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Preludio

Todo comenzé una mafana cuando aun me encontred@nda asignaturas de cuarto
curso alla por el afio 2002, poco antes de los ex@snge Junio. Se anunciaba en los pasillos
de la Facultad un seminario sobre un tema reladmican la fisica médica. El tema a tratar
era el PET y su ponente Juan José Vaquero. Yo quel &ntonces ya habia decidido
dedicarme a la fisica médica cuando terminaraémdiatura y para ello pensaba presentarme
a las pruebas selectivas de Radiofisicos HospiaalaAquel seminario me hizo pensar en la
posibilidad remota, pensaba yo, de dedicarme mvkstigacion en Fisica Médica en lugar de
a su aplicacion.

Unos meses mas tarde, ya en quinto curso, reakcgrécticas de la asignatura Fisica
Nuclear y de Particulas. Controlando el laboratsgoencontraba el profesor José Manuel
Udias, que me comentd la posibilidad de realizareleDepartamento de Fisica Atdmica,
Molecular y Nuclear, trabajos de introduccion ankestigacion relacionados con la Fisica
Médica. Unas semanas mas tarde me enteré de queisse profesor junto con otro del
Departamento, José Luis Contreras, ofrecian uajorambre PET. Con ellos dos comencé a
trabajar en PET y el tema me apasion6 por complettnsé Luis Contreras le agradezco su
gran ayuda durante la realizacion del trabajo intekrés que ha mostrado siempre por lo que
hago. Al finalizar el trabajo y con él la licencied, fue José Manuel Udias el que me propuso
comenzar a trabajar con €l en PET en colabora@aretLaboratorio de Imagen Médica del
Hospital Gregorio Marafién (LIM-HGGM), en el cuahliajaba Juan José Vaquero. Ese dia
fui dando saltos de alegria a contarselo a mi fajgue por supuesto transmitio al resto de
familia y amigos que iban a tener un premio Nolpet&sa, lo que no estaba claro aun era si
seria en Fisica o en Medicina.

Bromas aparte, tengo que agradecer a José Manobttunidad que me brindd y la
confianza que puso y sigue poniendo en mi. En agoeiento empecé a darme cuenta de su
modo de trabajar. Me encerrd en su despacho ua ¢atera y me conto todos los proyectos
que tenia en mente. Luego me dio un montdén deubnsicy tesis para leer, me instaléo un
ordenador (con Linux, por supuesto) y me dio urpolitle programacién en Fortran. Ya sélo
necesitaba ponerme manos a la obra, aunque faltebaorpresa final. Todo ese trabajo no
iba hacerlo yo sélo. Otro chico que también acalidderminar la licenciatura, Joaquin
Lopez, trabajaria conmigo dentro del mismo proye¥tde este modo comenzamos los tres a
trabajar juntos.

A José Manuel Udias tengo que agradecerle la paaieque ha tenido y sigue
teniendo para explicar y resolverme cualquier dugdar transmitirme parte de la pasion que
pone en lo que hace. También tengo que agradeaemsipresencia. Muchas veces no he
sabido donde estaba durantes dias o incluso senmamagampoco importaba mucho porque
cualquier consulta que le hiciera por email me dapondia después de estudiarselo a
conciencia a los pocos minutos o0 como maximo h@aban igual el dia o la hora.

Con Joaquin Lopez he compartido codo con codo wdivabajo de estos afios.
Innumerables viajes, conversaciones y todo tipoadenturas. De él he aprendido a no
rendirme cuando me surge cualquier problema y acieativo, en el sentido de intentar
siempre buscar mas alla de lo conocido, lo cualh@olevado muchas veces a reinventar la
rueda (de ahi su frase "Si crees que has desauhblgd, es que no has leido lo suficiente").

También agradezco a Juan José Vaquero y ManuebpPdstLIM-HGGM, todo el
apoyo recibido y el haberme abierto las puertassulelaboratorio siempre que lo he
necesitado, sin olvidar el soporte econémico souél nada de esto habria sido posible.



