SPECTROSCOPIC FACTORS AND TRANSVERSE-LONGITUDINAL ASYMMETRY FROM (e,e'p) EXPERIMENTS IN ¹⁶O, ¹²C, and ²⁰⁸Pb

J. L. Herraiz¹ y J. M. Udías¹

Grupo de Física Nuclear, Facultad de Ciencias Físicas, Univ. Complutense de Madrid. Av. Complutense s/n, 28040, Madrid. Tfno y Fax: 913934484, joaquin@nuclear.fis.ucm.es

Estructura Nuclear

Experimental coincidence cross section and the transverse-longitudinal asymmetry A_{TL} have been obtained in experimental Hall A of the Thomas Jefferson National Accelerator Facility (JLAB) for the quasielastic (e,e'p) reaction in ¹⁶O, ¹²C, and ²⁰⁸Pb in constant *q*- ω kinematics.

The first of these experiments, E00-102 [1], performed in the fall of 2001 using a waterfall (H₂0) target, measured the ¹⁶O(e,e'p) reaction in quasielastic kinematics at Q^2 =0.90 (GeV/c)² over one of the largest ranges of missing momentum ever explored with unprecedented statistical accuracy. In this work, results from proton knock-out from the p_{1/2} shell of ¹⁶O in the p_{miss} range [-350,350] MeV/c are shown. The measured experimental data are in agreement with a previous JLAB experiment (E89-003), performed at slightly lower Q^2 . The measured cross sections and asymmetry A_{TL} have been compared with both Distorted Wave Impulse Approximation (DWIA) calculations with relativistic and non-relativistic spinors. Spectroscopic factors of 0.71 ± 0.05 (p_{1/2} shell) were obtained for both models. A_{TL} measurements favor the relativistic DWIA calculation. The excellent agreement with the data is interpreted as a great success for the fully relativistic Impulse Approximation. Further, these data constitute compelling experimental evidence for the need to modify the structure of spinors that describe nucleons bound in nuclei to account for relativistic dynamical effects.

The second experiment, E06-007 [2], was performed in the spring of 2007 using three-foil C+Pb+C and C+Bi+C targets. Additional measurements on a single carbon target foil were performed allowing for the study of the nuclear structure of ¹²C. In this work, results from the knockout of protons from the $p_{3/2}$ shell of ¹²C and the valence states of ²⁰⁸Pb in the p_{miss} range [-350,350] MeV/c are shown.

Carbon results are in good agreement with results from previous experiments. The

experimental cross sections and A_{TL} asymmetry have been compared with Monte Carlo simulations based on DWIA calculations with both relativistic and non-relativistic spinor structure. The spectroscopic factor obtained for the $p_{3/2}$ shells in 12 C is 0.85 ± 0.05 for the relativistic DWIA and 0.81 ± 0.05 for the non-relativistic DWIA. The A_{TL} measurements for the $p_{3/2}$ shell in 12 C are in agreement with both relativistic and non-relativistic simulations. This was expected and may be interpreted as a further successful prediction of the relativistic model, as dynamical relativistic effects are less evident in the $p_{3/2}$ shell than in the $p_{1/2}$ shell.

²⁰⁸Pb(e,e'p) data were obtained at different and more complete kinematics than in previous experiments. The A_{TL} asymmetry in ²⁰⁸Pb was measured for the first time. The spectroscopic factors for the valence states of ²⁰⁸Pb have been obtained from a (E_{miss} , p_{miss}) fitting procedure obtained from relativistic and non-relativistic DWIA calculations. These spectroscopic factors are in agreement with other measurements performed at Saclay and NIKHEF-K. A_{TL} measurements for the aggregate of the valence states favor in the fully relativistic DWIA predictions.

Further (e,e'p) data were measured at three different Q^2 values, looking for a possible dependence of the spectroscopic factors on Q^2 . The results of this analysis for both ¹²C and ²⁰⁸Pb have found no signs of such a dependence for $0.8 < Q^2 < 2$ (GeV/c)² to the level of 5% statistical accuracy and with reduced systematic uncertainties. This is the first time that this has been confirmed in a heavy nucleus.

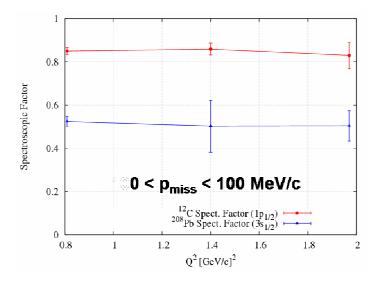


Fig. 1 - Spectroscopic Factors for the $p_{1/2}$ shell of ¹²C and $3s_{1/2}$ of ²⁰⁸Pb at different Q² values. No significant dependence of the spectroscopic factors with Q² has been found.

http://hallaweb.jlab.org/experiment/E00-102/e00102/e00102.html
http://hallaweb.jlab.org/experiment/E06-007/