Level scheme and level half lives of ³⁰AI

Trabajo de Investigación de Posgrado September 28, 2010

Authors	Grupo de Física Nuclear
B. Olaizola, L.M. Fraile, H. Mach, M.J.G. Borge, R. Boutami, P.A. Butler, J. Cederkäll, Ph. Dessagne, B. Fogelberg, H. Fynbo, P. Hoff, S. Hyldegaard, A. Jokinen, C. Jollet, A. Korgul, U. Köster, W. Kurcewicz, F. Marechal, T. Motobayashi, J. Mrazek, G. Neyens, T. Nilsson, J. Nyberg, W.A. Plòciennik, A. Poves, E. Ruchowska, R. Schuber, M. Stanoiu, D.T. Yordanov	Grupo de Física Nuclear Departamento de Física Atómica, Molecular y Nuclear Universidad Complutense de Madrid http://nuclear.fis.urm.es

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Table o	f content	.s			

- Introduction
- 2 Motivation
 - Theory
 - Goals of the experiment
 - Previous works
- 3 ATD $\beta\gamma\gamma(t)$ technique
- 4 Experiment
 - Experiment run
 - Experimental setup
- 5 Experimental results
 - ³⁰Al energy spectra
 - Level scheme
 - Timing calibrations and corrections

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Introdu	ction				

- Data analysis of experiment IS414
- Study of the region known as Island of Inversion around ³²Na
- β -decay chains of 30,31,32,33 Na
- Use of the fast timing technique $\mathsf{ATD}\beta\gamma\gamma(t)$
- This analisys focuses on ³⁰Al level scheme and excited levels half lives

Introduction	Motivation ●○○○	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Theory					
Island c	of Inversion	on			

Island of Inversion

Possible inversion of the $f_{7/2}$ and $d_{3/2}$ orbits in the Z = 10 - 12and N = 20 - 22 region

Introduction	Motivation ○●○○	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Theory					

32
Mg $N = 20 Z = 12$

- Far more bound than predicted
- First 2⁺ at very low energy (885 keV)
- Indicates deformation properties
- Presence of intruder estates

Introduction	Motivation ○○●○	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Goals of the expe	riment				

Experiment on ³²Mg and decay chain

- Measurement of the half life of the first 2⁺ state (885 keV)
- Precission of about 1.5 ps

Introduction	Motivation ○○●○	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Goals of the expe	riment				

Experiment on ³²Mg and decay chain

- Measurement of the half life of the first 2⁺ state (885 keV)
- Precission of about 1.5 ps

Experiment on ^{30,31}Mg and decay chain

- Characterization of level schemes
- Search for intruder states
- Candidate for 0^+ in ${}^{30}Mg$
- One of the decay products is ³⁰Al

Introduction	Motivation ○○●○	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Goals of the expe	riment				

Experiment on ³²Mg and decay chain

- Measurement of the half life of the first 2⁺ state (885 keV)
- Precission of about 1.5 ps

Experiment on ^{30,31}Mg and decay chain

- Characterization of level schemes
- Search for intruder states
- Candidate for 0^+ in ${}^{30}Mg$
- One of the decay products is ³⁰Al

³⁰AI

• The nucleus ³⁰Al can provide information on the evolution from the Valley of Stability towards the Island of Inversion.

Introduction	Motivation ○○○●	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Previous works					

Previous level schemes

Détraz et al. 1979

"Beta decay of 27-32Na and their descendants", by C. Détraz *et al.* Phys. Rev. C 19, 164176 (1979)

Introduction	Motivation ○○○●	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Previous works					

Previous level schemes

Détraz et al. 1979

"Beta decay of 27-32Na and their descendants", by C. Détraz *et al.* Phys. Rev. C 19, 164176 (1979)

Hinners et al. 2008

"Complementary studies of T = 2^{30} Al and the systematics of intruder states" by T. A. Hinners *et al.* Phys. Rev. C 77, (2008)

) 🏓

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions

Advance Time Delayed $\beta\gamma\gamma(t)$

Outline

- The technique is based in triple coincidence $\beta\gamma\gamma(t)$
- The level scheme is determined by coincidences between two HPGe
- $\bullet\,$ The timing is done with a TAC between the β and ${\rm BaF_2}$ detector
- The half-life of the excited levels is measured by the slope of the time response ($T_{1/2} > 60ps$) or the displacement of the centroid from the prompt calibration curve ($T_{1/2} < 60ps$)
- The method relies on precise calibration of the time response of the fast detectors
- Half-lives down to the picoseconds can be measured