2 Preludio

De vuelta a la Facultad, el grupo comenzd a creesados unos meses. Esther
Vicente fue la primera y con ella he compartido pmcas peripecias y he disfrutado
intentando resolverle dudas y problemas que mehieaho aprender a mi también cosas
nuevas y afianzar lo que ya sabia. Catherine Mutpmbién empezé con ganas aunque
finalmente nos gano el pulso la empresa privadagbuse incorporaron Elena Herranz y
Jacobo Cal con los que también he compartido mubbess de trabajo y que aportan la
ilusiéon y frescura propia de los primerizos y no paimerizos. Y porque no sélo de PET vive
el hombre, también agradezco su apoyo a otros qguafs y veteranos del grupo como
Joaquin Retamosa, Elvira Moya, José Maria Gomenardd Faleiro, Javier Rodriguez,
Armando Relafio, Laura Mufioz, Raquel Alvarez, y espmente a César Fernandez, Luis
Mario Fraile y Cristina Martinez, con los que heide una relacion mas estrecha que me ha
ensefiado mucho. Pablo Corzo y Joaquin Escayo meayuwaiado con la informética estos
ultimos afos y Paloma Vaquero me ha facilitado reeanente las labores burocraticas, que
no son pocas. Y no puedo olvidarme de Mihai Furnicee ha puesto siempre su lado mas
abstracto. También tengo que agradecer a otrosnakimque han hecho el trabajo de
investigacion en nuestro grupo, con algunos decl@des he participado como codirector.
Con su ilusion y esfuerzo también he aprendido msiclosas. Ellos son José Luis Izquierdo,
Marta Larraona, Adriana Martin de Aguilera y Rosm(@s.

En el Hospital Gregorio Marafion he tenido tambiéaynbuenos compafieros y
colaboradores. Al principio recibi la ayuda de AmwtoMolins que enseguida camind por
otros derroteros. Fue entonces cuando llegé Edubedm, con el cual he mantenido
numerosas conversaciones donde nuestros conoaisisatcomplementaban y que me ha
facilitado siempre toda la informacion que he nigade para la colaboracién con su grupo. A
Gustavo Tapias tengo que agradecerle su coopergcifisponibilidad, sobre todo en el
altimo afio. Con otros como Javier Sanchez y MoAigealla también mantuve una fructifera
colaboracion en los primeros afios de doctorado.bieamagradezco la acogida del siempre
creciente niumero de personas de este grupo, camora@mna, Marisa, Marina, Javi Pascau,
Veronica, Angel, Alexia, Santi Redondo, Juan, Cheludit, Alex, José, Irina, Cris, Santiago
Reig, Carlos y algunos mas que seguro que me ohdildoinos de ellos me han ayudado en
mi trabajo y con casi todos he aprendido cosasasugue me han hecho tener una vision mas
amplia de la imagen médica.

A Jurgen Seidel le agradezco la paciencia que mdaesiempre para responder a
nuestras preguntas y su cooperacion durante nmoégstan Baltimore, donde Benjamin Tsui y
Su grupo me acogieron como uno mas de los suyos.

Con Antonio Sanz y Santiago Garcia, de la Univasi®Rey Juan Carlos, hemos
mantenido una productiva colaboracion y agradeado to que me han ensefiado sobre las
GPUs.

También agradezco a Nerea por escuchar con pagikscbatallitas de los positrones
y las ratas, a mis padres, hermanos, cufiados,aapuesto de familia por darme siempre
animos, a Juan Manuel por su gran interés y apaydiguel Angel por su confianza.

En resumidas cuentas, que yo soy el principal algoeste trabajo pero que solo ha
sido posible gracias a la ayuda recibida de éstaisag muchas personas.



Introduction, aims and document structure

Since the first PET scanner was developed in th&049 positron emission
tomography has been established in oncology, dagiioand neurology. The extension of
this technique to preclinical research has reptegea great challenge in the last decade,
during which very high resolution PET scannerslétoratory animals such as mice and rats
have been developed. Nowadays, it is possible tairoPET images with submillimetric
resolution and some PET scanners have sensitivigkcess of 10%. This has been possible
thanks to technological developments in the deiectf gamma photons and electronic
processing. Likewise, the advent of faster computenprovement of the reconstruction
algorithms and widespread use of Monte Carlo sitiarianethods have played an important
role in recent PET developments.

