Oferta de traba	Oferta de trabajos dirigidos en la Universidad Complutense de Madrid					
Supervisor/a	Correo electrónico	Título	Resumen	Observaciones		
Daniel Sánchez Parcerisa Mailyn Pérez Liva	dsparcerisa @ucm.es mailyn01@u cm.es	Procesado de imágenes de microscopía mediante inteligencia artificial (IA)	En experimentos de radiobiología llevados a cabo en el grupo se generan gran cantidad de imágenes de muestras biológicas, tanto de microscopía óptica en ensayos de inmunofluorescencia, como de otros métodos que permiten la visualización y el análisis detallado de estructuras celulares y moleculares. Una vez generadas, estas imágenes requieren un proceso de postprocesado para extraer información relevante y obtener resultados precisos. Este postprocesado puede realizarse de manera manual, lo cual es laborioso y sujeto a variaciones subjetivas, o mediante algoritmos de análisis de imágenes, que proporcionan un enfoque más sistemático y reproducible. No obstante, los métodos tradicionales de postprocesado, tanto manuales como algorítmicos, presentan ciertas limitaciones en términos de eficiencia y precisión. En este contexto, la aplicación de técnicas avanzadas de inteligencia artificial (IA) ofrece un potencial considerable para optimizar este proceso	Recomendado, pero no necesario: - Procesado de imágenes con MATLAB o ImageJ/ FIJI Nociones de conceptos básicos de aprendizaje automático / IA.		
Daniel Sánchez Parcerisa Paula Ibáñez García	dsparcerisa @ucm.es pbibanez@u cm.es	Estudio metodológico de la dosimetría con películas radiocrómicas para protonterapia	Las películas radiocrómicas son dispositivos dosimétricos pasivos que se oscurecen al recibir una determinada dosis. Tras ser expuestas, se escanean con un escáner de alta resolución y su nivel de oscurecimiento se compara con el de una calibración previa para determinar la dosis recibida. Cuando se usan para protonterapia, su eficacia relativa decae con la energía de los protones (Sanchez Parcerisa 2021), por lo que es necesario realizar correcciones. Estas correcciones se han estudiado para las películas EBT2 y EBT3, pero no existen medidas experimentales para las nuevas películas EBT4 ni para las específicas de alta dosis, EBTXD. Comparación de estudios metodológicos con distintos escáneres y programas de escaneo. Simulación Monte Carlo con TOPAS. Exposición de las películas en fuente calibrada en hospital. Exposición de las películas en haz de protones de baja energía	Se utiliza MATLAB para el tratamiento de datos. Bibliografía: Sanchez-Parcerisa, D., Sanz-Garcia, I., Ibanez, P., ,; Udias, J. M. (2021). Radiochromic film dosimetry for protons up to 10 MeV with EBT2, EBT3 and unlaminated EBT3 films. Physics in Medicine & Biology, 66(11), 115006.		

	T	1		
			en el Centro de Microanálisis de Materiales (CMAM).	
			Comparación del modelo de corrección y actualización para	
			nuevos tipos de películas.	
Paula Ibáñez	pbibanez@u	Puesta a punto de	En el marco de la colaboración entre el Grupo de Física Nuclear	
García	cm.es	un irradiador	(GFN) y la empresa SEDECAL (https://www.sedecal.com/), se	
Mailyn Pérez	mailyn01@u	FLASH con sistema	está desarrollando un irradiador FLASH para pequeños animales	
Liva	cm.es	de imagen	con un sistema de imagen molecular integrado. La terapia FLASH	
		molecular integrado	es uno de los campos más prometedores en radioterapia, al	
		y primeras pruebas	reducir los efectos secundarios en el tejido sano manteniendo el	
			control tumoral.	
			En este Trabajo Fin de Máster se llevará a cabo la optimización	
			final del sistema de irradiación mediante simulaciones Monte	
			Carlo y caracterización dosimétrica, junto con el test del sistema	
			de imagen basado en ultrasonidos ultrarrápidos y fotoacústica. La	
			combinación de irradiación e imagen permitirá observar cambios	
			metabólicos en el tejido, lo que contribuirá a una mejor	
			comprensión de los mecanismos de la terapia FLASH.	
			Finalmente, se realizarán las primeras pruebas en embriones de	
			pollo para validar el sistema.	
Mailyn Pérez	mailyn01@u	Cupar rapaluaión u		Conocimientos básicos de
Liva		Super-resolución y cuantificación	Este trabajo tiene como objetivo mejorar la calidad y el valor	
Paula Ibáñez	cm.es		cuantitativo de las imágenes dinámicas de PET-FDG cardíaco	programación en Python y/o Matlab
	pbibanez@u	cinética en	mediante el uso de redes neuronales profundas. La baja	เพลแลม
García	<u>cm.es</u>	imágenes	resolución espacial y temporal de la PET limita la estimación	
		dinámicas de PET-	precisa de parámetros cinéticos como K ₁ , k ₂ y k ₃ , esenciales para	
		FDG cardíaco	el análisis farmacocinético del metabolismo miocárdico. En este	
		mediante redes	proyecto se empleará un modelo de super-resolución basado en	
		neuronales	aprendizaje profundo capaz de recuperar detalles espaciales	
			finos y reducir el ruido en secuencias dinámicas, mejorando así la	
			precisión en la cuantificación paramétrica y en la interpretación	
			fisiológica de los procesos metabólicos cardíacos.	
			Se emplearán datos dinámicos de PET-FDG cardíaco simulados	
			y experimentales para entrenar redes neuronales convolucionales	
			orientadas a la super-resolución temporal y espacial. El modelo	
			integrará información a priori de movimiento cardíaco obtenida	
			mediante ultrasonidos ultrarrápidos registrados en tiempo y	
			espacio, con el fin de corregir artefactos y mejorar la coherencia	

		1		
			temporal. Finalmente, se validará frente a reconstrucciones	
			estándar mediante la estimación de parámetros cinéticos de dos	
			compartimentos, evaluando la mejora en la precisión y el sesgo	
			de la cuantificación del metabolismo miocárdico.	
Andrés Illana	andres.illana	Nuclear	The accelerator laboratory (JYFL) is a unique research	Programming skills (C++) and
Sisón	@ucm.es	spectroscopy	environment of the University of Jyväskylä (Finland) conducting	enrolling in the signature
		around 80Zr	world-class research on basic natural phenomena, and it is part of	"Técnicas experimentales
			the EUROpean Laboratories for Accelerator Based Science	avanzadas en física nuclear" will
			(EURO-LABS) consortium in Europe. Presently the laboratory	be advantageous.
			hosts three accelerators and several research groups with an	
			extend variety of state-of-the-art research instrumentation. In	
			particular, the Nuclear Spectroscopy group is conducting	
			fundamental research in collaboration with different groups in	
			Europe and abroad. The group utilizes in-beam gamma-ray and	
			electron spectroscopy in conjunction with mass separators to	
			shed more light on the nuclear structure of exotic nuclei, mainly	
			along the proton drip line and in the region of heavy elements.	
			The group has for this purpose a gamma-ray detector array (the	
			Jurogam3 array), 2 electron spectrometers (SAGE and SPEDE), 2	
			mass separators (RITU and MARA), and several ancillary	
			detectors. Currently, the GFN (UCM) is expanding its activities to	
			in-beam studies in different facilities in Europe. The master	
			research project will consist in analyzing a portion of the recent	
			data of a fusion-evaporation experiment in the region situated in	
			the "north-east" of the ⁸⁰ Zr region. This experiment aimed to	
			extend the in-beam gamma-ray spectroscopy data known up to	
			date in this region. For this purpose, the experiment combined the	
			Jurogam3 detector array for in-beam studies, with the new MARA	
			separator, and the charge-particle vetoed JYUTube.	
José Manuel	<u>jmudiasm@u</u>	Evaluación de	Trabajo experimental en laboratorio para caracterización y puesta	Se requiere disponibilidad para
Udías	<u>cm.es</u>	nuevos materiales	a punto de instrumentación de última generación. El objetivo es la	dedicar suficiente tiempo a
Luis Mario Fraile	<u>Imfraile@uc</u>	centelleadores para	medida de la respuesta en energía y tiempo materiales de	realizar medidas en el laboratorio
	<u>m.es</u>	detección de rayos	diversos tipos de centelladores (inorgánicos, plásticos, fibras	de investigación del grupo.
		gamma y partículas	centelleantes) para su aplicación a la detección de radiación	Existe la posibilidad de
		cargadas	gamma y partículas cargadas, con aplicaciones en experimentos	financiación y de continuar la
			de espectroscopía, reacciones nucleares a baja energía, medida	

