Indice	Experimento	Análisis	Resultados	Perspectivas de futuro

Estudio de los coeficientes de conversión en la desintegración β del ⁷²Kr

José Antonio Briz Monago

Instituto de Estructura de la Materia, CSIC

"V Encuentro de Física Nuclear", El Escorial, Madrid

27 de Septiembre de 2010

Indice		Experimento	Análisis	Resultados	Perspectivas de futuro
	000000	000	00		
Indice	de contenidos				

Introducción

- Motivación
- Cálculos teóricos
- Obtención experimental de distribuciones de B(GT)

2 Experimento

- Experimento IS398 realizado en Isolde
- Dispositivo experimental

3 Análisis

- Eficiencia de detección del Espectrómetro Miniorange
- Procedimiento de obtención de α 's

A Resultados

• Valores experimentales de los coeficientes de conversión

Perspectivas de futuro

Indice	Introducción	Experimento	Análisis	Resultados	Perspectivas de futuro
	••••••				
Motivación					
¿Por q	ué estudiamo	os el ⁷² ₃₆ Kr ₃₆ ?			

• Estructura nuclear: En esta región de la tabla de núcleos aparecen fenómenos como la <u>coexistencia de formas</u> y, al estar en una zona con N=Z, nos permite estudiar el apareamiento n-p

- Estructura nuclear: En esta región de la tabla de núcleos aparecen fenómenos como la <u>coexistencia de formas</u> y, al estar en una zona con N=Z, nos permite estudiar el apareamiento n-p
- Interés astrofísico: Participación del ⁷²Kr en el proceso rp (captura rápida de protones) como "punto de espera" debido a que el ⁷³Rb es no ligado y compite la captura de 2 protones con la desintegración beta.

Indice	Introducción	Experimento		Resultados	Perspectivas de futuro
	00000				
Motivación					
¿Por que	é utilizamos e	studios de d	desintegrad	ción beta?	

- Gran ventana de desintegración beta (Q_β) en esta región de masas → Amplia ventana de estudio del esquema de niveles del núcleo hijo. Q_β(⁷²Kr)=5040 keV.
- Al ser $_{36}^{72} Kr_{36}$ un núcleo par-par y N=Z, su J^π(g.s.)=0⁺, los estados alimentados por transiciones permitidas tendrán J^π=1⁺
- La distribución de B(GT) podemos compararla con modelos teóricos y, en algunos casos, puede proporcionar información sobre la deformación del núcleo padre.
- Única forma de acceder a estados de bajo espín fuera de la línea de Yrast para núcleos alejados de la estabilidad.

(日) (日) (日) (日) (日) (日) (日) (日)

Cálculos teóricos [1] predicen diferentes distribuciones de la fuerza Gamow-Teller B(GT) con respecto a la energía de excitación en el núcleo hijo para diferentes deformaciones del estado fundamental del núcleo padre

Figura 1: Predicciones teóricas sobre la energía total del sistema frente al momento cuadrupolar (Qo) (izquierda) y distribución de B(CT) acumulada con respecto a la energía de excitación en núcleo hijo para las diferentes deformaciones oblada y prolada para el núcleo 76 Sr (derecha) según [Sarr99] y [Sarr01]

[Sarr99] P. Sarriguren et al., Nucl. Phys. A658, 13 (1999) [Sarr01] P. Sarriguren et al., Nucl. Phys. A691 631 (2001) [Nac04] E. Nácher et al., PRL 92 232501 (2004)

Figura 2: Resultados experimentales para la B(GT) acumulada en función de la energía de excitación en el núcleo hijo para el $^{76}{\rm Sr}$ comparados con los cálculos teóricos correspondientes a una deformación oblada (línea azul) o prolada (línea roja) [Nac04]

イロト 不得 トイヨト イヨト

ъ

Cálculos realizados por Sarriguren et al. [Sarr01] utilizando una interacción tipo Skyrme en aproximación QRPA predicen:

Energia total para el ⁷²Kr con respecto al momento cuadrupolar másico (deformación) para dos tipos de fuerzas SG2 y Sk3 según cálculos en [Sarr99]

[Sarr99] P. Sarriguren et al., Nucl. Phys. A658, 13 (1999) [Sarr01] P. Sarriguren et al., Nucl. Phys. A691 631 (2001)

B(GT) frente a la E_{exc} en núcleo hijo según cálculos en [Sarr01]

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Inconvenientes

- Conversión interna: proceso que compite con desexcitación gamma. Intensidad beta a cada nivel se reparte entre desexcitación gamma y conversión interna. Especialmente importante para transiciones de baja energía. Debemos obtener los coeficientes de conversión: $\alpha = \frac{l_e}{L}$.
- Estados isoméricos (vida media larga, superior a 1 ns): La intensidad de desexcitación no se mide correctamente al no medir radiación gamma dentro de ventana coincidencia.

