

ECT* European Centre for Theoretical Studies in Nuclear Physics and Related Areas

Chaos in Baryons

César Fernández-Ramírez

European Centre for Theoretical Studies in Nuclear Physics and Related Areas, ECT*

&

Fondazione Bruno Kessler, FBK

Baryons: Historical Perspective

• Δ (1232)

Anderson, Fermi, Long, Nagle, Phys. Rev. 85 (1952) 936

- Proliferation of baryons
- Non-relativistic quark models

Gell-Mann, Zweig, Greenberg, Dalitz, Karl, Koniuk, Isgur, (60's and 70's)

Relativistic quark models

Capstick, Isgur, PRD 34 (1986) 2809 Bonn model, EPJA 10 (2001) 309; 395; 447

Effective QCD-inspired models

Page, Swanson, Szczepaniak, PRD 59 (1999) 034016 Llanes-Estrada, Cotanch, PLB 504 (2001) 15; NPA 697 (2002) 303

• Lattice QCD

Bernard et al., PRD 64 (2001) 054506

The Problem of Missing Resonances

in Nuclear Physics and Related Area

- Experiments vs quark models => missing states
- Experimental effort

v.g. at JLab and Mainz

• We apply spectral statistic techniques to test quark models and survey the problem of missing resonances

Spectral Statistics

- ECT* European Centre for Theoretical Studies in Nuclear Physics and Related Areas
- It studies how an ordered sequence of numbers (v.g. an energy spectrum) matches an statistical theory
- Two kinds of statistics
 - Nearest neighbors
 - Long distance correlations
- Statistical methods are a powerful tool to study the energy spectrum of quantum systems
- Methods have improved over the last years: Analysis of systems with low number of levels are presently reliable and problems such as the hadron spectrum can be faced

Spectral Fluctuations

ECT* European Centre for Theoretical Studies in Nuclear Physics and Related Areas

- Spectra can be split in a smooth and a fluctuating part $\rho(E) = \rho_s(E) + \rho_f(E)$
- Universality of fluctuations in chaotic and integrable systems
- This allows to consider the system as a black-box without considering the underlaying interaction
- Fluctuations are extracted from the spectrum through an unfolding procedure
- Nearest Neighbors Spacings Distribution is the most utilized
 → Distance between two consecutive levels with the same symmetries (quantum numbers)

Integrability and Chaoticity in Quantum Systems

- ECT* European Centre for Theoretical Studies in Nuclear Physics and Related Areas
- Statistical properties of the energy-level fluctuations are universal and determine whether a system is chaotic or integrable
- Integrable and chaotic systems display different fluctuation pattern
- The sequence of spacings {s_i} for an integrable system can be considered as a sequence of independent random variables (non-correlated sequence of levels)
- Chaotic systems are characterized by a correlation structure described by RMT (standard set)
- Paradigms of integrable and chaotic systems

→ Quantum billiards

Fluctuations and Integrable Spectra

in Nuclear Physics and Related Area

- → Integrable systems (uncorrelated)
 - Fluctuations follow Poisson distribution

Berry, Tabor, Proc. R. Soc. London A 356 (1977) 375

- Uncorrelated systems
- Example: Random noise

Fluctuations and Chaotic Spectra

in Nuclear Physics and Related Area

- \rightarrow Chaotic systems (correlated)
 - Flutuations follow Wigner surmise

Bohigas, Giannoni, Schmit, PRL 52 (1984) 1

- Example: Nuclei
- Standard for chaotic systems: Random Matrix Theory (useful for statistical studies)

ECT* European Centre for Theoretical Studies in Nuclear Physics and Related Areas

Statistical tools allow to identify the existence of missing states Bohigas, Pato, PLB 595 (2004) 25; PRE 74 (2006) 036212 Molina, Retamosa, Muñoz, Relaño, Faleiro, PLB 644 (2007) 25

Missing levels cause the spectral fluctuations of a spectrum with Wigner distribution look more like a Poisson distribution We can use this property to identify missing levels in a spectrum

Spectral Fluctuations and Nuclei

ECT* European Centre for Theoretical Studies in Nuclear Physics and Related Areas

Experimental spectrum in nuclei follows RMT (Wigner surmise)

Bohigas, NPA 751 (2005) 343c

Symmetries in the Baryon Spectrum

in Nuclear Physics and Related Areas

- *I* isospin
- J spin
- π parity
- We drop strangeness due to SU(3) invariance
- From the full spectrum we extract sequences of levels with given $I\left(J^{\pi}\right)$

Unfolding Procedure

ECT* European Centre for Theoretical Studies in Nuclear Physics and Related Areas

- $\rho(E) = \rho_s(E) + \rho_f(E)$
- We choose the simplest unfolding prescription

•
$$S_i = E_{i+1} - E_i$$

• We rescale using its average value

$$s_i = S_i / \langle S \rangle$$

- Nearest Neighbor Spacings (NNS)
- This procedure assumes an energy independent behavior of the smooth part of the density $\rho_s(E) = 1/\langle S \rangle$

Pascalutsa, EPJA 16 (2003) 149

Nearest Neighbor Spacing Distribution (NNSD)

• Poisson: integrable / uncorrelated

$$P(s) = \exp(-s)$$

• Wigner: chaotic / correlated

$$P(s) = \frac{\pi s}{2} \exp\left(-\frac{\pi s^2}{4}\right)$$

Accumulated NNSD,

$$F(x) = 1 - \int_0^x ds \ P(s),$$

allows a better study of the tail of the distribution

Experimental Baryon Spectrum up to 2.2 GeV

ECT* European Centre for Theoretical Studies in Nuclear Physics and Related Areas