José Manuel Udías Luis Mario Fraile	jmudiasm@u cm.es Imfraile@uc m.es	Algoritmos de procesado digital de pulsos para medidas de tiempos con centelladores rápidos	de tiempos de estados excitados, monitorización de rango en protonterapia y otros. Esta investigación se realiza en el marco del proyecto TAU-PRTR: Tecnologías Avanzadas para la Exploración del Universo y sus Componentes . Financiado por el Gobierno de España y la UE, Fondos NextGeneration EU y PRTR. Los detectores de centelleo son dispositivos que juegan un papel fundamental en una amplia gama de áreas de investigación, como la imagen médica o los estudios experimentales en estructura nuclear. Una de las propiedades fundamentales es la buena respuesta temporal que proporcionan. Con el uso cada vez más generalizado de sistemas totalmente digitales para el muestreo de pulsos se hace necesario un estudio sistemático de la respuesta y capacidad de proporcionar buena resolución temporal de los sistemas disponibles en el mercado, así como el desarrollo de algoritmos digitales avanzados para la medida precisa de tiempos con detectores de centelleo. El trabajo de fin de máster tratará de establecer los criterios necesarios para alcanzar la buena resolución temporal con sistemas digitales en función de sus parámetros fundamentales (tasa de muestreo, ancho de banda, resolución vertical, etc.). Además se pondrán a punto algoritmos totalmente digitales para medidas de tiempo y se compararán resultados de medidas experimentales usando los algoritmos propuestos con las técnicas tradicionales. Esta investigación se realiza en el marco del proyecto TAU-PRTR: Tecnologías Avanzadas para la Exploración del Universo y sus Componentes . Financiado por el Gobierno de España y la UE, Fondos NextGeneration EU y PRTR.	investigación realizando una tesis doctoral. Se requiere disponibilidad para dedicar suficiente tiempo a realizar medidas en el laboratorio de investigación del grupo. Existe la posibilidad de financiación y de continuar la investigación realizando una tesis doctoral.
José Manuel Udías	jmudiasm@u cm.es	Técnicas de procesado de datos y reconstrucción de imagen nuclear	Se desarrollarán nuevas técnicas de procesado de datos y reconstrucción de imagen aplicados a datos reales de escáneres PET clínicos y preclínicos. Posibilidad de financiación.	
José Manuel Udías	<u>imudiasm@u</u> <u>cm.es</u>	Mejora en el diseño de detectores y escáneres s para	Se mejorarán las correcciones aplicadas a las imágenes nucleares	

		medicina nuclear mediante métodos Monte Carlo		
José Manuel Udías	jmudiasm@u cm.es	Dispersión de leptones por núcleos	¿Por qué el Universo está hecho de materia en vez de materia y antimateria en iguales proporciones? ¿Cuál es el origen y naturaleza de la materia oscura? Las respuestas a éstas y otras cuestiones fundamentales podrían estar en las oscilaciones de neutrinos. Este fenómeno, que evidencia que los neutrinos tienen masa, ha abierto la puerta a Física más allá del Modelo Estándar y ha situado el estudio de estas partículas en la actual frontera del conocimiento. DUNE (https://www.dunescience.org/) e Hyperkamiokande (http://www.hyperk.org/) son los dos megaproyectos que mejor representan los planes de la comunidad a medio y largo plazo.	
			En estos experimentos de oscilaciones de neutrinos es esencial ser capaz de modelar con precisión la interacción entre el neutrino (proyectil) y el núcleo blanco que forma el detector, ya sea oxígeno (agua), carbono (aceites) y argon (detectores de argon líquido). En este trabajo se estudiarán diferentes modelos teóricos de interacción leptón-núcleo para diferentes canales de reacción: canal cuasielástico y/o de producción de piones. A partir de la comparación con datos experimentales se persigue seguir avanzando en el conocimiento y modelado de la respuesta nuclear a la interacción con leptones.	
Joaquín López Herraiz	jlopezhe@uc m.es	Integración de Redes Neuronales en Detectores de Radiación	Se busca usar técnicas modernas de Edge Computing para integrar modelos de Inteligencia Artificial (IA) en detectores de radiación, como los utilizados en imagen médica, de manera que puedan realizar en el propio detector un primer análisis de las señales recibidas. Esto puede permitir una mayor tasa de cuentas y/o mejorar la calidad de los datos medidos. Se trabajará con diversos modelos de IA, buscando reducir su coste computacional para hacerlos rápidos y de bajo consumo, algo necesario para su uso práctico en detectores. La validación se realizará mediante simulaciones y datos reales en distintos escenarios.	Se busca tener disposición a aprender sobre simulaciones, redes neuronales y el análisis de datos reales y simulaciones. Se recomienda conocimientos de programación (Python).

Ιοραμία Ι όπος	ilonozho@uo	Anligación do	Se emplearán herramientas de TinyML, como Edge Impulse, para ejecutar en un microprocesador modelos de IA de clasificación de los eventos detectados. Esto permitirá familiarizarse con dichos modelos, analizar sus capacidades y limitaciones, y determinar el hardware mínimo necesario para obtener un buen rendimiento. Posteriormente, se evaluará el sistema implementado con datos simulados y/o reales de distintos experimentos con fuentes de 22Na y 60Co, con el objetivo de verificar el progreso y la eficacia del enfoque desarrollado. Se busca usar técnicas modernas de Machine Learning para	Disposición a aprondor sobro
Joaquín López Herraiz	jlopezhe@uc m.es	Aplicación de Redes Neuronales para el modelado del transporte de radiación	obtener un modelo rápido y preciso del rango de partículas cargadas (positrones, protones) en medios heterogéneos. La red neuronal se entrena con simulaciones Monte Carlo muy realistas, y una vez entrenada se evalúa tanto con datos simulados como reales. Se considerarán aplicaciones en imagen médica nuclear y protonterapia.	Disposición a aprender sobre Simulaciones y Redes Neuronales
Joaquín López Herraiz	jlopezhe@uc m.es	Advance analysis of PET data using multiple coincidences	Los escáneres de tomografía por emisión de positrones (PET) se basan fundamentalmente en la detección en coincidencia temporal de los dos pares de rayos gamma que se generan en la aniquilación de los positrones emitidos por radionúcleos como el Flúor-18. Éstos radionúcleos se colocan en moléculas de interés, y permiten obtener imágenes de su biodistribución. Un análisis más detallado de las detecciones que se realizan en un escáner PET muestra que no sólo hay coincidencias de dos rayos gamma, sino que también existen detecciones simultáneas de tres o más rayos gamma. El correcto tratamiento de estos casos puede mejorar la calidad de las imágenes PET.	

