Be,⁴⁸Ti,¹⁹⁷Au at 41MeV/u
- Future work: ⁶He+²⁰⁸Pb at 41MeV/u
 neutron correlation
- → Summary and conclusions

Motivation: Halo nuclei

Motivation: Halo nuclei

- ⁴He+²⁰⁸Pb: typical Fresnel pattern well reproduced by a "standard" optical potential: strong absorption
- → ⁶He+²⁰⁸Pb: requires optical potentials with a very large diffuseness parameter ($a_i \approx 2$ fm): long-range absorption

 $\Psi_J^M(\vec{R},\xi) = \sum \phi_{jn}^\mu(\xi) \langle LM_L j\mu | JM \rangle \frac{i^L}{R} Y_L^{M_L}(\hat{R}) f_{Lnj}^J(R)$

Coupled channels system

$$\begin{bmatrix} -\frac{\hbar^2}{2m_r} \left(\frac{d^2}{dR^2} - \frac{L(L+1)}{R^2} \right) + \varepsilon_{nj} - E \end{bmatrix} f_{Lnj}^J(R) + \sum_{L'n'j'} i^{L'-L} V_{Lnj,L'n'j'}^J(R) f_{L'n'j'}^J(R) = 0$$

 $\Psi_J^M(\vec{R},\xi) = \sum \phi_{jn}^\mu(\xi) \langle LM_L j\mu | JM \rangle \frac{i^L}{R} Y_L^{M_L}(\hat{R}) f_{Lnj}^J(R)$

Binning procedure

Projectile-target interactions

- ➡ W absorbs the flux corresponding to processes not included explicitly in the formalism like:
 - ⇒ target or core excitation
 - ⇒ transfer of the valence particle to the target
- → We get only the "elastic breakup":
 - ⇒ the projectile breaks up into their constituents
 - ⇒ all the fragments (core, valence particle and target) preserve their identity and their g.s.

Elastic breakup analysis

☑ J. A. Tostevin et al., Phys. Rev. C 63 (2001) 024617

Experiment at GANIL: inelastic bu

- Details:
 - → Projectile: ¹¹Be
 - \Rightarrow Targets: ⁹Be, ⁴⁸Ti, and ¹⁹⁷Au
 - ⇒ Lab incident energy: 41 MeV/u
 - \Rightarrow Particles detected: ¹⁰Be and n
 - States of the fragments after the collision: unknown
- The experiment measures the "exclusive inelastic breakup" where:
 - ⇒ the fragments preserve their identity
 - \Rightarrow but not necessarily their g.s.

What happens with standard CDCC?

Exp. data: Anne et al., NPA 575 (1994) 125

What happens with standard CDCC?

Exp. data: Anne et al., NPA 575 (1994) 125

How do we obtain this inelastic bu?

New prescription

We switch off the imaginary part of the optical potentials to include the flux corresponding to core and target excitation processes

$$W_{ct} = W_{vt} = 0$$

We include an imaginary fusion potential to eliminate the flux corresponding to this process

$$W_{\text{fusion}}(r) = -\frac{w}{1 + \exp\left(\frac{r - R_o}{a}\right)}$$

¹¹Be+⁹Be@41MeV/u

¹¹Be+⁴⁸Ti@41MeV/u

¹¹Be+¹⁹⁷Au@41MeV/u

A Preliminary

Total inelastic breakup cross section

target	inelastic bu	elastic bu	inelastic bu
	exp	CDCC	CDCC
⁹ Be	0.24	0.14	0.28
48 Ti	0.55	0.42	0.69
197 Au	2.5	1.07	1.88

¹¹Be+¹⁹⁷Au: energy distribution (1)

A Preliminary

¹¹Be+¹⁹⁷Au: energy distribution (2)

A Preliminary

Future work: ⁶He+²⁰⁸Pb@41MeV/u

 \Rightarrow ⁶He: 3-b projectile \rightarrow 4-b reaction formalism

→ 4-b CDCC: recently developed with the extension of the binning procedure to 3-b projectiles

⊠ Rodríguez-Gallardo et al. PRC 80 (2009) 051601(R)

⁶He+²⁰⁸Pb@41MeV/u: elastic

⁶He+²⁰⁸Pb@41MeV/u: n-n correlation

⁶He+²⁰⁸Pb@41MeV/u: n-n correlation

⁶He+²⁰⁸Pb: n-n configurations

⁶He+²⁰⁸Pb: n-n configurations

Summary and Conclusions

- We have presented a new prescription in order to calculate the inelastic breakup observables within the 3b-CDCC framework
- ⇒ The formalism has been applied to reactions induced by the halo nucleus ¹¹Be
- ⇒ We have been able to reproduce the experimental neutron distributions
- We will apply this new prescription within the 4b-CDCC framework to study the neutron-neutron correlation in reactions of the halo Borromean nucleus ⁶He

Collaborators

- Depto. de FAMN, Universidad de Sevilla J. Gómez-Camacho and A. M. Moro
- IPN, Université Paris-Sud 11 M. Assiè and J. A. Scarpaci
- ➡ GANIL D. Lacroix

¹¹Be sprectrum

⁶He Hamiltonian

$$\begin{split} \widehat{H}(\rho,\Omega) &= \widehat{T}(\rho,\Omega) + \widehat{V}(\rho,\Omega) \\ V &= V_{n\alpha} + V_{n\alpha} + V_{nn} + V_{nn\alpha} \\ \\ \underbrace{K_{max} = 8}_{\downarrow} \\ n^{0+} &= 15 \ n^{1-} = 26 \ n^{2+} = 46 \\ \hline N &= (i_{max} + 1) \times n \end{split}$$

 \blacksquare Pauli forbidden states: repulsive V_c for s-waves