Neutrinoless Double Beta Decay within the Interacting Shell Model

Javier Menéndez

Institute for Nuclear Physics, Technical University Darmstadt (TUD) ExtreMe Matter Institute (EMMI), GSI

EFN 2010, El Escorial, 27-29 September 2010

< □ > < 同 > < 三

Outline

Introduction

ISM Results and Uncertainty Application to neutrino masses Summary Double Beta Decay The Interacting Shell Mode

Outline

< □ > < 同 > < 三

Double Beta Decay The Interacting Shell Model

Double beta decay: origin

- Double beta decay is a rare second order weak process
- It only appears when single β decay is energetically forbidden or hindered by large J difference

Double Beta Decay The Interacting Shell Model

Double Beta Decay: types

• Two different $\beta\beta$ decays may happen:

• Two neutrino double beta decay $(2\nu\beta\beta)$ Detected for a dozen of nuclei Fastest decay, ¹⁰⁰Mo: $T_{1/2} = (7.1 \pm 0.4) \, 10^{18}$ years

• Neutrinoless double beta decay
$$(0\nu\beta\beta)$$

Only one unconfirmed claim in ⁷⁶Ge
(Klapdor-K. MPLA 16 2409 (2001), PLB 586 198 (2004))
Claim: $T_{1/2} = (0.69 - 4.18) 10^{25}$ years

Double Beta Decay The Interacting Shell Mode

Double beta decay: transitions with $Q_{\beta\beta} > 2$ MeV

Transition	${\it Q}_{etaeta}$ (MeV)	Abundance (%)
$^{48}\text{Ca} ightarrow ^{48}\text{Ti}$	4.274	0.2
$^{76}\text{Ge} ightarrow ^{76}\text{Se}$	2.039	8
$^{82}\text{Se} ightarrow ^{82}\text{Kr}$	2.996	9
$^{96}{ m Zr} ightarrow {}^{96}{ m Mo}$	3.350	3
$^{100}\text{Mo} ightarrow {}^{100}\text{Ru}$	3.034	10
$^{110}\text{Pd} \rightarrow ^{110}\text{Cd}$	2.013	12
$^{116}\text{Cd} ightarrow ^{116}\text{Sn}$	2.802	7
$^{124}\text{Sn} ightarrow ^{124}\text{Te}$	2.288	6
$^{130} ext{Te} ightarrow ^{130} ext{Xe}$	2.530	34
$^{136} ext{Xe} ightarrow ^{136} ext{Ba}$	2.462	9
150 Nd $ ightarrow$ 150 Sm	3.667	6

ъ

イロト イポト イヨト イヨト

Double Beta Decay The Interacting Shell Model

Neutrinoless Double Beta Decay

- 0νββ is only possible if neutrinos are of the Majorana type
 ⇒ a confirmation will establish the Majorana nature of neutrinos
- The lifetime of the 0νββ depends on the Nuclear Matrix Element (NME), M^{0νββ}, as:

$$\left(T_{1/2}^{0\nu\beta\beta}\left(0^{+}\rightarrow0^{+}\right)\right)^{-1}=G_{01}\left|M^{0\nu\beta\beta}\right|^{2}\left|\frac{m_{\beta\beta}}{m_{e}}\right|^{2}$$

with $m_{\beta\beta} = \sum_k U_{ek}^2 m_k$ the effective $0\nu\beta\beta$ decay neutrino mass

- The NME is required to:
 - Obtain information about $m_{\beta\beta}$ if detection is achieved
 - Predict the more favourable decays

ヘロト ヘアト ヘヨト

Double Beta Decay The Interacting Shell Model

Outline

< □ > < 同 > < 三

Double Beta Decay The Interacting Shell Model

Nuclear Structure Methods for $0\nu\beta\beta$ decay

Different methods are used to obtain the NMEs for the $0\nu\beta\beta$ decay

- The spherical QRPA method
- The Interacting Boson Model
- Beyond Self Consistent Mean Field See T. Rodríguez talk tomorrow
- The Interacting Shell Model
 - It solves the problem in relatively small valence spaces (one Harmonic Oscillator or Spin-Orbit shell)
 - Successfully describles spectroscopy,
 - β and $2\nu\beta\beta$ transitions in regions of interest for $0\nu\beta\beta$ decay.