Oferta de trabajos dirigidos en el CIEMAT					
Supervisor/a	Correo	Título	Resumen	Observaciones	
	electrónico				
Diana Navas	diana.navas@	LiquidO: Una nueva	Las incógnitas abiertas en física de neutrinos exigen enormes		
Nicolás	ciemat.es	tecnología para la	detectores (>kton), con gran resolución energética y capaces de		
	mc.palomares	detección de	distinguir las partículas resultantes de la interacción del neutrino. Un		
	@ciemat.es	neutrinos	detector con estas características, basado en un diseño simple y no		

Cormon			muy costago aumondría un avendo anormo novo esta como	
Carmen			muy costoso, supondría un avance enorme para este campo.	
Palomares			LiquidO es una nueva tecnología basada en el uso de líquido	
Espiga			centellador opaco y fibras centelladoras, capaz de identificar	
			neutrinos de baja energía y determinar su punto de interacción con	
			alta precisión, resolviendo las limitaciones del método tradicional de	
			detección (centellador transparente). El trabajo propuesto consiste	
			en el desarrollo de simulaciones Monte Carlo para el primer	
			experimento que se está llevando a cabo con la tecnología LiquidO:	
			un detector de 10 toneladas cuyo objetivo principal es monitorizar un	
			reactor nuclear utilizando por primera vez los neutrinos generados en	
			las reacciones de fisión. Este trabajo se desarrolla en el marco de	
			una colaboración internacional en la que participan institutos de	
			investigación y universidades de Francia, Gran Bretaña y Alemania.	
Edilberto	edi.sanchez@	Simulaciones	Turbulence is considered one of the key issues limiting energy and	Conocimientos de programación,
Sánchez			, , , , , , , , , , , , , , , , , , , ,	
	<u>ciemat.es</u>	girocinéticas	particle confinement in present magnetic confinement fusion devices.	preferiblemente FORTRAN
José Luis	joseluis.velasc	globales en	Nowadays, the study of turbulence in magnetized plasmas largely	(lenguajes en que está escrito
Velasco	<u>o@ciemat.es</u>	stellarators	relies on gyrokinetic theory [1]. This formalism, based on first	EUTERPE) y Python (para
			principles, makes plasma turbulence more tractable and permits the	diagnósticos de la salida del
			development of simulation codes. Nevertheless, the numerical	código)
			simulation of plasma instabilities and the turbulence they produce	Bibliografía:
			using gyrokinetic codes requires huge computational resources and	[1] P. Catto. Plasma Phys. 20
			is only possible using large supercomputers.	719-722 (1978).
				[2] R. Kleiber, et al. Computer
			This master's thesis proposal deals with the numerical simulation of	Physics Communications 295
			plasma instabilities and turbulence in stellarator devices employing	(2024) 109013
			the global gyrokinetic code EUTERPE [2], which allows the	[3]http://fusionsites.ciemat.es/picg
			simulation of the full radial domain. It continues previous work carried	klnf/
				[4]https://www.bsc.es/es/marenos
			out at the Laboratorio Nacional de Fusión, CIEMAT [3]. The project	trum/marenostrum-5.
			will include simulations in the Mare Nostrum-5 [4] and/or Pitagora [5]	[5]https://docs.hpc.cineca.it/hpc/pi
			supercomputers. The outcome of numerical simulations will	
			eventually be compared with experimental measurements from the	tagora.html
			stellarators TJ-II [6], operated at the Laboratorio Nacional de Fusión,	[6]http://www.fusion.ciemat.es/tj-
			in Madrid, and W7-X [7], the most advanced stellarator in the world,	ii-2/
			in operation at the Max Planck Institute für Plasmaphysik, in	[7]https://www.youtube.com/watc
			Greifswald, Germany.	h?v=u-fbBRAxJNk

Vicente	Vicente.pesud	Estudios de	El nivel de radón en laboratorios aubtorránces impores limitaciones	
			El nivel de radón en laboratorios subterráneos impone limitaciones	
Pesudo	<u>o@ciemat.es</u>	correlación del nivel	en la sensibilidad que los experimentos allí emplazados tienen a	
Roberto	roberto.santor	de radón en el	eventos raros. Estos niveles tienen patrones de estacionalidad y así	
Santorelli	elli@ciemat.es	Laboratorio	como otras variaciones de menor periodo cuya explicación se	
		Subterráneo de	supone correlacionada con la meteorología exterior. Esta causalidad,	
		Canfranc con datos	sin embargo, no ha sido establecida. Los cientos de metros de roca	
		de estaciones	actuan como un filtro mitigando y retrasando el impacto y estudios	
		meteorológicas	anteriores no tenían acceso a nuevos datos meteorológicos	
		colindantes usando	recolectados en las montañas cercanas al LSC. El/la estudiante	
		técnicas de	usará diferentes técnicas de inteligencia artificial (redes neuronales,	
		inteligencia	random forest, boosted decision trees y otras) para correlacionar los	
		artificial.	datos en superficie y los niveles de radón y otras variables	
			ambientales en el LSC.	
Roberto	Vicente.pesud	Estudio del fondo	La detección directa de la materia oscura es uno de los mayores	
Santorelli	o@ciemat.es	en detectores de	retos de la física actual. El hallazgo de partículas de materia oscura	
Vicente	roberto.santor	argón líquido para	en forma de WIMPs (Weakly Interacting Massive Particles) supondría	
Pesudo	elli@ciemat.es	la búsqueda de	un avance decisivo en la comprensión de los componentes	
		materia oscura.	fundamentales del Universo. Para superar los límites experimentales	
			vigentes, se requieren detectores de gran masa y con niveles de	
			fondo extremadamente bajos. El grupo de Materia Oscura del	
			CIEMAT participa en experimentos de referencia como DEAP-3600	
			(en operación en SNOLAB, Canadá) y DarkSide-20k (en	
			construcción en el Laboratorio del Gran Sasso, Italia), que empleará	
			50 toneladas de argón líquido para alcanzar una sensibilidad sin	
			precedentes. Un aspecto crucial para el éxito de estos experimentos	
			es la caracterización y comprensión del fondo intrínseco de los	
			detectores, generado por la radiactividad natural de los materiales,	
			del propio argón y del entorno subterráneo. El estudio de estos	
			fondos requiere una estrecha conexión entre física nuclear y física de	
			partículas, ya que las fuentes radiactivas (por ejemplo, isótopos	
			como Ar-39, Rn-222 y productos de las cadenas de uranio y torio)	
			producen señales que pueden imitar o enmascarar las interacciones	
			esperadas de las WIMPs. El objetivo del TFM es el estudio de estos	
			fondos, combinando medidas de caracterización, simulaciones	
			Monte Carlo y análisis de datos para estimar el nivel de fondo, la	
			sensibilidad del detector y sus incertidumbres. El trabajo	

José Manuel García Regaña Iván Calvo	jose.regana@ ciemat.es ivan.calvo@ci emat.es	Theory and simulation of stellarator plasma turbulence	proporcionará formación en física nuclear aplicada, técnicas de detección con argón líquido y métodos estadísticos avanzados, ofreciendo una excelente preparación para un doctorado en física de partículas, astrofísica o física nuclear experimental. Thermonuclear fusion and its success as a future energy source rely on achieving tolerable levels of heat transport losses from the confined plasma. In current experiments, these losses are largely attributed to turbulent processes associated with fluctuations of the plasma's electromagnetic fields, with characteristic spatial scales on the order of the Larmor radius of the plasma species. The theoretical framework used to study these fluctuations is gyrokinetic theory [1]. The quantitative evaluation of the transport driven by gyrokinetic turbulence is typically performed through numerical simulations on massively parallel computing platforms. For tokamaks, gyrokinetic codes are already mature and have been extensively validated against experiments. However, while tokamaks are axisymmetric (which reduces the dimensionality of the equations), stellarators are intrinsically three-dimensional, introducing additional challenges and, until recently, leading to slower progress in the field (see e.g. [2]). The goal of this master's thesis project is to investigate turbulence in stellarator plasmas using the modern, advanced gyrokinetic code stella [3]. The project will include applications to present-day stellarators such as W7-X (Greifswald, Germany) [4], LHD (Toki, Japan) [5], and TJ-II (Madrid, Spain) [6]. A strong interest in theory and numerical simulations is highly recommended for the candidate. Uno de los aspectos fundamentales en la evaluación de la seguridad	Bibliografía: [1] P. Catto, Plasma Phys. 20, 719 (1978) [2] P. Helander et al., Plasma Phys. Control. Fusion 54, 124009 (2012) [3] M. Barnes et al., J. Comput. Phys. 391, 365 (2019) [4] https://www.youtube.com/watch?v=u-fbBRAxJNk [5] http://www.lhd.nifs.ac.jp/en/home/lhd.html [6] http://fusionsites.ciemat.es/tj-ii Webpage:
Feria Márquez Carlos Aguado Basabe	@ciemat.es carlos.aguado @ciemat.es	códigos avanzados para el modelado termo-mecánico del combustible nuclear	del combustible nuclear es disponer de capacidades predictivas fiables sobre su comportamiento termo-mecánico ante las condiciones a las que puede estar sometido durante su operación en el reactor. En este sentido, los códigos de modelado termo-mecánico de barra de combustible son herramientas en continuo desarrollo y validación.	