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
	0000		0000	0000000000	

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions

γ_1	in	Ge	and	γ_2	in	the	fast	timing
$t_1 =$	=	τ_0 –	- τ ₂					
	7			6		1		
γ_2	in	Ge	and	γ_1	in	the	fast	timing
t ₂ =	_	τ_0 +	$- au_1$	$+\tau$	2			

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions

$$\tau_1 = t_2 - t_1$$

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Convel					

- Convolution technique
 - Convolution technique may be used if $T_{1/2} > 60 ps$
 - Fit of the timing distribution to a prompt transition plus a exponential decay
 - Prompt part may be approximated to a gaussian distribution
 - $F(t_j) = \gamma \int_A^{+\infty} e^{-\delta(t_j-t)} e^{-\lambda(t-A)} dt$

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment ●○○○	Experimental results	Conclusions
Experiment run					

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment ○●○○	Experimental results	Conclusions
Experimental setu	цр				

Detectors

- 1 X NE111A: β -detector 3 mm width
- 2 X *BaF*₂: timing (1.5" base, 1" top, 1" height)
- 2 X HPGe: energy resolution and selection of decay branches

Introduc	stion
muouuu	JUUII

Motivation

 $\mathsf{ATD}eta\gamma\gamma(t)$ technique

Experiment

Experimental results

Conclusions

Experimental setup

Data were acquired with 2 systems simultaneously

- DMP Analog
- XIA (PIXIE 4) Digital

Analog system

- ADC-0: Starter logical signal
- ADC-1: β-detector energy
- ADC-2: Fast TAC-1
- ADC-3: BaF₂-1 energy
- ADC-4: Fast TAC-2
- ADC-5: BaF₂-2 energy
- ADC-6: HPGe-1 energy
- ADC-7: HPGe-2 energy

Digital system

- Card 1-0: PSBooster proton impacts
- Card 1-1: HPGe-1 energy
- Card 1-2: HPGe-2 energy
- Card 2-0: Fast TAC-1
- Card 2-1: BaF₂-1 energy
- Card 3-0: Fast TAC-2
- Card 3-1: BaF₂-2 energy
- Card 4-0: β -detector energy

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment ○○○●	Experimental results	Conclusions
Experimental se	tup				
β^- -dec	ay chain				

Z	e 100.00% cp: 1.3E-3%	e: 100.00%	e 100.00%	100%	A 100.00%	∦ = 100.00%	β-: 100.00%	\$-100.00%	β~: 100.00%
14	4.16 S c 100.00N	STABLE 92.230%	57ABLE 4.683%	STABLE 3.087%	157-3 M 8- 100.00%	150 Y 150 Y	6.11.5 β-: 100.00%	2.77.5 p- 100.004	0.70 S
13	26A1 7.17E+5 Y & 100.00%	27A1 STABLE 100%	28A1 2.2414 M β-100.00%	29A1 6.56 M β- 100.00%	30A1 3.60 S β-100.00%	31A1 644 MS β-: 100.00%	32A1 33.0 MS β- 100.00% β-n 0.70%	33A1 41.7 MS 6- 100.00% 8-8.850N	34A1 42 MS β-: 100.00% β-m 27.00%
12	25Mg STABLE 10.00%	26Mg STABLE 11.01%	27Mg 9.450 M # 100.00N	28Mg 203915 H #~: 100.00W	29Mg 1.30 S 8+ 100.00%	30Mg 335 MS \$ 100.00%	31Mg 232 MS β-: 100.00N β-h: 1.70N	32Mg DG MS 8-: 100.00% 8-1: 5:50%	33Mg 90.5 MS β-: 100.00N β-h: 17.00N
11	24Na 14:007 H 8- 100:005	25Na 50 1 5 β 100.00%	26Ns 1.077/S β100.00%	27Na 301 MS β-: 100 00% β-а. 0.13%	28Na 30.5 MS β-: 100.00% β-n.0.58%	29Na 44.9 MS 8 100 00% 8-n 21 50N	30Ns 48 MS 6-: 100.00% 8-a: 30.00%	31Na 17 0 MS 8-100.00% 8-a: 37.00%	32Na 13.2 MS β-: 100.00% β-π.24.00%
	13	14	15	16	17	18	19	20	N

gfn 🌶

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment ○○○●	Experimental results	Conclusions
Experimental se	tup				
β^- -dec	ay chain				