< ロ > < 同 > < 三 >

Double Beta Decay The Interacting Shell Model

The ISM: basis states and valence space

• The ISM considers the presence of a residual interaction while taking as basis states these of the Harmonic Oscillator

 $H = H_0 + H_{res}$

• The many body wave function will be a linear combination of the Slater Determinants built upon these single particle states

$$|\phi_{\alpha}\rangle = a_{i1}^{+}a_{i2}^{+}...a_{iA}^{+}|0\rangle \qquad |\Psi\rangle = \sum_{\alpha} c_{\alpha} |\phi_{\alpha}\rangle$$

- The configuration space is separated into
 - Inner core: orbits that are always filled
 - Valence space: the space where we solve the problem.
 - Outer space: orbits that are always empty

Double Beta Decay The Interacting Shell Model

The ISM: interaction and diagonalization

- In the truncated valence space, an effective interaction is required, either
 - Realistic: potentials adjusted to n n scattering data regularized to nuclei by *G*-matrices or the $V_{low \ k}$ method Their monopole part needs to be modified
 - Fitted: fit to selected nuclei in the region of interest
- Now, we have to solve the nuclear problem in the valence space

 $H \ket{\Psi} = E \ket{\Psi} o H_{eff} \ket{\Psi}_{eff} = E \ket{\Psi}_{eff}$

- The ISM code NATHAN (Caurier et al. RMP 77 (2005)), has been used throughout this work
- Spaces with up to 10¹¹ Slater determinants can be diagonalized.

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

Outline

A B A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

The $0\nu\beta\beta$ operator

• The form of the operator is:

$$M^{0
uetaeta}=-\left(rac{g_{V}\left(0
ight)}{g_{A}\left(0
ight)}
ight)^{2}M^{F}+M^{GT}-M^{T}$$

where $M^{X} = \left\langle \mathbf{0}_{f}^{+} \right| \sum_{n,m} \tau_{n}^{-} \tau_{m}^{-} H^{X}(\mathbf{r}) \Omega^{X} \left| \mathbf{0}_{i}^{+} \right\rangle$

- Ω^X is one of the three operators: Fermi (1), Gamow-Teller (σ₁σ₂) or Tensor (S₁₂)
- $H^{X}(r)$ are the neutrino potentials, calculated by:

$$H^{X}(r) = \frac{2}{\pi} \frac{R}{g_{A}^{2}(0)} \int_{0}^{\infty} f^{X}(qr) \frac{h^{X}(q)}{\left(q + E_{a}^{m} - \frac{1}{2}\left(E_{i} - E_{f}\right)\right)} q \, dq$$

$$\bigvee_{\substack{\text{UNVERSITAT \\ \text{DARMSTADT}}} q \, dq$$

$$\bigvee_{\substack{\text{UNVERSITAT \\ \text{DARMSTADT}}} q \, dq$$

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

Higher Order Current terms

• The potentials are composed of different terms:

- h_{aa}^{GT} will be the dominant term and h_{vv}^{GT} the main correction
- The other six terms h_{ap}^{GT} , h_{ap}^{T} , h_{pp}^{GT} , h_{pp}^{T} , h_{mm}^{T} and h_{mm}^{T} come from next order, $\frac{q}{m_{N}}$, in the product of hadronic currents, and they are usually called HOC terms
- Next order terms are suppressed by $\frac{q^2}{m_h^2}$, so are expected $\approx 1\frac{4}{M_{CHNISC}}$

・ロト ・ 同ト ・ ヨト ・ ヨト

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

Closure approximation

Remember that the neutrino potentials are calculated by:

$$H^{X}(r) = \frac{2}{\pi} \frac{R}{g_{A}^{2}(0)} \int_{0}^{\infty} f^{X}(qr) \frac{h^{X}(q)}{\left(q + E_{a}^{m} - \frac{1}{2}(E_{i} - E_{f})\right)} q \, dq$$

The closure approximation is used in the calculation: the various energies of the virtual intermediate states, E_a^m , are averaged by a common $\langle E^m \rangle$