			En la Unidad de Seguridad Nuclear del CIEMAT se utilizan tanto códigos clásicos, como FRAPCON/FRAPTRAN/FAST y TRANSURANUS, como el código avanzado OFFBEAT, que incorpora enfoques multiescala y multifísica. Parte del desarrollo y validación de OFFBEAT se está llevando a cabo dentro del proyecto europeo OperaHPC, en el que el CIEMAT participa activamente. En este contexto, el objetivo de este trabajo es continuar con la validación de los códigos mencionados mediante la simulación de experimentos realizados en reactores experimentales, de los cuales se dispone de datos de referencia para comparación. Como parte de la evaluación se incluirá la comparación entre códigos, así como un análisis de las incertidumbres asociadas a las predicciones obtenidas.	
José I. Crespo- Anadón	jcrespo@ciem at.es	Búsqueda de física más allá del Modelo Estándar con el experimento SBND de Fermilab con un haz de antineutrinos o con absorción del haz	Las anomalías observadas en experimentos de neutrinos de corta distancia y el mecanismo aún desconocido responsable de la masa del neutrino representan posibles indicios de la existencia de física más allá del Modelo Estándar. El experimento SBND, un detector de neutrinos de argón líquido situado a tan solo 110 metros del origen del Booster Neutrino Beam en Fermilab (EE. UU.), tiene entre sus principales objetivos la búsqueda de nueva física. SBND comenzó a tomar datos en 2024 con un haz de neutrinos. En este Trabajo de Fin de Máster se estudiará la sensibilidad del experimento a fenómenos más allá del Modelo Estándar cuando el haz opere en modo antineutrinos o en modo absorción, utilizando para ello la avanzada simulación Monte Carlo desarrollada para el experimento.	Análisis de datos y representación de resultados mediante lenguajes de programación como Python o C++/ROOT, en el ámbito de la Física de Partículas. Se recomienda haber cursado las asignaturas del máster Física Hadrónica e Interacciones Débiles. Referencia: SBND Collaboration, The Short-Baseline Near Detector at Fermilab, arXiv:2504.00245
Alberto Pérez de Rada Fiol y Trinitario Martínez Pérez	alberto.rada@ ciemat.es trino.martinez @ciemat.es	Caracterización del detector segmentado sTED para detección de neutrones rápidos	El trabajo propuesto se enmarca en la línea de investigación de caracterización de detectores para espectroscopía de neutrones desarrollada en el CIEMAT. El objetivo principal es estudiar la respuesta del detector segmentado sTED (Segmented Total Energy Detector) frente a neutrones rápidos en el rango de energías comprendido entre 1 y 25 MeV. Se busca determinar su función de luz y eficiencia de detección mediante medidas experimentales realizadas en el laboratorio	Conocimientos recomendados: • Fundamentos de física nuclear y detección de radiación. • Programación en C++ y análisis de datos con ROOT. • Uso básico de software Monte Carlo (Geant4).

			Neutrons For Science (NFS, GANIL), utilizando la técnica de tiempo	Bibliografía:
			de vuelo (TOF) con un haz de neutrones generado por la reacción de deuterones de 40 MeV sobre berilio.	V. Alcayne et al., Radiation Physics and Chemistry, 217,
			El estudiante participará en el análisis de los datos experimentales,	111525 (2024).
			aplicando técnicas de discriminación de forma de pulso (PSD) y	R. Brun, F. Rademakers, NIM A,
			comparando los resultados con simulaciones Monte Carlo	389, 81–86 (1997).
			empleando los códigos Geant4 y PHITS. El trabajo permitirá extraer	S. Agostinelli et al., NIM A, 506,
			parámetros de quenching y curvas de eficiencia, fundamentales para	250–303 (2003).
			el uso del sTED en medidas de secciones eficaces y espectros de	T. Sato et al., J. Nucl. Sci.
			neutrones.	Technol., 61, 127–138 (2024).
			İ	G. Dietze, H. Klein, PTB-ND-22,
			Los resultados obtenidos constituirán una contribución significativa a	Physikalisch-Technische
			una publicación científica en una revista de alto impacto en el ámbito de la instrumentación nuclear.	Bundesanstalt (1982).
			Tareas principales:	
			Análisis de señales digitalizadas mediante software de	
			procesamiento de pulsos.	1
			Aplicación de técnicas de discriminación de neutrones y rayos	
			gamma (PSD).	
			Extracción de espectros de altura de pulso por intervalos de	
			energía.	
			Cálculo de la eficiencia de detección y función de luz. Simulación de la respuesta del detector con Coant4 y PHITS.	
Migual Appel	MigualAppel1/	Caracterización del	Simulación de la respuesta del detector con Geant4 y PHITS. Las modidas de procisión de las fluias de rayos cósmicos realizadas.	
Miguel Angel Velasco	MiguelAngel.V elasco@ciema	flujo de electrones	Las medidas de precisión de los flujos de rayos cósmicos realizadas con experimentos en plataformas espaciales permiten abordar	
Jorge Casaus	t.es	en los rayos	aspectos fundamentales de la física, como el origen y propagación	
Jorgo Jusaus	Jorge.Casaus	cósmicos de alta	de los rayos cósmicos, la naturaleza de la materia oscura o la	
	@ciemat.es	energía con la	existencia de antimateria de origen primordial. Las mediciones	
		misión espacial	actuales de los flujos de electrones y positrones cubren el rango	
		HERD	energético desde unos pocos cientos de MeV hasta la escala del	
			TeV y muestran estructuras que no pueden explicarse con los	1
			modelos tradicionales sobre el origen y transporte de rayos cósmicos	
			en la galaxia.	
			El experimento HERD, propuesto para su instalación en la Estación	
			Espacial China (CSS) en 2027, permitirá incrementar	1
			significativamente la estadística de electrones y positrones y ampliar	

el rango de energías hasta decenas de TeV. En este trabajo se estudiará la sensibilidad de HERD a la medida del flujo combinado de electrones y positrones a las energías más altas. La caracterización precisa de este flujo proporcionará información clave para estudiar la posible contribución de fuentes astrofísicas en dicho rango energético.	
--	--