	13	14	15	16	17	18	19	20	N
11	24Na 14.007 H §= 100.005	25Na 59.1 5 β 100.00%	26Ne 1.077.5 β100.00%	27Na 301 MS β-: 100 00% β-a: 0.13%	28Na 30.5 MS β 100.00% β-n.0.58%	29Na 44.9 MS 8 100 00% 8-n.21.50%	30Na 48 MS β-: 100.00% β-a: 30.00N	31Na 17 0 MS β - 100.00% β - a: 37.00%	32Na 13.2 MS β-: 100.00% β-π.24.00%
12	STABLE 10.00%	STABLE 11.01%	9.450 M J 100.00N	20.915 H F- 100.005	1.30 5 8- 100.00h	335 MS #-: 100.00%	21 β-, 100.00% β-h: 1.70%	9-100.00N 9-1:550N	β-: 100.00% β-h: 17.00%
13	26AI 7.17E+5.Y <100.00%	27AI STABLE 100%	28A1 2 2414 M β-100.00%	29A1 6.56 M β- 100.00%	3.60 S β-100.00%	S1AI 644 MS β-: 100.00%	³³ Τ _{1/2} ^{β-1} Q(β	: 48 ms 3 [.]): 17.3 2+	MeV
14	2751 4.16 5 c 100.00N	2851 STABLE 92,230%	2951 STABLE 4.683%	3051 STABLE 3.087%	815) 157-31M 8- 100.008	3251 155 Y 15:100.008	3351 6.21.9 8-: 100.00%	8451 2.77.5 8 100.00%	355) 0.78 S p-: 100.00%
z	20P 270 3 MS e 100 00% cp. 1 3E-3%	299 4 142 5 4 100.00%	30P 2:498 M +: 100:00%	31P STARLE 100%	329 14 362 D 8 100.004	32P 25.54.D #=100.005	94P 12 43 5 β-: 100.00%	35P 47.3 3 \$~100.00%	36P 5.6.2 β~ 100.00%

gfn 👂

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment ○○○●	Experimental results	Conclusions
Experimental se	tup				
β^- -dec	ay chain				

z	20P 270 3 MS c 100 00% cp. 1 3E-3N	299 4 142 5 + 100 00%	30P 2:498 M 4:100.00%	J1P STABLE 100%	32P 14 262 D # 100.004	30P 25.54.0 ∦=100.005	D4P 12 43 5 β~ 100.00%	35P 47.3.3 β 100.00%	. ЭбР 5.6.5 6-: 100.00%
14	27 <u>5</u> 1 4_16 5 c 100.00N	2851 STABLE 92 230%	2951 STAULE 4.683%	3051 STABLE 3.087%	319 157.9 M 8- 100.008	T _{1/2}	₂ : 335 m 3 ⁻): 6.96	ns 5 MeV	3551 0.70 5 0-: 100.00%
13	26A1 7 17E+5 Y 4:100.00%	27A1 STABLE 100%	28A1 2 2414 M β-: 100.00%	29A1 6.56 M β- 100.00%	30A1 3.60 S β-100.00%	s J∏. 64 β∹ 100.00%	0+ 8-100.00% 8-n.0.70%	β- 100.00% β-n.8.50%	34A1 42 MS β-: 100.00% β-π. 27.00%
12	25Mg STABLE 10.00%	26Mg STABLE 11.01%	27Mg 9:450 M # 100.00%	28Mg 20:915 H #-: 100:00N	29Mg 1.30 S \$+ 100.00%	30Mg 335 M5 \$ 100.00%	31Mg 232 MS β-: 100.00N β-h: 1.7004	32Mg 06 MS β-: 100.00N β-::::5504	33Mg 90.5 MS 8 100.00% 8-h: 17.00%
11	24Na 14.007 H β= 100.00h	25Na 59 1 5 β 100.00%	26Ne 1.077/5 β-100.00%	27Na 301 MS β-: 100 00% β-a: 0.13N	28Na 30.5 MS β-100.00% β-n.0.58%	29Na 44.9 MS 8 100 00% 8-n.21.50N	30Na 48 MS β-: 100.00% β-:n. 30.00N	31Na 17 0 MS 6 - 100.00% 8 - n. 37.00%	32Na 13.2 MS β-: 100.00% β-n.24.00%
	13	14	15	16	17	18	19	20	N

gfn 🌶

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment ○○○●	Experimental results	Conclusions
Experimental se	tup				
β^{-} -deca	ay chain				

