Fast timing meeting Brighton 11 Jan 2011

- Intro Fast timing measurements
- Status NUSTAR and DESPEC
- Beta detectors
- Timing detectors and photosensors
- DAQ Electronics
- Calibration, software, analysis
- DESPEC array
- Planning

✓ Absolute transition matrix elements

$$B(X\lambda;I_i \to I_f) = (2I_i + 1)^{-1} |\langle \psi_f || M(X\lambda) || \psi_i \rangle|^2$$
$$B(X\lambda;I_i \to I_f) = \frac{L[(2L+1)!!]^2 \hbar}{8\pi(L+1)} \left(\frac{\hbar c}{E_\gamma}\right)^{2L+1} P_\gamma(X\lambda;I_i \to I_f)$$

- \rightarrow Single particle estimates
 - Shell evolution
 - Mirror symmetries
- \rightarrow B(E2) values
 - Deformation of even-even nuclei
 - Collective modes (spin dependence), shape coexistence...
- \rightarrow Systematics

Nuclear half lives

\rightarrow Coulomb excitation

- Requires extra information / assumptions
- \rightarrow Moments

Lifetimes

HPGe: BRANCH SELECTION High energy resolution Poor time response $\begin{array}{l} \textbf{Plastic } \beta \textbf{ scintillator: TIMING} \\ \textbf{Fast response} \\ \textbf{Efficient start detector} \end{array}$

LaBr₃(Ce)/BaF₂: TIMING Fast response γ-detectors

Poor energy resolution Stop detectors

Fast timing collaboration meeting 11 Jan 2011

L.M. Fraile

 β -BaF₂-HPGe / β -LaBr₃-HPGe: lifetime measurements

De-convolution of slope • Slope = $T_{1/2}$ • Range: 30 ps to 30 ns (or longer) $f_{0}^{f_{0}} = \int_{Time}^{T=0} \frac{1}{Time} \frac{1$

β–HPGe–HPGe: coincidences, level scheme

ATD $\beta\gamma\gamma$ (t) studies

L.M. Fraile

Example - Nuclear chart below ⁶⁸Ni

Prospects: nuclei below ⁶⁸Ni

^{64,66}Fe, 2⁺ states (most intense transitions), M. Hannawald et al., PRL 82, 1391 (1999) S. Lunardi et al., PRC 76, 034303 (2007) 68 Fe E(2⁺) = 522 keV, J.M. Daugas et al., FINUSTAR, AIP Conf Proc 831, 427 (2006) L.M. Fraile

Prospects: Nuclear chart below 68Ni

															l	-					
		Cu 57	Cu 58	Cu 59	Cu 60	Cu 61	Cu 62	Cu 63	Cu 64	Cu 65	Cu 66	Cu 67	Cu 68	Cu 69	Cu 70	Cu 71	Cu 72	Cu 73	Cu 74	Cu 75	
π (0f7/2) ^{Z-20}	28	Ni 56	Ni 57	Ni 58	Ni 59	Ni 60	Ni 61	Ni 62	Ni 63	Ni 64	Ni 65	Ni 66	Ni 67	Ni 68	Ni 69	Ni 70	Ni 71	Ni 72	Ni 73	Ni 74	
		Co 55	Co 56	Co 57	Co 58	Co 59	Co 60	Co 61	Co 62	Co 63	Co 64	Co 65	Co 66	Co 67	Co 68	Co 69	Co 70	Co 71	Co 72	Co 73	
	26	Fe 54	Fe 55	Fe 56	Fe 57	Fe 58	Fe 59	Fe 60	Fe 61	Fe 62	Fe 63	Fe 64	Fe 65	Fe 66	Fe 67	Fe 68	Fe 69	Fe 70	Fe 71	Fe 72	
		Mn 53	Mn 54	Mn 55	Mn 56	Mn 57	Mn 58	Mn 59	Mn 60	Mn 61	Mn 62	Mn 63	Mn 64	Mn 65	Mn 66	Mn 67	Mn 68	Mn 69		46	
	24	Cr 52	Cr 53	Cr 54	Cr 55	Cr 56	Cr 57	Cr 58	Cr 59	Cr 60	Cr 61	Cr 62	Cr 63	Cr 64	Cr 65	Cr 66	Cr 67	44			
		V 51	V 52	V 53	V 54	V 55	V 56	V 57	V 58	V 59	V 60	V 61	V 62	V 63	V 64	42		-		N	~
	22	Ti 50	Ti 51	Ti 52	Ті 53	Ti 54	Ti 55	Ti 56	Ti 57	Ti 58	Ті 59	Ті 60		40	1			748			
,		Sc 49	Sc Sc<																		
core		28		30		32		34		36		-								S	
⁴⁸ Ca	⁴⁸ Ca	<i>core</i> $v(1p_{3/2}, 0f_{5/2}, 1p_{1/2})^{N-28}$												\rightarrow	∨ (0g _{9/2}) ^{N-40}						

- ✓ Nuclear structure just below Z=28 shell closure → $\pi (f_{7/2})^{Z=20}$
- ✓ Filling **v** ($p_{3/2}$, $f_{5/2}$, $p_{1/2}$) and **v** ($g_{9/2}$) orbitals
 - \rightarrow Understanding the effect of increased N/Z ratio
 - \rightarrow N=40 subshell ?
 - \rightarrow Evolution of collectivity: deformation
 - \rightarrow Isomers
- ✓ Transition rates
 - \rightarrow Better constraint to shell model calculations
 - \rightarrow Probe residual interaction
- ✓ Systematics

Experiment IS474 ISOLDE

IS474 Aug 2010

L.M. Fraile

Pre-analysis ⁶³Mn decay [before Sep run]

L.M. Fraile

UCM

Pre-analysis ⁶³Mn decay

Transitions in ⁶³Fe

- ✓ 357 keV level, $T_{1/2} = 110$ ps
 - \rightarrow 357 keV transition (neglecting conversion coefficient)
 - E1 not expected: 1/2⁻, 3/2⁻, 5/2⁻ states or 9/2⁺ (long lifetime)
 - B(E2)~60 W.u. (too high)
 - $B(\underline{M1})=0.0079 \ \mu_N^2$
- ✓ 451 keV level, $T_{1/2} = 780$ ps
 - \rightarrow 93 keV transition
 - Similar for E1 and E2
 - $B(\underline{M1})=0.028 \ \mu_N^2$
 - \rightarrow 451 keV transition
 - $B(E1)=3.2x10^{-6}e^{2}fm^{2}$ (low)
 - B(M1)= $2.9 \times 10^{-4} \mu_N^2$ (low)
 - B(<u>E2</u>)=1.4 W.u. (nicely fits systematics)

✓ Two dipole M1 and one E2 transition → Either $1/2^-$, $3/2^-$, $5/2^-$

- \rightarrow or 5/2⁻, 3/2⁻, 1/2⁻
- ✓ Beta feeding from $5/2^-$
 - \rightarrow 357 and 451 keV
 - \rightarrow not to ground state
- ✓ Similar to ⁵⁷Fe

1/2⁻ is the ground state
3/2⁻ is the 357 keV state
5/2⁻ is the 451 keV state

Need more statistics to elucidate structure at higher E Similar situation expected in odd-A Fe isotopes Role of the 9/2⁺ orbital

New data from ⁵⁹⁻⁶⁶Mn decay from Aug-Sep 2010