C. Fernández-Ramírez. Chaos in Baryons — El Escorial, September 27, 2010 - p. 14/?

Relativistic Quark Models

Models by Löring *et al*., (sets L1 & L2) EPJA 10 (2001) 309; 395; 447 Capstick and Isgur, (set CI) PRD 34 (1986) 2809

Unfolding. Problems?

in Nuclear Physics and Related Area

- Sometimes, very short sequences of levels
- In such cases, unfolding can provide misleading results, making spacings spuriously closer and bringing the NNSD tend to the Wigner surmise
- Unfolding can yield different effects in different spectra: We avoid a direct comparison of the spectral fluctuations
- Complementary analysis: Kolmogorov-Smirnov goodness-of-fit tests

Kolmogorov-Smirnov Goodness-of-Fit Test

in Nuclear Physics and Related Area

- To determine whether two datasets differ significantly
- No assumption about the distribution of data (non-parametric and distribution free)
- Based on the maximum distance between cumulative probabilities

Kolmogorov, Giornale dell'Istituto Italiano degli Attuari 4 (1933) 83 Smirnov, Bull. Moscow Univ. 2 (1933) 3; Ann. Math. Stat. 19 (1948) 279 Feller, Ann. Math. Stat. 19 (1948) 177 NAG Libraries, http://www.nag.co.uk

Applied Procedure

- ECT* European Centre for Theoretical Studies in Nuclear Physics and Related Areas
- We build synthetic spectra (Wigner-like and Poisson-like) optimized to each set
- Each synthetic spectrum has the same size and is distorted by the unfolding in the same way as sets EXP, CI, L1, and L2 are
- We do this many times (500 realizations) so we can have statistical significance

Kolmogorov-Smirnov Test

ECT* European Centre for Theoretical Studies in Nuclear Physics and Related Areas

Probability to obtain, under the null hypothesis, a value of the Kolmogorov-Smirnov test statistic as the one observed

Spectrum	EXP	CI	L1	L2
Poisson	0.51	0.49	0.25	0.53
Wigner	0.80	0.18	0.05	0.01

Null hypothesis: Both distributions display equal spectral fluctuations

If we assume that the *real* distribution is 100% Wigner we can speculate on the maximum amount of missing states

- We remove levels randomly from a Wigner distribution until we get values for the K-S test closer to what is observed
- Very rough estimation: <20% of missing levels

Conclusions (I)

ECT* European Centre for Theoretical Studies in Nuclear Physics and Related Areas

- The statistical techniques developed to study the chaotic character of quantum systems have evolved into powerful and reliable techniques that can provide new insight in hadron physics
- From the spectral fluctuations of the *experimental* baryon spectrum one can conclude the importance of correlations in the underlying physics
- From the analysis of *theoretical* spectra from constituent quark models, one can conclude that, as presently built, they do not describe the basic statistical properties of the low-lying baryon spectrum and they need to include more correlations

Conclusions (II)

in Nuclear Physics and Related Area

- The result is model-independent
- There is room for missing resonances at the 20% level
- Predictions of missing states derived from constituent quark models are not reliable

Fernández-Ramírez, Relaño, PRL98 (2007) 062001

Conclusions (II)

Nuclear Division and Dalated Are

- The result is model-independent
- There is room for missing resonances at the 20% level
- Predictions of missing states derived from constituent quark models are not reliable

Fernández-Ramírez, Relaño, PRL98 (2007) 062001

Questions:

Is the spectrum really Wigner?

What is missing in the quark models?

What does this tell us on confinement/QCD/hadrons?

Conclusions (II)

Nuclear Division and Dalated Are

- The result is model-independent
- There is room for missing resonances at the 20% level
- Predictions of missing states derived from constituent quark models are not reliable

Fernández-Ramírez, Relaño, PRL98 (2007) 062001

Questions:

Is the spectrum really Wigner?

What is missing in the quark models?

What does this tell us on confinement/QCD/hadrons?

ECT*European Centre for Theoretical Studies in Nuclear Physics and Related Areas

Backstage

Direct Comparison by means of a Goodness-of-Fit Test

ECT* European Centre for Theoretical Studies in Nuclear Physics and Related Areas

Wilcoxon Rank-Sum Test

Wilcoxon, Biometrics Bull. 1 (1945) 80 Mann, Whitney, Ann. Math. Stat. 18 (1947) 50

	CI	L1	L2
EXP	0.0487	0.1067	0.1036

Allows to test whether two populations of different size are statistically alike

Wilcoxon Rank-Sum Test

ECT* European Centre for Theoretical Studies in Nuclear Physics and Related Areas

Probability to obtain, under the null hypothesis, a value of the Wilcoxon Rank-Sum test statistic as extreme as that observed

Spectrum	EXP	CI	L1	L2
Poisson	0.67	0.64	0.55	0.22
Wigner	0.92	0.0015	0.019	0.059

Null hypothesis: Both distributions are statistically equal Only one realization of the "experiment"

Deviations from Wigner Surmise

in Nuclear Physics and Related Areas

Due to

- Uncertainties in the masses (error bars)
 - → Errors mean random noise, which brings the NNSD closer to a Poisson distribution
- Existence of missing states
 - \rightarrow Missing resonances

Error Bars (Toy Model Simulation): NNSD

C. Fernández-Ramírez. Chaos in Baryons - El Escorial, September 27, 2010 - p. 28/?

Error Bars (Toy Model Simulation): Accumulated NNSD