Oferta de trab	Oferta de trabajos dirigidos en el IEM-CSIC						
Supervisor/a	Correo electrónico	Título	Resumen	Observaciones			
Bruno Olaizola	Bruno.olaizol a@csic.es	Estudio experimental de núcleos exóticos con GRIFFIN	The GRIFFIN array at TRIUMF, Canada, is currently the state-of-the-art decay spectrometer, with one of the highest gamma-ray efficiencies and a suit of ancillary detector that allows for in-depth decay experiments. It is routinely used to study the structure of some of the most exotic isotopes with extreme neutron-to-proton ratios. What are you going to do? The master research project will consist of the data analysis of recent GRIFFIN experiments. You will analyze the beta decay of exotic nuclei and build their level schemes, making use of different nuclear physics techniques, such as angular correlations, conversion electron spectroscopy or ultra-fast timing. What are you going to learn? During this work, you will familiarize yourself with GRIFFIN and TRIUMF, a world-leading laboratory. You will also learn to use powerful analysis tools like ROOT, the most commonly used software in the nuclear and particle physics field. Finally, you will gain in-depth knowledge about nuclear structure far from stability and a wide range of nuclear physics detectors, able to detect gamma rays or charged particles.	Se recomienda haber cursado la asignatura de Técnicas Experimentales Avanzadas de este máster. Conocimientos básicos de programación, en especial C++ o Python, son también recomendables.			
Bruno Olaizola	Bruno.olaizol	Experimentos	The ISOLDE laboratory, at CERN, pioneered the development of	Se recomienda haber cursado la			
Andrés Illana	a@csic.es	de	radioactive beams, and it is still considered a world-class laboratory in	asignatura de Técnicas			
	andres.illana	desintegración	nuclear physics. One of its experimental lines is the ISOLDE Decay	Experimentales Avanzadas de este			
	@ucm.es	beta en	Station (IDS), which is the permanent setup to conduct decay	master. Conocimientos básicos de			
		ISOLDE, CERN	experiments of exotic nuclei, with a special focus on beta decay. The	programación, en especial C++ o			

	integrate it into you What are you going most powerful simu with large nuclear	o extract nuclear data from the ENSDF database and ur simulations. In to learn? You will learn to use Geant4, one of the ulation tools in nuclear and particle physics, and work data sets. You will gain hands-on experience in , simulation-based analysis, and data-driven design —	
García Borge ic.es Estruci Luis Acosta Luis.acosta resona	valuable skills for f medical application lio de la El núcleo resonant ctura halo del núcleo 14 ante de técnicas de masa i	future work in nuclear research, radiation physics, or	Conocimiento de programación, C++ y PYTHON

		reacciones de transferencia	desde 11Be ofrece un enfoque complementario que permitirá caracterizar la resonancia ½+, cuya población está especialmente favorecida en reacciones (t,p). El experimento IS690, que toma datos en octubre en la Cámara Experimental de Dispersión (SEC) de la instalación ISOLDE-CERN, tiene como objetivo clarificar la estructura de 13Be mediante la población directa de sus estados resonantes a través de la reacción de transferencia de dos neutrones en cinemática inversa 11Be(t,p)13Be. El Trabajo Fin de Máster consistirá en la calibración de detectores de partículas cargadas y centelleadores, así como en la identificación de las distintas partículas cargadas producidas en las reacciones de transferencia. En particular, se analizarán los datos de la reacción de calibración 22Ne(d,p).	Bibliografía: Proposal "Reaction studies with neutron-rich light nuclei at the upgraded SEC Device", CERN-INTC-2021-016/INTC-P-597, Spokepersons: M.J.G. Borge and J. Cederkäl
Olof Tengblad olof.ti @csi	0	La reacción 10B(d,α)8Be	The main activity of the nuclear physics line at CMAM-UAM focuses on studying nuclear structure through reactions relevant to astrophysics. These reactions typically have extremely low cross sections, and their detection involves both charged particles and gamma radiation. The 2 ⁺ resonances in ⁸ Be are responsible for shaping the neutrino spectrum from the β-decay of ⁸ B. These neutrinos have played a crucial role in the solar neutrino problem, leading to the discovery that neutrinos oscillate between different flavor states during their journey from the Sun to the Earth. The proposed experiment aims to measure the resonance profile of the 2 ⁺ isospin-mixed doublet in a nuclear reaction, previously studied in the 1960s and 1970s using photographic plates and spectrometers. The objective is to remeasure this doublet using a transfer reaction known to populate it with a favorable cross section. A test for the experiment has already been performed, and some preliminary data are available for analysis. The student will participate in ongoing experiments of the CMAM group to gain practical experience with detectors, electronics, and data acquisition systems, while simultaneously working on the analysis of the existing data. The work involves laboratory tasks with detectors and electronics, as well as data analysis using GEANT4 and CERN-ROOT computational frameworks.	Se requiere interés tanto en el trabajo experimental como en el análisis y simulaciones, así como disponibilidad para participar activamente en las medidas del laboratorio del grupo. Bibliografía: G. F. Knoll, Radiation Detection and Measurement, 4th Ed., Wiley, 2010. W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer, 1994. S. Humphries, Principles of Charged Particle Acceleration, http://www.fieldp.com/cpa.html

			Esta investigación se realiza en el marco del proyecto PID2022-140162NB-I00 https://fnexp.iem.csic.es/Proj-PID2022-140162NB-I00 es.html	
Olof Tengblad	olof.tengblad @csic.es	Anomalía de umbral en la dispersión de 6 Li+ 120 Sn	The main activity of the nuclear physics line at CMAM-UAM focuses on studying nuclear structure through reactions relevant to astrophysics. These reactions generally have extremely low cross sections, and their detection involves both charged particles and gamma radiation. This specific experiment aims to measure the angular distribution of elastic scattering, transfer, and breakup processes in the ⁶ Li + ¹²⁰ Sn system at deep sub-barrier energies, between 15 and 20 MeV (Lab). A preliminary test for the experiment has already been performed, and data are available for analysis. The candidate will participate in other experiments conducted by the CMAM group to gain experience with detectors, electronics, and data acquisition systems, while simultaneously working on the analysis of the previously obtained data. The work will involve laboratory activities with detectors and electronics, as well as data analysis using GEANT4 and CERN-ROOT frameworks. This research is carried out within the framework of the project PID2022-140162NB-I00 (https://fnexp.iem.csic.es/Proj-PID2022-140162NB-I00_es.html).	Se requiere interés tanto en el trabajo experimental como en el análisis y simulaciones, así como disponibilidad para participar activamente en las medidas del laboratorio del grupo. Bibliografía: G. F. Knoll, Radiation Detection and Measurement, 4th Ed., Wiley, 2010. W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer, 1994. S. Humphries, Principles of Charged Particle Acceleration, http://www.fieldp.com/cpa.html
Luis Armando Acosta Sánchez	luis.acosta@ csic.es	Puesta en marcha y caracterización del arreglo de detección de plano focal para el prototipo de ISRS.	La primera fase del proyecto ISRS (ISOLDE Superconducting Recoil Separator) se encuentra actualmente en construcción e implica la puesta en marcha de un separador de retroceso lineal compuesto por dos cuadrupolos y un imán selector. Como parte de esta primera etapa, se desarrollará un prototipo completo de los detectores de plano focal del sistema, proponiendo y evaluando varios tipos de detectores. El programa de este Trabajo Fin de Máster consiste en la puesta en marcha y caracterización de detectores DSSSD, SiC y LaBr, utilizando fuentes radiactivas y haces estables producidos en aceleradores como CMAM (Madrid) e ISOLDE (CERN, Suiza). El estudiante se formará en el manejo de detectores modernos para partículas cargadas, neutrones y fotones, así como en electrónica, digitalizadores, sistemas de adquisición y programas de análisis de datos. Además, podrá participar en las actividades experimentales en curso del grupo de Física Nuclear del IEM-CSIC.	Formación en Física y/o ingeniería informática o electrónica I. Martel et. al., Nuclear Instruments and Methods in Physics Research B 541 (2023) 176–179

