# Exploring Continuum Structures with a Pseudo-State Basis

### J. A. Lay<sup>1</sup>, A. M. Moro<sup>1</sup>, J. M. Arias<sup>1</sup>, and J. Gómez-Camacho<sup>1,2</sup>

<sup>1</sup>Departamento de FAMN, Universidad de Sevilla, Apdo. 1065, 41080 Sevilla <sup>2</sup>Centro Nacional de Aceleradores, Av. Thomas A. Edison, 41092 Sevilla;

### ENFN 2010



# 1 Motivation

- 2 PS discretization method
  - General PS method
  - The analytical THO basis

# Application to reactions <sup>6</sup>He+<sup>208</sup>Pb @ 240 MeV/u

- ${}^{6}\text{He} + {}^{12}\text{C}$  @ 240 MeV/u
- <sup>11</sup>Be+<sup>12</sup>C @ 67 MeV/u

B A B A B B B A A A

#### Motivation

PS discretization method Application to reactions

# Motivation



## The role of the continuum

Coupling to BU (unbound) channels play an important role in the scattering of loosely bound nuclei

# $\Downarrow$

### Coupled-Channels (CC) method

✓ Describe the coupling to internal degrees of freedom of the projectile

A B N A B N

ELE DOG

## The role of the continuum

Coupling to BU (unbound) channels play an important role in the scattering of loosely bound nuclei

# $\Downarrow$

#### Coupled-Channels (CC) method

- ✓ Describe the coupling to internal degrees of freedom of the projectile
- × Only for a finite numbers of square-integrable states

伺下 イヨト イヨト

= = ~ ~ ~

## The role of the continuum

"True" Continuum: { Infinite number of estates. No square-integrable.



레이 소문이 소문이 문

## The role of the continuum

"True" Continuum: { Infinite number of estates. No square-integrable.



 $CC \implies$  Continuum Discretized Coupled Channels (CDCC)

# The Continuum problem in CDCC

Discretization methods:

• Binning:

$$u_l^i(k) = \sqrt{\frac{2}{\pi N_i}} \int_{k_{i-1}}^{k_i} f_i(k) \phi_l(k,r) dk.$$



→ 토 ▶ 토

= 200

# The Continuum problem in CDCC

Discretization methods:

• Binning:

$$u_l^i(k) = \sqrt{\frac{2}{\pi N_i}} \int_{k_{i-1}}^{k_i} f_i(k)\phi_l(k,r)dk.$$

- Pseudo-states.
  - ⇒ The Continuum is described through a basis (HO, Sturmian) of square-integrable states.

# Pseudo-states (PS) discretization method

• Discrete set of  $\mathcal{L}^2$  functions:  $|\phi_n\rangle$ 

Completeness condition:

$$\sum^{N} |\phi_i\rangle \langle \phi_i| \approx \mathbf{I}$$

• To diagonalize the internal hamiltonian of a projectile  $\mathcal{H}_p$ 

#### Matrix elements:

$$\mathcal{H}_{p}\longmapsto\sum_{n,n'}|\phi_{n}\rangle\langle\phi_{n}|\mathcal{H}_{p}|\phi_{n'}\rangle\langle\phi_{n'}|$$

- < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

General PS method The analytical THO basis

# Pseudo-states (PS) discretization method

#### Eigenstates of the matrix NxN:

$$|\varphi_n^{(N)}\rangle = \sum_{i=1}^{N} C_i^n |\phi_i\rangle$$

•  $\left\{ \begin{array}{l} \mathsf{n}_b \text{ states with } \varepsilon_n < 0 \text{ representing the bound states.} \\ \mathsf{N}\text{-}\mathsf{n}_b, \varepsilon_n > 0 \Rightarrow \text{discrete representation of the Cont.} \end{array} \right.$ 

• Orthogonal and normalizable.

### Which basis may I use? Sturmian, Harmonic Oscillator?

◆□ × E × E × E = 2000

General PS method The analytical THO basis

## Harmonic Oscillator basis

#### HO vs THO:

$$\phi(s) \longmapsto e^{-\left(\frac{s}{b}\right)^2} \implies \phi[s(r)] \longmapsto e^{-\frac{\gamma^2}{2b^2}r}$$

- Correct asymptotic behaviour for bound states.
- Range controlled by the parameters of the LST.