- There is no need to calculate these intermediate virtual states
- Justified by the large momentum of the virtual neutrino $q \approx 100$ MeV, much larger than the difference between E_a^m 's
- The error due to this approximation is smaller than 10%

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

Finite Nucleon Size

• The Finite Nucleon Size (FNS) is implemented via dipole form factors

$$g_V(q^2) = rac{g_V(0)}{\left(1+rac{q^2}{\Lambda_V^2}
ight)^2}, \qquad g_A(q^2) = rac{g_A(0)}{\left(1+rac{q^2}{\Lambda_A^2}
ight)^2}$$

- The values of the cutoffs of the vector and axial nucleon form factors are $\Lambda_V = 0.85$ GeV and $\Lambda_A = 1.09$ GeV
- *M*^{0νββ} depends weakly on them, so variation smaller than 5% comes from different reasonable values.

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

$g_A(0)$ quenching

- The coupling constant *g_A*(0), needs to be quenched in purely Gamow-Teller processes, single-β and 2νββ
- But the Gamow-Teller 1⁺ channel is not dominant in $0\nu\beta\beta$ decay
- Hence, it is not clear if $g_A(0)$ should be quenched or not
- ISM results have traditionally calculated with $g_A(0) = 1.25$ If the axial coupling was quenched to $g_A(0) = 1.0$ ISM results would decrease in $\approx 30\%$
- This is probably the major single source of uncertainty in the $M^{0\nu\beta\beta}$ calculation

ヘロト ヘアト ヘヨト

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

Short Range Correlations

- If we do not renormalize the operator to our configuration space, new correlations, Short Range Correlations (SRC), are needed.
- after FNS they have been calculated to be ~ 5% they can be parametrized by an UCOM transformation or Jastrow-like functions Engel et al. PRC 79 064317 (2009) and Šimkovic et al. PRC 79 055501 (2009)
- Thus, the uncertainty due to SRC is only $\approx 5\%$

< □ > < □ > < □

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

Outline

A B A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Javier Menéndez $0\nu\beta\beta$ within the ISM

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

ISM Valence spaces and Interactions

- The ISM interactions are monopole modified G matrices
- The valence spaces and interactions used are the following
 - *pf* shell for ⁴⁸Ca
 KB3 interaction
 - 1p_{3/2}, 0f_{5/2}, 1p_{1/2} and 0g_{9/2} space for ⁷⁶Ge and ⁸²Se gcn.28-50 interaction
 - 0g_{7/2}, 1d_{3/2}, 1d_{5/2}, 2s_{1/2} and 0h_{11/2} space for ¹²⁴Sn, ¹²⁸Te, ¹³⁰Te and ¹³⁶Xe gcn.50-82 interaction

ヘロト ヘアト ヘヨト

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

Uncertainty related to ISM valence space

- ISM study of the contributions of 2p-2h jumps from $0f_{7/2}$ in the ⁸²Se decay 2p-2h from proton $0g_{7/2}$ and to neutron $0h_{11/2}$, $1f_{7/2}$ for ¹³⁶Xe Results show an increase in $M^{0\nu\beta\beta}$ of 15% 20% Caurier *et al.* EPJA 36 195 (2008)
- QRPA study the contribution of ISM-like orbits to M^{0νββ} for ⁷⁶Ge finding 15% reduction of their QRPA values.
 Šimkovic *et al.* PRC 79 055501(2009)
- Contribution of the orbits absent in the ISM valence space Estimated to increase the NME in $\approx 15 20\%$

(日)

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

Uncertainty of the effective interaction

• Different interactions studied for the ⁴⁸Ca decay Results show uncertainty in $M^{0\nu\beta\beta}$ of $\approx 10\%$

Caurier et al. EPJA 36 195 (2008)

 New experimental neutron and proton occupancies of nuclei involved in the ⁷⁶Ge transition

Schieffer et al. PRL 100 112501 021301 (2008), Kay et al. PRC 79 (2009) A new interaction improved agreement with experiment The value of $M^{0\nu\beta\beta}$ increased in 15%

• Then, the uncertainty in $M^{0\nu\beta\beta}$ due to the effective interaction can be estimated in $\approx 10\%$