Conocimiento actual sobre estados de bajo espín de ⁷²Br

イロト 不得 トイヨト イヨト

э

Consideraciones

- () J^{π} del estado fundamental
- **2** Presencia de transiciones de baja energía \rightarrow necesitamos conocer α
- **③** Región desde E_{exc} = 1 MeV hasta Q_{β} = 5.04 MeV sin explorar

[Dav73] C. N. Davids et al., Phys. Rev. C8, 1029 (1973) [Sch73] H. Schmeing et al., Phys. Lett. 44B, 449 (1973) [Gar82] G. García Bermúdez et al., Phys. Rev.C25, 1396 (1982) [Piq03] I. Piqueras et al., Eur. Phys. J. A 16, 313–329 (2003)

) Haz de protones de 1.4 GeV con una intensidad máxima de 2 μ A incide sobre el blanco de $^{93}\rm{Nb}$

- ⁽²⁾ Producimos ⁷²Kr mediante la reacción de espalación: ${}^{93}_{41}Nb_{52}(p, 16n + 6p){}^{72}_{36}Kr_{36}$

- ⁽²⁾ Producimos ⁷²Kr mediante la reacción de espalación: ${}^{93}_{41}Nb_{52}(p, 16n + 6p){}^{72}_{36}Kr_{36}$
- Se ioniza el haz radiactivo mediante la fuente de iones de plasma con línea de transmisión refrigerada

- **2** Producimos 72 Kr mediante la reacción de espalación: ${}^{93}_{41}Nb_{52}(p, 16n + 6p){}^{72}_{36}Kr_{36}$
- Se ioniza el haz radiactivo mediante la fuente de iones de plasma con línea de transmisión refrigerada
- **(**) Iones son acelerados mediante los electrodos de extracción con $\Delta V = 60$ kV

- **)** Haz de protones de 1.4 GeV con una intensidad máxima de 2 μ A incide sobre el blanco de $^{93}\rm{Nb}$
- ⁽²⁾ Producimos ⁷²Kr mediante la reacción de espalación: $\frac{93}{41}Nb_{52}(p, 16n + 6p)_{36}^{72}Kr_{36}$
- Se ioniza el haz radiactivo mediante la fuente de iones de plasma con línea de transmisión refrigerada
- () Iones son acelerados mediante los electrodos de extracción con $\Delta V=$ 60 kV
- Ø Mediante el Separador de Masas seleccionamos el núcleo de interés, ⁷²Kr

- **)** Haz de protones de 1.4 GeV con una intensidad máxima de 2 μ A incide sobre el blanco de $^{93}\rm{Nb}$
- ⁽²⁾ Producimos ⁷²Kr mediante la reacción de espalación: $\frac{93}{41}Nb_{52}(p, 16n + 6p)_{36}^{72}Kr_{36}$
- Se ioniza el haz radiactivo mediante la fuente de iones de plasma con línea de transmisión refrigerada
- () Iones son acelerados mediante los electrodos de extracción con $\Delta V=$ 60 kV
- Ø Mediante el Separador de Masas seleccionamos el núcleo de interés, ⁷²Kr
- I haz final es dirigido hacia nuestra estación de medida

Indice		Experimento	Resultados	Perspectivas de futuro
		000		
Dispositivo expe	rimental			
Estaciór	n de medida			

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

Indice		Experimento	Análisis	Resultados	Perspectivas de futuro
		000			
Dispositivo ex	perimental				
Espect	rómetro de ele	ctrones: Minio	range		

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Detector de cristal de Si(Li) refrigerado (300 mm² · 4 mm)
- Onjunto de imanes permanentes que mejoran la transmisión de electrones de conversión hacia el detector

Indice		Experimento	Resultados	Perspectivas de futuro
		000		
Dispositivo ex	perimental			
E an a at		studies NAtoria		

- Detector de cristal de Si(Li) refrigerado (300 mm² · 4 mm)
- Onjunto de imanes permanentes que mejoran la transmisión de electrones de conversión hacia el detector

D1/D2/NT	Rango efectivo
	E(keV)
85/8/4B	60-200
110/8/6A	400-1100
125/8/3B	40-170

Indice		Experimento	Análisis	Resultados	Perspectivas de futuro
			• •		
Eficiencia de o	detección del Espectrómetro N	liniorange			
-					

Curvas de transmisión experimentales

$$\tau_e = \frac{A_e/t_e}{I_e} = \frac{A_e/t_e}{\alpha \times I_{\gamma}} = \frac{A_e/t_e}{\alpha \times \frac{A_{\gamma}/t_{\gamma}}{\epsilon_{\gamma}}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Determinación coeficientes de conversión interna (α):

El área de los picos mostrados en la figura son corregidos por eficiencias y los tiempos muertos de cada detector.

