EFN-2010: Influencia de las fluctuaciones de apareamiento en teorías más allá del campo medio

Nuria López Vaquero J.Luis Egido y Tomás R. Rodríguez

El Escorial, Madrid. 27-29 Septiembre 2010

Nuria López Vaquero

EFN-2010

Outline

- Motivación
- 2 Introducción Teórica
 - HFB
 - Métodos de Proyección
 - Método GCM
 - Ejemplo 1D
 - Una nueva coordenada Δ

3 Resultados

- Superficies de energía potencial en 2D para el ⁵⁴Cr
- Espectros de excitación del ⁵⁴Cr
- Extensión del análisis para el ⁵²Ti y el ⁵⁰Ca
- Cierres de capa N=32 y N=34

4 Conclusiones y perspectivas

Motivaciones

- Descubrimientos para núcleos exóticos con nuevas técnicas experimentales
- Avance de la computación científica \Rightarrow Mejoras en los cálculos teóricos
- Progresos F. Nuclear teórica paralelos a la parte experimental ⇒ Cálculos más allá del campo medio.

HFB Métodos de Proyección Método GCM Ejemplo 1D Una nueva coordenada Δ

Aproximación de campo medio (SMF). Método de HFB

- Aproximación de campo medio (SMF). Método de HFB:
 - Núcleo ⇒ Sistema de partículas o cuasipartículas, no interactúan entre sí y sometidas a un potencial externo que liga el sistema.
 - Para calcular dicho potencial \Rightarrow Método de HFB

$$egin{aligned} |\Phi
angle &=eta_1...eta_M|-
angle\ E_{
m HFB}(q_i) &=rac{\langle\Phi(q_i)|(\hat{H}-\lambda_N\hat{N}-\lambda_i\hat{Q})|\Phi(q_i)
angle}{\langle\Phi(q_i)|\Phi(q_i)
angle} \end{aligned}$$

Con las ligaduras:

$$egin{aligned} &\langle \Phi(q_i) | \hat{N} | \Phi(q_i)
angle = N \ &\langle \Phi(q_i) | \hat{Q} | \Phi(q_i)
angle = q_i \end{aligned}$$

 Se admite la ruptura espontánea de simetrías del hamiltoniano en el sistema intrínseco (número de partículas, invariancia rotacional...)

HFB **Métodos de Proyección** Método GCM Ejemplo 1D Una nueva coordenada Δ

BMF I: Métodos de Proyección

- Más allá de la aproximación de campo medio (BMF):
 - Descripción correcta núcleo. Restaurar simetrías ⇒ Técnicas de proyección:

$$|\Phi\rangle=\hat{P}^{I}_{M}...\hat{P}^{N}\hat{P}^{Z}|\phi\rangle$$

con \hat{P} el correspondiente operador de simetría.

Distinguimos dos tipos:

- Variación después de la proyección $VAP \Rightarrow PN-VAP$.

$$E_{\text{VAP}}(q_i) = \frac{\langle \Phi(q_i) | (\hat{H} - \lambda_i \hat{Q}) P^N | \Phi(q_i) \rangle}{\langle \Phi(q_i) | P^N \Phi(q_i) \rangle}$$

- Proyección después de la variación $\text{PAV} \Rightarrow \text{AMP}, \text{PNP}, \text{PNAMP}$

$$E^{N,J}(q_i) = \frac{\langle \Phi(q_i) | \hat{H} \hat{P}^N \hat{P}^J | \Phi(q_i) \rangle}{\langle \Phi(q_i) | \hat{P}^N \hat{P}^J | \Phi(q_i) \rangle}$$

HFB Métodos de Proyección **Método GCM** Ejemplo 1D Una nueva coordenada Δ

BMF II: Mezcla de configuraciones

 Método de la coordenada generadora GCM: f.o. como una combinación lineal de f.o tipo producto con las simetrías ya restauradas.

Se propone como solución prueba:

$$|\Psi^{NJ\sigma}
angle = \int f^{NJ\sigma}(ec{q}) |\Phi^{NJ}(ec{q})
angle dec{q}$$

Donde:

- *f^{NJσ}*(*q̃*) → Es el peso de las funciones generadoras. Van a ser determinados de forma variacional resolviendo la ecuación de Hill-Wheeler-Griffin.
- $\{\vec{q}\}$ Conjunto de coordenadas generadoras \Rightarrow $\{\vec{q}\} = \{q_{20}, \Delta\}$.

HFB Métodos de Proyección Método GCM **Ejemplo 1D** Una nueva coordenada Δ

Ejemplo de una superficie de energía potencial (PES) en 1D para el 54 Cr

• Cálculos desarrollados en una base O.A. triaxial en un espacio de configuración de 8 capas y con la Interacción de Gogny D1S.