z	20P 270 3 M3 c 100 00% cp: 1 3E-3%	29P 4 142 5 4 100 00%	30P 2 498 M +: 100.00%	31P STABLE 100%	³⁴³ T _{1/} Q(₂ : 3.6 s β ⁻): 8.56	6 MeV	35P 47.3.5 \$-100.00%	06P 5.8.5 β- 100.00%
14	2751 4.16.5 c.100.009	2851 STABLE 92.230%	2951 STABLE 4.683%	30SI STABLE 3.087%	3. Jπ 157 8- 100.008	: 3+ + 100.0054	₽~: 100.00%	3451 2.77.5 8-, 100.00%	3551 0.78 5 β-: 100.00%
13	26A1 7 17E+5 Y & 100.00%	27A1 STABLE 100%	28A1 2.2414 M β-100.00%	29A1 6.56 M β- 100.00%	30A1 3.60 S β-100.00%	31A1 644 MS β-: 100.00%	32A1 33.0 MS β- 100.00% β-n.0.70%	33A1 41.7 MS β-100.00% β-π.8.50N	34A1 42 MS β-: 100.00% β-π. 27.00%
12	25Mg STABLE 10.00%	26Mg STABLE 11.01%	27Mg 9.450 M # 100.00%	28Mg 203915 H g- 10000N	29Mg 1 30 5 8- 100.00M	30Mg 335 MS \$ 100.00%	31Mg 232 MS β-: 100.00% β-h: 1.70%	32Mg DG MS \$100.00% \$-5.50%	33Mg 90.5 MS 8-: 100.00N 8-:: 17.00N
11	24Na 14.007 H 8- 100.00N	25Na 50 1 5 β 100.00%	26Na 1.077/5 β-:100.00%	27Na 301 MS β-: 100 00% β-a: 0.13%	28Na 30.5 MS β-: 100.00% β-n.0.58%	29Na 44.9 MS 8-: 100.00% 8-n.21.50N	30Ns 48 MS β~: 100.00% β-в. 30.00N	31Na 17 0 MS 8-: 100.00% 8-a: 37.00%	32Na 13.2 MS β-: 100.00% β-n.24.00%
	13	14	15	16	17	18	19	20	N

gfn 👂

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
³⁰ Al energy spe	ctra				
Peak id	entificati	on			

Peak identification

Digital system was used to set a 300-1200 ms time gate after the proton impact on the target to enhance the ${}^{30}AI$ activity

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
³⁰ A/ energy spect	ra				

Coincidences HPGe-HPGe

B. Olaizola Level scheme and level half lives of ³⁰A/

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Level scheme					

gfn

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Level scheme					

gfn

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Timing calibratio	ns and corrections				

Timing ADT

- There are three corrections in the technique:
 - β -walk curve
 - 2 Compton-walk curve
 - Compton from different energies give different responses (2nd order)
- We need to calibrate the time response of each detector as a function of energy Prompt calibration curve
- These calibrations and corrections are common to every nucleus in the experiment
- Each BaF₂ produces an indepedent set of data

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Timing calibrati	ons and correction	s			
B-walk	CUINA				

Energy gate on the β -detector

A common gate for both BaF_2 was set in the 1000-4595 channel region to ensure a time constant response from the detector.

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Timing calibrati	ons and correction	s			
Compto	on-walk c	curve			

Time calibration

Comtpon walk curve from 1836 keV transition in ⁸⁸Sr

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Timing calibrati	ons and correction	s			
Compto	on correc	tion			

B. Olaizola Level scheme and level half lives of ³⁰A/

gfn

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Timing calibrati	ons and correction	s			
Compto	on correc	tion			

B. Olaizola Level scheme and level half lives of ³⁰A/

gfn 🌶

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Timing calibrati	ons and correction	s			
Compto	on correc	tion			

B. Olaizola Level scheme and level half lives of ³⁰A/

gfn 🌶

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Timing calibration	ns and corrections				

Prompt-time calibration

Time calibration

Relative time response curve for both crystals made with calibration sources $^{24}\rm Na,~^{88}Rb$ and $^{140}\rm Ba.$ The time calibration is 12 ps/chan.

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Timing calibrati	ons and correction	s			
Half life	analysis				

gfn 🌶

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Timing calibrati	ons and correction	5			
Half life	analysis				

gfn 🌶

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Timing calibrati	ons and correction	s			
Half life	analysis				

gfn

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions
Timing calibrati	ons and correction	s			
Half life	analysis				

gfn

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results ○○○○○○○○●	Conclusions
Timing calibration	ns and corrections				

Level (keV)	τ (BaF ₂ -1)	au (BaF ₂ -2)	$T_{1/2}(ps)$
243.77 (3)	11.9 (4.3)	13.9 (5.8)	18.5 (5.0)
687.62 (6)	20.7 (9.2)	19.1 (8.2)	28.6 (8.8)

- 0			
γ (keV)	Multi	B(GT) W.u.	N
243.77 (3)	M1	0.17 (5)	
443.77 (6)	M1	0.017 (6)	
687.8 (1)	E2	2.9 (9)	

gfn 🔊

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions

Conclusions

- Level scheme with new levels and transitions
- Two candidates for a third 1+ state in this nucleus
- Half lifes of the first two excited estates

Introduction	Motivation	$ATDeta\gamma\gamma(t)$ technique	Experiment	Experimental results	Conclusions

Thanks for your attention!