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

Outline

Summary

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

Global uncertainty of the NME

- The global uncertainty has contribution from the valence space, effective interaction, closure approximation, terms neglected in the nuclear current, finite nucleon size terms (FNS), short range correlations (SRC) and $g_A(0)$ (axial-coupling) (non)quenching.
- Quadratic sum gives $\sim_{-35}^{+25} \frac{\%}{\%}$
- Direct sum would give $\sim^{+45}_{-55} \%$

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

ISM Results

TECHNISCHE UNIVERSITÄT DARMSTADT

æ

・ロト ・回ト ・ヨト ・ヨト

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

> TECHNISCHE UNIVERSITÄT DARMSTADT

ISM Results excluding axial quenching

< ∃ >

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

Discrepancies ISM vs QRPA

- Contribution of the orbits absent in the ISM valence space underestimated within the ISM
- Contribution of correlations missing in the QRPA approach underestimated within QRPA
- Quasiparticle excitations missing in the GCM+PNAMP approach

< ロ > < 回 > < 回 >

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

Outline

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

Pairing and NMEs

 0νββ decay is favoured by pairing correlations in nuclei involved It would be maximum between superfluid nuclei Unfortunately there is not such a candidate

Javier Menéndez $0\nu\beta\beta$ within the ISM

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

Deformation and NMEs

0νββ decay is disfavoured by quadrupole correlations
 It is very suppressed when nuclei have different structure

The $0\nu\beta\beta$ operator ISM $0\nu\beta\beta$ calculations Results and Uncertainty Structure of the NMEs

Almost constant NMEs

- This explains the small value for the ⁴⁸Ca transition
- On the same fashion, the ¹⁵⁰Nd NME is also expected to be suppressed See T. Rodríguez talk tomorrow
- In the rest of the candidates the (difference of) structure between the initial and final states is similar which is the reason for the relatively constant value for M^{0νββ}

< □ > < 同 > < 三

Application to neutrino masses

Outline

Javier Menéndez $0\nu\beta\beta$ within the ISM

Application to neutrino masses

TECHNISCHE UNIVERSITÄT DARMSTADT

< 17 ▶

Application to neutrino masses

• With $M^{0\nu\beta\beta}$ value we obtain $m_{\beta\beta}$ using claim for A = 76 decay Blennow *et al.* JHEP 07 096 (2010)

Application to neutrino masses

Solving the incompatibility

- If we believe our M^{0νββ}, the ⁷⁶Ge 0νββ decay claim, cosmology neutrino mass measurements and the Standard Model seem to be in conflict
 - The ⁷⁶Ge 0νββ decay claim will be tested by GERDA experiment
 - Cosmology bounds on neutrino masses will be tested by KATRIN experiment
 - The mechanism for 0νββ decay might not be Standard Model light neutrinos: Heavy Neutrinos, Right Handed Currents, Supersymmetry

Heavy neutrinos in Seesaw model

- The NME is smaller for heavy neutrinos
- If $\sum_{i \in SM} m_i U_{ei}^2 + \sum_{l \in 1+h} m_l U_{el}^2 = 0$ as required by *ee* element of Majorana mass matrix heavy neutrinos can never be dominant
- < 100 MeV sterile neutrinos could be a possibility

Outline

Javier Menéndez $0\nu\beta\beta$ within the ISM

Summary

- We have obtained within the ISM NMEs for seven $0\nu\beta\beta$ emitters
- We have estimated uncertainty in the calculation to be \sim^{+25}_{-35} %
- Pairing like correlations favour the 0νββ decay
 Difference in structure (deformation) reduces the NME
- NMEs can be applied to obtain information on neutrino masses

Many thanks to

- A. Poves (Universidad Autónoma de Madrid)
- E. Caurier (IPHC Strasbourg)
- F. Nowacki (IPHC Strasbourg)
- A. Schwenk (ExtreMe Matter Institute Darmstadt)
- D. Gazit (Hebrew University of Jerusalem)
- M. Blennow (Max Plank Institute München)
- E. Fernandez-Martinez (Max Plank Institute München)
- J. Lopez-Pavon (Durham University)