HFB Métodos de Proyección Método GCM Ejemplo 1D Una nueva coordenada Δ

Inclusión del grado de libertad Δ

- Fluctuaciones de apareamiento:
 - -**q**₂₀
 - -Δ
- Dentro del marco BCS para una fuerza pura de apareamiento.

$$\Delta = G \sum_{k>0} u_k v_k$$
$$E_{pairing} = \frac{\Delta^2}{G}$$

• Operador para constreñir en $\Delta \Rightarrow \Delta N^2$ Definido:

$$\Delta N^2 = \langle \Phi_{\rm BCS} | \hat{N}^2 | \Phi_{\rm BCS} \rangle - N^2 = 4 \sum_{k>0} u_k^2 v_k^2$$

Superficies de energía potencial en 2D para el ⁵⁴Cr Espectros de excitación del ⁵⁴Cr Extensión del análisis para el ⁵²Ti y el ⁵⁰Ca Cierres de capa N=32 y N=34

Cálculo de la energía con dos grados de libertad.

- Obtener para cada q_{20} fijo la solución autoconsistente \Rightarrow Representar E vs $E_{pairing}$
- Fijando un valor de q₂₀ y constreñir en el nuevo grado de libertad:

$$\langle \Phi(q_{20},\Delta)|\hat{\Delta}|\Phi(q_{20},\Delta)
angle=\Delta$$

• Variar q_{20} -180 240 $fm^2 \Rightarrow$ Obtención PES 2D! $E_{\text{VAP}}^{2D} = \frac{\langle \Phi_{\text{VAP}}(q_{20}, \Delta) | \hat{H}P^N | \Phi_{\text{VAP}}(q_{20}, \Delta) \rangle}{\langle \Phi_{\text{VAP}}(q_{20}, \Delta) | \Phi_{\text{VAP}}(q_{20}, \Delta) \rangle}$ Introducción Teórica Resultados

Superficies de energía potencial en 2D para el ^{54}Cr Espectros de excitación del ^{56}Cr Extensión del análisis para el ^{52}Ti y el ^{50}Ca Cierres de capa N=32 y N=34

PES 2D para el ⁵⁴Cr

• PN-VAP

PN-**VAP+PNAMP** (J=0)

3

э

Superficies de energía potencial en 2D para el $^{54}\mathrm{Cr}$ Espectros de excitación del $^{54}\mathrm{Cr}$ Extensión del análisis para el $^{52}\mathrm{Ti}$ y el $^{50}\mathrm{Ca}$ Cierres de capa $N{=}32$ y $N{=}34$

< ∃ >

_ 1 → 1 → 1

э

Espectros de excitación para el 54Cr

٩	q ₂₀	
٩	q ₂₀ -	+ Δ

PN-VAP+PNAMP+GCM

Superficies de energía potencijal en 2D para el ^{54}Cr Espectros de excitación del ^{54}Cr Extensión del análisis para el ^{52}Ti y el ^{50}Ca Cierres de capa $N{=}32$ y $N{=}34$

PES 2D y espectros de excitación para el 52 Ti y 50 Ca

Nuria López Vaquero

EFN-2010

Superficies de energía potencial en 2D para el ⁵⁴Cr Espectros de excitación del ⁵⁴Cr Extensión del análisis para el ⁵²Ti y el ⁵⁰Ca Cierres de capa N=32 y N=34

Nuria López Vaquero

EFN-2010

Superficies de energía potencial en 2D para el ⁵⁴Cr Espectros de excitación del ⁵⁴Cr Extensión del análisis para el ⁵²Ti y el ⁵⁰Ca Cierres de capa N=32 y N=34

Cierres de capa N=32 y N=34

Energías de excitación para el estado 2⁺ (PN-VAP+PNAMP+GCM) para la cadena isotópica del Calcio: 50 Ca, 52 Ca y 54 Ca.

Conclusiones y perspectivas

Se ha estudiado el efecto de la influencia de las fluctuaciones de apareamiento con técnicas más allá del campo medio, con los siguientes resultados:

- El método GCM con f.o. intrínsecas PN-VAP proyectadas a buen N y buen J en 2D es el que ofrece una mejor aproximación a la solución real del sistema.
 - Incluye de forma apropiada las correlaciones de apareamiento.
 - El espectro obtenido al incluir Δ (más comprimido) más acorde con lo obtenido experimentalmente.
- El cálculo de E(2⁺) en la cadena isotópica del Calcio se muestra de acuerdo con el cierre de capa N=32 pero no para N=34.

Conclusiones y perspectivas

Se ha estudiado el efecto de la influencia de las fluctuaciones de apareamiento con técnicas más allá del campo medio, con los siguientes resultados:

- El método GCM con f.o. intrínsecas PN-VAP proyectadas a buen N y buen J en 2D es el que ofrece una mejor aproximación a la solución real del sistema.
 - Incluye de forma apropiada las correlaciones de apareamiento.
 - El espectro obtenido al incluir Δ (más comprimido) más acorde con lo obtenido experimentalmente.
- El cálculo de E(2⁺) en la cadena isotópica del Calcio se muestra de acuerdo con el cierre de capa N=32 pero no para N=34.

- Extender este análisis en 2D a otros sistemas y observables, p.ej. núcleos pesados y superpesados.
- Introducir progresivamente y por orden de importancia más grados de libertad en el sistema.
- Incorporación de estados de más cuasipartículas y tratamiento adecuado de los grados de libertad monoparticulares que permitan la descripción de núcleos impares.