			 Tareas principales: Estudio de bibliografía relacionada con el proyecto. Familiarización con diferentes tipos de detectores. Construcción de cadenas electrónicas y de adquisición de datos. Diseño y montaje del dispositivo experimental. Toma de datos con fuentes radiactivas y haces de partículas. Análisis de datos y obtención de resultados relevantes para el proyecto. 	
Luis Armando Acosta Sánchez	luis.acosta@ csic.es	Estudio de canales de reacción en núcleos débilmente ligados	Uno de los temas de mayor interés en la física nuclear contemporánea es el estudio de la dinámica de núcleos débilmente ligados, en particular los núcleos exóticos con halo neutrónico o protónico. El comportamiento de estos núcleos frente a su interacción con masas grandes o intermedias difiere notablemente del de los núcleos estables. En muchos casos, la polarizabilidad dipolar inducida por el blanco desempeña un papel fundamental en los procesos de ruptura y transferencia. En este Trabajo Fin de Máster, el estudiante analizará datos experimentales de reacciones nucleares entre núcleos débilmente ligados y blancos pesados, como plomo y oro. En concreto, se estudiarán reacciones que involucran los canales de ruptura de los núcleos ⁶ He y ¹⁷ Ne: el primero, un núcleo Borromeo con halo de dos neutrones, y el segundo, un posible análogo con halo diprotónico. El análisis de los distintos canales de reacción será clave para comprender el comportamiento de estos sistemas exóticos. Tareas principales: Estudio de bibliografía relacionada con el tema. Aprendizaje y uso de programas de análisis en física nuclear. Análisis y reducción de datos experimentales. Comparación de resultados con modelos teóricos. Trabajo en laboratorio para comprender la toma de datos y el desarrollo de medidas experimentales reales.	Formación en Física y/o ingeniería informática o electrónica J. Diaz-Ovejas et. al., PhysicsLetters B 843 (2023) 138007 V.G. Tavora et. al., Phys. Lett. B 855 (2024) 138770 K. Pally et. al., Physical Review C 111 024615 (2025)

Christophe Rappold	christophe.ra ppold@csic. es	Design study of a future WASA-FRS experiment with a new solenoid magnet	The hypernucleus is a bound state of protons, neutrons, and hyperons (baryons containing a strange quark). Experimental studies of hypernuclei allow the determination of baryon–baryon interactions within the SU(3) flavor symmetry. In the study of hypernuclei in heavy-ion collisions, the WASA-FRS collaboration has shown that an experimental setup combining a solenoid and a high-resolution spectrometer enables precise observation of hypernuclei at GSI-FAIR. The WASA central detector is based on a compact solenoid magnet with a maximum field of 1 T. For a future experiment, a new solenoid from the RCNP facility in Osaka, Japan, is being prepared for shipment to GSI-FAIR. This new solenoid is twice as large and provides a maximum magnetic field of 2.5 T. This master's thesis will focus on the design study of the future experiment based on Geant4 simulations. Using the characteristics of the current particle-tracking systems of the WASA-FRS setup, the study will investigate the feasibility and improvements that the new magnet will bring for the study of proton- and neutron-rich hypernuclei. The work will involve implementing the new solenoid magnet in the Geant4 framework of the WASA-FRS collaboration, studying the efficiency of the particle-identification algorithm through Geant4 simulations, and determining the differential efficiencies of particle identification and track reconstruction to perform a feasibility study of hypernucleus observation with the new	Experimental nuclear physics. C++ language, Geant4 framework, ROOT framework. T. R. Saito et al. New directions in hypernuclear physics, NATURE REVIEWS PHYSICS, 3, pp. 803 - 813. (2021)
Christophe Rappold	christophe.ra ppold@csic. es	Algoritmo de deep learning para el clustering de señales de los detectores de fibra centelleadora en el experimento WASA-FRS	setup. The hypernucleus is a bound state of protons, neutrons, and hyperons (baryons containing a strange quark). Experimental studies of hypernuclei allow the determination of baryon–baryon interactions within the SU(3) flavor symmetry. In the study of hypernuclei in heavy-ion collisions, the WASA-FRS collaboration has demonstrated that an experimental setup combining a solenoid and a high-resolution spectrometer enables precise observation of hypernuclei at GSI-FAIR. The data analysis from the 2022 experimental campaign is still ongoing. The aim of this master's thesis will be to improve the hit-clustering algorithm of the scintillating-fiber trackers used in the experiment. Deeplearning methods are envisioned to enhance the efficiency of hit clustering. The project will focus on developing deep-learning techniques to cluster the fiber layers of each tracking station into 3D point	Experimental nuclear physics. Machine learning & deep learning framework. Python & C++ language, Geant4 framework, ROOT framework. T. R. Saito et al. New directions in hypernuclear physics, NATURE REVIEWS PHYSICS, 3, pp. 803 - 813. (2021)

measurements. The research will involve implementing a new algorithm for clustering fiber-layer hits into 3D measurements using deep-learning approaches. Supervised training will rely on Geant4 simulations of the experimental setup, and several strategies will be evaluated to determine the optimal method. The efficiency of the new algorithm will be assessed and compared with the existing one. Additionally, new estimators derived from the deep-learning model will be created to enrich the 3D
measurements with angular and pre-tracking information.

Oferta de trabajos dirigidos de cursos anteriores						
Supervisor/a	Correo	Título	Resumen	Observaciones		
	electrónico					
José M. Udías Óscar Moreno	jose@uc2.fis .ucm.es osmoreno@ ucm.es	Modelos realistas de interacción leptón-núcleo	¿Por qué el Universo está hecho de materia en vez de materia y antimateria en iguales proporciones? ¿Cuál es el origen y naturaleza de la materia oscura? Las respuestas a éstas y otras cuestiones fundamentales podrían estar en las oscilaciones de neutrinos. Este fenómeno, que evidencia que los neutrinos tienen masa, ha abierto la puerta a Física más allá del Modelo Estándar y ha situado el estudio de estas partículas en la actual frontera del conocimiento. DUNE (https://www.dunescience.org/) e Hyperkamiokande (http://www.hyperk.org/) son los dos "megaproyectos" que mejor representan los planes de la comunidad a medio y largo plazo. En estos experimentos de oscilaciones de neutrinos es esencial ser capaz de modelar con precisión la interacción entre el neutrino (proyectil) y el núcleo blanco que forma el detector, ya sea oxígeno (agua), carbono (aceites) y argon (detectores de argon líquido). En este trabajo se estudiarán diferentes modelos teóricos de interacción leptón-núcleo para diferentes canales de reacción: canal cuasielástico y/o de producción de piones. A partir de la comparación con datos experimentales se persigue seguir avanzando en el conocimiento y modelado de la respuesta nuclear a la interacción con leptones.	UCM		
Óscar Moreno	osmoreno@	Theoretical	We pursue the theoretical study of the nuclear structure of neutron-deficient isotopes in	UCM		
Díaz	ucm.es	study of	the region of mercury, with a focus on the details related to their beta decays. The			
		nuclear beta	microscopic description of the nuclei starts with a self- consistent deformed Hartree-Fock			
		decays for	(HF) mean-field calculation for quasiparticles, on top of which residual interactions are			
		recent	introduced within quasiparticle random-phase approximation (QRPA) to obtain the			
			intensities of Gamow-Teller transitions and beta-decay mean lives. The analysis and			

		experimental proposals	presentation of results will be specifically designed to support recent experimental proposals at ISOLDE-CERN on the beta decay of isotopes around mercury 186 using the total absorption spectroscopy technique.	
Tomás R. Rodríguez.	tomasrro@u cm.es	Microscopic description of particle-plus- rotor nuclei	The structure of some nuclei with an odd number of particles (odd-even or even-odd number of protons-neutrons) can be understood as the motion of the unpaired particle and a rotating even-even core. One can distinguish some characteristic spectra depending on the strength of the interaction between the particle and the core. Our goal in this Master's Thesis proposal is the description, from microscopic calculations where the individual nucleons are the actual degrees of freedom of the system, of the spectra obtained with the geometrical picture.	UCM
Samuel España Palomar es José Manuel Udías	sespana@cs ic.es jmudiasm@u cm.es	Estudio de Nuevas Técnicas en Detectores PET	La tomografía por emisión de positrones (PET) es una técnica de imagen molecular que permite visualizar in vivo una determinada función biológica dependiente del radiotrazador utilizado. El trabajo propuesto tiene como objetivo el estudio de nuevas técnicas para el desarrollo de detectores para equipos de imagen PET. El trabajo constará de una primera etapa de estudio sobre el tema y posteriormente se realizarán simulaciones Monte Carlo. Dependiendo del progreso alcanzado podrán realizarse también mediciones experimentales.	UCM / CSIC
Samuel España Palomares José Manuel Udías	sespana@cs ic.es jmudiasm@u cm.es	Sistema de Muestreo Arterial para la Aplicación de Modelos Cinéticos en PET	La tomografía por emisión de positrones (PET) es una técnica de imagen molecular que permite visualizar in vivo una determinada función biológica dependiente del radiotrazador utilizado. Los datos medidos por un escáner PET se componen de varias componentes que pueden ser identificados utilizando un marco matemático basado en modelos cinéticos. La utilización de modelos cinéticos del trazador permite incrementar sustancialmente la cantidad de información biológica que puede extraerse de estos datos. El propósito de un modelo matemático es definir la relación entre los datos medibles y los parámetros fisiológicos que afectan la captación y el metabolismo del trazador. Los modelos utilizados requieren el conocimiento de la función de entrada a nivel arterial, es decir, la cantidad de trazador que el un determinado tejido tiene disponible en la sangre en cada momento del estudio. Esta función se suele determinar mediante la extracción de muestras de sangre en distintos momentos del estudio y el contaje de la actividad que contiene cada muestra. El trabajo propuesto tiene como objetivo la construcción y validación de un sistema de muestreo automático de sangre que contenga un detector gamma para la cuantificación de actividad. El trabajo tendrá una etapa inicial de estudio y construcción de un prototipo seguido da la validación de su funcionamiento y su puesta en marcha en estudios con animales.	UCM / CSIC