#### Analytic LST from Karataglidis et al., PRC71,064601(2005)

$$s(r) = rac{1}{\sqrt{2}b} \left[ rac{1}{\left(rac{1}{r}
ight)^m + \left(rac{1}{\gamma\sqrt{r}}
ight)^m} 
ight]^rac{1}{m}$$

E >

General PS method The analytical THO basis

# THO parameters

- b is treated as a variational parameter to minimize g.s. energy
- Then  $\frac{\gamma}{b}$  is related to the  $k_{max}$ :

$$\frac{\gamma}{b} = \sqrt{2k_{max}}$$



J.A. Lay et al.

Continuum structures with a PS basis

General PS method The analytical THO basis

## Convergence in HO vs. THO with deuteron



**!!** Not influenced by the continuum

프 + + 프 +

General PS method The analytical THO basis

# Convergence in HO vs. THO with deuteron

$$B(E1) \propto \sum_{n=1}^{N} \left| \langle \varphi_{n,\ell}^{(N)} || \mathcal{M}(E1) || \varphi_{g.s.} \rangle \right|^2 \quad \alpha \equiv \frac{8\pi}{9} \int d\varepsilon \frac{1}{(\varepsilon - \varepsilon_{g.s.})} \frac{dB(E1)}{d\varepsilon}$$



J.A. Lay et al.

지 크 레 프

General PS method The analytical THO basis

# THO with <sup>6</sup>He

#### Improved Di-neutron model

 <sup>6</sup>He ≈ 2n-α Moro *et al.*, PRC75, 064607 (2007)



◆母 > < E > < E > E = のQQ

General PS method The analytical THO basis

## **Electric Transition Probabilities**



M. Rodríguez-Gallardo et al., PRC77(2008)064609

General PS method The analytical THO basis

# **Electric Transition Probabilities**

$$\frac{dB(E\lambda)}{d\varepsilon} \propto \left| \sum_{n=1}^{N} \langle \varphi_{\ell}(k) | \varphi_{n,\ell}^{(N)} \rangle \langle \varphi_{n,\ell}^{(N)} | | \mathcal{M}(E\lambda) | | \varphi_{g.s.} \rangle \right|^{2}$$



Э

General PS method The analytical THO basis

## Treatment of Resonances

for N not too large, resonances tend to concentrate 1-2 eigenstates



<sup>6</sup>He+<sup>208</sup>Pb @ 240 MeV/u <sup>6</sup>He+<sup>12</sup>C @ 240 MeV/u <sup>11</sup>Be+<sup>12</sup>C @ 67 MeV/u

<sup>6</sup>He+<sup>208</sup>Pb,<sup>12</sup>C @ 240 MeV/u



• Coulomb Excitation • Nuclear Interaction T. Aumann *et al.* PRC 59, 1252 (1999)

프 🖂 🗧 프

<sup>6</sup>He+<sup>208</sup>Pb @ 240 MeV/u <sup>6</sup>He+<sup>12</sup>C @ 240 MeV/u <sup>11</sup>Be+<sup>12</sup>C @ 67 MeV/u

<sup>6</sup>He+<sup>208</sup>Pb @ 240 MeV/u

# CDCC calculations

#### Potentials involved

- 2n-α potential from di-neutron model Moro *et al.*, PRC75, 064607 (2007)
- 2 α-<sup>208</sup>Pb

Khoa et al., PRC59, 1252 (2002)

In-<sup>208</sup>Pb folding potential from n-<sup>208</sup>Pb potential

· 《 문 》 · 로 》 · 로 남 · 이 오 아

<sup>6</sup>He+<sup>208</sup>Pb @ 240 MeV/u <sup>6</sup>He+<sup>12</sup>C @ 240 MeV/u <sup>11</sup>Be+<sup>12</sup>C @ 67 MeV/u

## From T. Aumann et al.



Energy distribution dominated by (Coulomb) coupling to dipole states

<sup>6</sup>He+<sup>208</sup>Pb @ 240 MeV/u <sup>6</sup>He+<sup>12</sup>C @ 240 MeV/u <sup>11</sup>Be+<sup>12</sup>C @ 67 MeV/u

# $^{6}\text{He}^{+12}\text{C}$ @ 240 MeV/u



- $\bullet$  Low energy dominated by coupling to  $2^+$  resonance
- High energy *s*,*p*,*d* background

A ≥

ミト ミョ りへぐ

Motivation <sup>6</sup>He+ PS discretization method <sup>6</sup>He+ Application to reactions <sup>11</sup>Be-