 $I_e = \frac{A_e}{\tau_e \times t_e}$ $I_\gamma = \frac{A_\gamma}{\epsilon_\gamma \times t_\gamma}$

Así obtenemos las intensidades de conversión interna (I_e) y desexcitación gamma (I_{γ}) respectivamente.

 $\alpha = \frac{I_e}{I_\gamma}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Indice		Experimento		Resultados	Perspectivas de futuro		
				•			
Valores experimentales de los coeficientes de conversión							
Resultado	S						

		man station	manufation de	Coeficiente		Valores teóricos [Kib08]					
Núcleo	e	gamma (keV)	electrones	de conversión experimental	E1	М1	E2	M2	E3	Multipolarid ad asignada	previas
⁷² Br	4B	38.8	38.8K	5(3)	1.202	1.479	20.48	35.11	274.9	M1+E2	M1* [Piq03] α≥1.4**
⁷² Se	3B	75	75K	3.3(4)	0.166	0.1994	2.048	2.614	20.6	M2	[E2] αr(exp)= 2.45
⁷² Br	3B	101.3	101.3K	1.46(8)	0.072	0.098	0.718	0.987	5.863	M2(E3)	α _K (exp)=1.4 ± 0.3 [Grif92]
⁷² Br	4B	404.00	124.28K	0.073(14)	0.039	0.066	0.34	0.478	2.424	M4 (50)	F01 (D: -00)
⁷² Br	4B	124.28	124.28L+M+N	0.013(2)	0.00492	0.00727	0.053	0.0733	0.623	M1(E2)	E2" [Piqu3]
⁷² Br	4B	147.2	147.2K	0.039(6)	0.02385	0.03578	0.1824	0.2654	1.163	M1	M1* [Piq03]
⁷² Br	4B		162.2K	0.069(14)	0.018	0.028	0.128	0.19	0.763		
⁷² Br	4B	162.2	162.2L+M+N	0.010(3)	0.00221	0.00353	0.0184	0.0276	0.1578	E2(M1)	E2" [Piq03]
⁷² Br	4B	178.5	178.5K	0.046(7)	0.01351	0.02158	0.08999	0.1377	0.5037	M1+E2	E1* [Piq03]
⁷² Br	6A	414.5+415.1	(414.5+415.1)K	0.0023(5)	0.00128	0.002649	0.004725	0.00951	0.01534	M1	
⁷² Se	6A	454.7	454.7K	0.004(1)	0.0009388	0.001924	0.003289	0.006546	0.01017	E2	
⁷² Ge	6A	834.01	834.01K	0.000021(5)	0.0001965	0.0004046	0.0004938	0.001004	0.001114	E1	E2
⁷² Se	6A	862.03	862.03K	0.00027(5)	0.0002174	0.0004634	0.0005368	0.001141	0.00119	E1/M1	E2

*Deducido a través del esquema de niveles

**Coeficiente de conversión deducido a partir del balance de intensidades.

[Kib08] T. Kibédi et al., NIM A589, 202 (2008) [Piq03] I. Piqueras et al., Eur. Phys. J. A 16, 313 (2003) [Grif92] A.G. Griffiths et al., PRC 46, 2228 (1992)

Indice	Introducción 000000	Experimento 000	Análisis 00	Resultados O	Perspectivas de futuro
Perspe	ctivas de futurc)			

Obtener los coeficientes de conversión finales

Indice	Introducción 000000	Experimento 000	Análisis 00	Resultados O	Perspectivas de futuro
Perspe	ctivas de futuro)			

- Obtener los coeficientes de conversión finales
- **②** Determinar el espín-paridad del estado fundamental del 72 Br y de todos los niveles excitados posibles a través de los α 's

Indice	Introducción 000000	Experimento 000	Análisis 00	Resultados O	Perspectivas de futuro
Perspe	ctivas de futuro)			

- Obtener los coeficientes de conversión finales
- ② Determinar el espín-paridad del estado fundamental del ⁷²Br y de todos los niveles excitados posibles a través de los α's
- Obtener la distribución de B(GT) a partir de la técnica TAgS y compararla con las predicciones teóricas

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Indice	Introducción 000000	Experimento 000	Análisis 00	Resultados O	Perspectivas de futuro
Agrade	cimientos				

Gracias por vuestra atención

Colaboración del experimento IS398

J. A. Briz¹, M. J. G. Borge¹, A. Maira¹, A. Perea¹, O. Tengblad¹, J. Agramunt², A. Algora², E. Estevez², E. Nacher², B. Rubio², L. M. Fraile³, A. Deo⁴, G. Farrelly⁴, W.Gelletly⁴ y Z.Podolyak⁴

Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain;
Instituto de Fisica Corpuscular, CSIC-Uni. Valencia, E-46071 Valencia, Spain
Universidad Complutense, E-28040 Madrid, Spain
University of Surrey, Guildford, GU2 7XH, Surrey, UK