D // O /		-	EL LOLO II I LIGITANT III LIGITANT	
Pablo García	pablo.garcia	Estudios de	El grupo de Ondas Gravitacionales del CIEMAT participa en el análisis de datos del	OLEMAT
Abia	@ciemat.es	ondas	experimento Virgo. Nos centramos en la física fundamental, incluyendo la energía oscura,	CIEMAT
Miguel	miguel.carde	gravitacionales	la materia oscura y los parámetros cosmológicos. En este TFM, el estudiante desarrollará	
Cárdenas	nas@ciemat.	con datos del	un algoritmo para explotar correlaciones no lineales entre los interferómetros LIGO y	
	<u>es</u>	experimento	Virgo para buscar señales. Otro TFM potencial es la identificación de fallos en el	
		Virgo	interferómetro Virgo utilizando Inteligencia Artificial Explicable (XAI) en el dominio del	
			tiempo.	
Pedro Calvo	pedro.calvo	Análisis	Los ciclotrones son uno de los aceleradores de partículas más empleados en la	CIEMAT
Portela	@ciemat.es	experimental	producción de radioisótopos para aplicaciones médicas debido a su versatilidad y	
Miguel León	miguel.leon	de una fuente	compacidad. Las fuentes de iones constituyen uno de los componentes de mayor impacto	
López	@ciemat.es	de iones	en todo el rendimiento del acelerador por su impacto en la corriente inicial, así como en	
- 1-		basada en	las condiciones de vacío. El proyecto ofertado pretende estudiar experimentalmente un	
		radiofrecuenci	nuevo prototipo de fuente de iones basada en radiofrecuencia orientada a instalarse en	
		a para	ciclotrones compactos. El objetivo del trabajo será la contribución a la toma de medidas	
		ciclotrones	en una instalación en el CIEMAT para caracterizar el funcionamiento de la fuente bajo las	
		0.0.00.00.00	distintas condiciones de operación, realizando un comprensivo análisis de la influencia de	
			diferentes parámetros de extracción. De esta manera se pretende verificar el diseño de	
			este tipo de fuente de iones, para su futura implantación en sistemas comerciales.	
Pedro Calvo	pedro.calvo	Estudios de	Los aceleradores de partículas constituyen una de las herramientas más avanzadas	CIEMAT
Portela	@ciemat.es	dinámica de	tecnológicamente que nos permiten estudiar el comportamiento de la materia, así como	OILWAI
Concepción	concepcion.o	haces en	emplearlos en diferentes aplicaciones como la industria o la medicina. La propuesta de	
Oliver Amorós	liver@ciemat	aceleradores	trabajo final de máster se centrará en el estudio de la dinámica de haces en aceleradores	
Oliver Amoros		lineales	lineales mediante el uso de simulaciones avanzadas con diferentes códigos de simulación	
	<u>.es</u>	IIIIeales	especializados. El objetivo principal será optimizar el comportamiento del haz de	
			partículas a lo largo del acelerador, con el fin de mejorar la estabilidad, el control y la calidad del haz.	
			Este trabajo se puede realizarse en diferentes proyectos en las que trabaja la Unidad de	
			Aceleradores del CIEMAT. Se está desarrollando un inyector lineal de iones de carbono	
			para hadronterapia cuyo modelo novedoso requiere de detallados estudios de dinámica.	
			Asimismo, se puede participar en el estudio de la dinámica del acelerador IFMIF-DONES	
De de Dete		16-26-26-2	orientado al estudio de futuros materiales para fusión.	OLEMAT
Pedro Rato	pedro.rato@	Verificación de	La protonterapia utiliza protones para irradiar a los pacientes, ya que gracias al pico de	CIEMAT
Pedro Arce	<u>ciemat.es</u>	tratamientos	Bragg permite obtener una mejor conformidad de la dosis que con fotones y electrones.	
Dubois	pedro.arce@	en	En Madrid se han construido dos instalaciones de protonterapia clínica, actualmente en	
	<u>ciemat.es</u>	protonterapia	operación. El potencial de la protonterapia se ve limitado por las incertidumbres sobre la	
		por tomografía		

		de emisión de positrones	posición del pico de Bragg en el paciente, esto es, por la determinación del rango de los protones in vivo. Una de las actividades en las que más intensamente se trabaja en este momento se refiere precisamente a la verificación del rango de los protones in vivo, en particular mediante la detección de la actividad PET (tomografía de emisión de positrones) que los protones producen en el paciente durante la irradiación. En este trabajo se generarán, mediante técnicas Monte Carlo, imágenes PET a partir de planificaciones de tratamientos reales de pacientes, y se desarrollarán distintos métodos de verificación de tratamientos en protonterapia a partir de imágenes PET, usando un diseño de detector PET dedicado, propuesto por el Ciemat.	
José Luis Velasco	joseluis.velas co@ciemat.e s	Energetic ion confinement in optimized stellarators	Very good confinement of fusion-generated alpha particles is a sine qua non for a fusion reactor. These very energetic ions are expected to contribute to heat the fusion reactants, which implies that their confinement time must be sufficiently longer than the time that it takes them to thermalize by giving their energy to the plasma. An even more restrictive criterion is set by the heat loads on the walls: alpha particles that are promptly lost, and that therefore retain most of their original energy, could damage the plasma-facing components of the reactor wall. In magnetic fusion devices of the stellarator type, neoclassical processes are the main concern with respect to energetic ion confinement. Particles trapped in the magnetic field of axisymmetric tokamaks, while moving back and forth along the field lines, experience radial excursions that produce banana-shaped orbits, but, on average, no net radial displacement takes place in the absence of collisions. Things are different in a generic stellarator, where collisionless trapped orbits are not confined (this also applies to tokamaks in which axisymmetry is not perfect). For this reason, the magnetic configuration of a stellarator has to be carefully designed in order to minimize energetic ion losses. The student will characterize the confinement of energetic ions in stellarators by numerically solving kinetic plasma equations. This will be done for a variety of optimized stellarator configurations, including Wendelstein 7-X (Greifswald, Germany) and the Large Helical Device (Toki, Japan). With his/her calculations, the student will be contributing to the participation of the Laboratorio Nacional de Fusión in the experimental campaigns of these two devices. Additionally, he/she will be taking part in a longer term project that has the goal of designing new optimized stellarator configurations that can be	Webpages: http://fusionsites.ciemat.es/jlvelasco/ http://fusionsites.ciemat.es/multitranstell/
Samuel A.	samuel.giulia	Aplicaciones	candidates for future fusion reactors. The Generator Coordinate Method (GCM) is a powerful tool to compute nuclear properties	UAM
Giuliani	ni@uam.es	de técnicas de aprendizaje	beyond the mean-field approximation. It provides a comprehensive and microscopic description of large-amplitude collective motion of nucleons within the nucleus. When	