<sup>6</sup>He+<sup>208</sup>Pb @ 240 MeV/u <sup>6</sup>He+<sup>12</sup>C @ 240 MeV/u <sup>11</sup>Be+<sup>12</sup>C @ 67 MeV/u



• Destructive interference with the Coulomb part

<sup>6</sup>He+<sup>208</sup>Pb @ 240 MeV/u <sup>6</sup>He+<sup>12</sup>C @ 240 MeV/u <sup>11</sup>Be+<sup>12</sup>C @ 67 MeV/u

# $^{11}Be+^{12}C @ 67 MeV/nucleon$



## **!!** contribution of ${}^{10}$ Be in its $1^{st}$ excited state $2^+$

<sup>6</sup>He+<sup>208</sup>Pb @ 240 MeV/u <sup>6</sup>He+<sup>12</sup>C @ 240 MeV/u <sup>11</sup>Be+<sup>12</sup>C @ 67 MeV/u

 $^{11}Be+^{12}C @ 67 MeV/nucleon$ 

RIKEN: N. Fukuda et al., Phys. Rev. C70, 054606 (2004)







#### Only 1 eigenstate vs. 15 bins

- $\Rightarrow$  J. Phys. (London) G31, S1881 (2005)
- $\Rightarrow$  Phys. Rev. C82, 024605 (2010)

# Conclusions

### THO PS method

Provides a suitable discrete description of the continuum.

#### Dealing with Resonances

Natural and accurate treatment of narrow resonances.

#### Next Step

Generalise the PS method to (halo) two-body nuclei with deformed core:  $^{11}\text{Be},\,^{19}\text{C}...$ 

# Phase-shifts integral formula

### Hazi and Taylor Formula, PRA1,1109 (1970)

$$\tan \delta_{\ell}(k) = -\frac{\int_{0}^{\infty} u_{\ell}(k,r)[E-H]f(r)F_{\ell}(kr)dr}{\int_{0}^{\infty} u_{\ell}(k,r)[E-H]f(r)G_{\ell}(kr)dr}$$

(1)

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● ● ●

# Calculating energy distribution of $B(E\lambda)$ with PS

For B(E
$$\lambda$$
):  
•  $\frac{dB(E\lambda)}{d\varepsilon}\Big|_{\varepsilon=\varepsilon_n} \simeq \frac{1}{\Delta_n} \left|\langle \varphi_{n,\ell}^{(N)} || \mathcal{M}(E\lambda) || \varphi_{g.s.} \rangle\right|^2$   
•  $\frac{dB(E\lambda)}{d\varepsilon} \simeq \frac{\mu_{bc}k}{(2\pi)^3\hbar^2} \left|\sum_{n=1}^N \langle \varphi_\ell(k) | \varphi_{n,\ell}^{(N)} \rangle \langle \varphi_{n,\ell}^{(N)} || \mathcal{M}(E\lambda) || \varphi_{g.s.} \rangle\right|^2$ 

$$\Delta_n = \frac{\varepsilon_{n+1} - \varepsilon_{n-1}}{2}$$

ミト ▲ ミト 三 日 つ Q ()

# Sum Rules

For B(E
$$\lambda$$
):  

$$B(E\lambda) = \int d\varepsilon \frac{dB}{d\varepsilon} = \frac{2J_f + 1}{2J_i + 1} (D_{J_i, J_f}^{(\lambda)})^2 \langle \varphi_{\text{g.s.}} | r^{2\lambda} | \varphi_{\text{g.s.}} \rangle \quad (2)$$

# <sup>6</sup>He+<sup>208</sup>Pb @ 240 MeV/u

## 2n-<sup>208</sup>Pb folding potential

$$U(\vec{R}) = \int d\vec{r} \rho_{nn}(r) \left( V_{n-208Pb}(\vec{R} + \frac{1}{2}\vec{r}) + V_{n-208Pb}(\vec{R} - \frac{1}{2}\vec{r}) \right)$$

 $\rho_{\mathit{nn}}$  obtained from Three-Body model of  $^{6}\mathrm{He}$ 



# THO with <sup>6</sup>He



J.A. Lay et al. Continuum structures with a PS basis

## Energy distribution of pseudo-states

Density of states

$$ho^{(N)}(k) = \sum_{n=1}^{N} \langle \varphi_{\ell}(k) | \varphi_{n,\ell}^{(N)} \rangle$$



J.A. Lay et al. Continuum structures with a PS basis

-