Luis M. Robledo	luis.robledo @uam.es	automático al método del generador de coordenadas.	combined with the restoration of spontaneously broken symmetries, GCM gives access to highly accurate predictions of a wide range of nuclear properties. However, such kind of calculations are computationally very demanding, limiting its practical applications particularly in the case of heavy nuclei. The aim of this Master's Thesis proposal is the study and implementation of Machine Learning algorithms that can alleviate the computational cost of GCM calculations,	
0		M. d. d. d. d. d.	enabling the application of this method on large-scale surveys of nuclear properties.	11004
Samuel A.	samuel.giulia	Nucleosíntesis	Half of the elements heavier iron that are found in the Universe are produced in a specific	UAM
Giuliani	<u>ni@uam.es</u>	de elementos	stellar nucleosynthesis process: the rapid neutron capture process (or <i>r</i> process). The	
		pesados en el	main astrophysical site responsible for the production of this heavy elements has not been	
		colapso de dos estrellas	identified yet, but binary neutron star mergers NSM are a promising candidate. Since	
		de neutrones	stellar nucleosynthesis is driven by nuclear processes, the understanding of the impact of nuclear properties on the r process is essential for describing the cosmic origin of heavy	
		de neutrones	elements.	
			The aim of this Master's Thesis proposal is the study of the impact of nuclear properties	
			(such as masses, beta decay rates and fission properties) on r-process abundances	
			produced by the merger of two neutron stars.	
Andrea	andrea.jungcl	High-	Summary: In this project, the candidate will learn how to analyze data taken in a state-of-	CSIC
Jungclaus	aus@iem.cf	resolution	the-art experiment in experimental nuclear physics. Taking advantage of the high energy	00.0
3	mac.csic.es	gamma- ray	resolution offered by the array of segmented Ge detectors HiCARI,an experiment has	
		spectroscopy	been conducted at the Radioactive Isotope Beam Factory (RIBF)at RIKEN (Tokyo, Japan)	
		at relativistic	in November 2020 to study nuclei in the region around doubly-magic 132Sn. The	
		energies	radioactive beams of interest were produced in the projectile fission of a 238U beam at	
			relativistic energies, separated and identified by the BigRIPS spectrometer and finally	
			induced secondary reactions (nucleon removal and inelastic scattering) on light and heavy	
			targets.	
Mª José	mj.borge@cs	Monte Carlo	Along this academic year we plan to perform a series of studies of reactions of	CSIC
García Borge	<u>ic.es</u>	Simulations	astrophysical interest, 7Li(3He,p)9Be (scheduled for October 17-19) in the tandem	
Vicente García	<u>vicente.garci</u>	for Nuclear	accelerator of 5 MV of the CMAM-UAM (Madrid).	
Távora	a@csic.es	Reactions of	What are you going to do? The master research work will consist of the study of the	
		astrophysical	optimum energy to realise the experiments, performing simulations to obtain the best	
		interest.	setup configuration, and analyzing the results of the simulations. A comparison of the	
			simulations with the real data obtained is the final aim.	
			What are you going to learn? During this Master project, you will learn to use some	
			physical and kinematics calculators like LISE++. You will also perform simulations of the	
			experimental setup using GEANT4, and you will learn advanced data analysis techniques	

		_		,
			mainly using C++ and python. All those programs and techniques are used nowadays to perform real Nuclear Physics experiments from the top- tier facilities like CERN to the smaller ones like CMAM.	
Olof Tengblad Vicente García Távora	olof.tengblad @csic.es vicente.garci a@csic.es	Experimental study of Nuclear Reactions of astrophysical interest.	During this academic year, we plan to perform a series of studies of reactions of astrophysical interest, 10B(d,alpha)8Be in the tandem accelerator of 5 MV of the CMAM-UAM (Madrid). What are you going to do? The research work of the master will consist of the preparation of the electronics and DAQ (data acquisition system), which represents one of the things that students are most afraid of when they have to face for first time a real experiment. The student will also participate in the experiment and analyze the data obtained. What are you going to learn? During this work, you will learn about the main detectors, electronics and DAQ used nowadays for frontier experiments also used at Facilities like ISOLDE at CERN and also in the smaller ones like CMAM. You as master student are going to learn also how to use some physical and kinematics calculators like LISE++ and advanced data analysis techniques mainly using C++ and python.	CSIC
Samuel España	sespana@cs ic.es	Tomografía por emisión de positrones con tiempo de vuelo	El proyecto propuesto se centra en la tomografía por emisión de positrones (PET), una técnica avanzada de imagen molecular que permite visualizar procesos biológicos en el organismo y realizar diagnósticos en oncología, neurología y cardiología. Los equipos PET han experimentado una evolución significativa en los últimos años, con mejoras en sensibilidad, resolución espacial y resolución temporal. Particularmente, los equipos PET con tecnología de tiempo de vuelo (TOF-PET) ofrecen una precisión excepcional al delimitar la zona de emisión de los fotones de aniquilación mediante la medida de las diferencias en los tiempos de llegada de ambos fotones. Esto no solo mejora la relación señal-ruido en las imágenes, sino que también permite obtener la imagen anatómica del paciente junto con la imagen funcional usando únicamente los datos medidos por el equipo PET.	CSIC
			El futuro de la tecnología PET se perfila aún más prometedor con el desarrollo de detectores de mayor resolución temporal, lo que supondrá un gran avance en el diagnóstico rutinario de enfermedades y en la relevancia clínica de la técnica PET. Este Trabajo Fin de Máster ofrece la oportunidad de contribuir a esta área de vanguardia mediante el trabajo en diversas técnicas para la mejora de imágenes PET con tiempo de vuelo. Los estudiantes tendrán la oportunidad de involucrarse en simulaciones Monte	

			Carlo, desarrollo de algoritmos de reconstrucción de imagen y análisis de datos avanzados.	
Samuel España	sespana@.cs ic.es	Síntesis y caracterizació n de nanopartículas con aplicaciones biomédicas	Los avances recientes en nanotecnología, bajo el ámbito de la nanomedicina, han enfocado sus esfuerzos en la creación de nanopartículas para la detección temprana y tratamiento de diversas enfermedades. Este trabajo tiene como objetivo principal estudiar nanopartículas con aplicaciones potenciales tanto como radiosensibilizadores en tratamientos oncológicos, como en la administración controlada de fármacos. El uso de nanopartículas como radiosensibilizadores ha demostrado ser una estrategia prometedora para mejorar la eficacia de la radioterapia, uno de los pilares en el tratamiento del cáncer. Al aumentar la absorción de radiación en las células tumorales, estas nanopartículas no solo potencian el daño inducido por la radiación, sino que también pueden ser diseñadas para liberar fármacos de manera controlada en respuesta a la exposición radioterapéutica. Este enfoque dual permite la liberación precisa de agentes terapéuticos directamente en el tumor, logrando una sinergia entre la destrucción tumoral y el tratamiento farmacológico localizado, reduciendo las dosis de radiación y minimizando los efectos secundarios en tejidos sanos. El proyecto incluirá una revisión bibliográfica exhaustiva sobre los tipos de nanopartículas utilizadas tanto para la radiosensibilización como para la liberación controlada de fármacos activada por radiación. Posteriormente, se definirá una estrategia para la síntesis y caracterización de diversas nanopartículas, evaluando su capacidad de generar especies reactivas de oxígeno (ROS) tras la exposición a radiación, su biocompatibilidad, y su eficacia en la liberación de fármacos en ambientes tumorales. Se prestará especial atención a los mecanismos moleculares que permiten que la radiación active la liberación de fármacos, buscando optimizar tanto la dosis radioterapéutica como el perfil de liberación terapéutica. Este trabajo busca contribuir a la mejora de las terapias avanzadas combinando la nanotecnología con la radioterapia, logrando un tratamiento más efectivo y dirigido, con me	CSIC