PET research involves different areas of knowledgd requires multidisciplinary
teams of biologists, physicians, pharmacists, exegs) technicians and physicists, among
others. The basic principles of PET are governedNbglear Physics. The Nuclear Physics
Group (GFN) of the Universidad Complutense de Magovided with a helpful and rich
environment for the development of this work. THeNGhas the theoretical and experimental
Nuclear Physics knowledge needed to understandPE&E technique in detail and to
contribute to its development. The collaborationhvthe Laboratorio de Imagen Médica of
the Hospital General Universitario Gregorio Maraifpdavided us their extensive experience
in medical imaging and with access to many rea ffam several PET scanners.

Realistic simulation of PET scanners allows for iaying all phases of the production
of the image, from the design of the scanner andctlas to the computation of the system
response matrix (SRM) that is employed during teeonstruction process, through data
acquisition, data processing and data correctidesa result, an overall improvement of the
quality of the images can be obtained. That isgesawith better spatial resolution and signal
to noise ratio, and with more accurate and repribiiguantification results are produced.
Faster computers and accurate Monte Carlo codes ate available today allow for
simulations that incorporate the significant phgsaé emission, interactions, and electronics
of PET scanners.

In this thesis we tried to improve the quality &TPimages by intensive use of Monte
Carlo simulations in order to tackle the procedbes take place during the acquisition of
PET data. We have focused this work in high reemiuPET scanners for small animal
studies. These scanners require advanced recamstrueethods in order to achieve spatial
resolution of the order of 1 mm. Indeed, to achitws resolution goal, the system response
matrix employed by statistical reconstructions rodthmust be very accurate (Herraizal,
2006).

The goals of this thesis can be summarized aswsllo

» Development of a Monte Carlo application (PeneloPEF its use in PET
(chapter 4).

« Validation of PeneloPET in order to assess itabdity (chapter 5).

* Use of PeneloPET for the improvement of the qualitghe images obtained
with existing small animal PET scanners (chapteaa®7).

» Study of the applications of PeneloPET in the designew small animal PET
scanners (chapter 8).

The structure of this thesis can be summarizedlasifs:



4 Introduction, aims and document structure

* Theoretical framework.

o Chapter 1. Introduction to physics principles imea in the PET
technique, the operation of the different compos@fta PET scanner,
and the description of the most relevant parametelPET scanners.

o Chapter 2. Basic introduction to image reconstoucti

o Chapter 3. Introduction to Monte Carlo techniquesl o several
simulation packages.

» Development of PeneloPET.

o Chapter 4. Description of PeneloPET, a Monte C#éolal for PET
simulations.

o Chapter 5. Validation of PeneloPET. Comparison ahutated
acquisitions to real measurements and to resultstleér simulation
packages.

* Applications of PeneloPET.

o Chapter 6. Determination of the SRM for 3D-OSEMorestruction
method.

o Chapter 7.A priori estimation of the reliability of detected events i
order to improve the quality of the images recargéd.

o Chapter 8. Considerations that must be taken intount during the
design of a small animal PET scanner.

In the next paragraphs, a further explanation efwork presented in this thesis is
given.

The first goal of this thesis has been the devetwypnof a Monte Carlo tool
(PeneloPET (Espar& al, 2009)) capable of realistic simulations of PE&rsters. There are
several packages for the simulation of the trartsploradiation through the matter. We have
chosen one of them (PENELOPE (Batdal, 1995)) as the core over which we built the tools
necessary to reproduce all aspects of PET. PenélaPdescribed in chapter 4 and validated
in chapter 5. Further, the advantages of havingomanced simulation tool is exemplified by
several applications presented in the remainingtehns of this thesis.

The second goal of this work has been to calcufaten optimal way, the system
response matrix, removing redundancies and takthgrdgage of symmetries and quasi-
symmetries, so that a system response matrix (S&Mugh small to keep inside RAM
memory of ordinary industry-standard computers @dag obtained. The SRM computed in
this way has been applied to the reconstructiomguthe 3D-OSEM method (Hudson and
Larkin, 1994), of PET data acquired with small aaliracanners (Herraiet al, 2006). We
show this in chapter 6.

No detection device is perfect and no measured iddtae from errors. We tried to
analyze the errors and uncertainties in PET dat@sorement, and employ this to prodace
priori information about the individual reliability of ela event acquired. Indeed, we analyze
the information obtained during PET acquisitions;lsas energy deposited in the detectors,
singles and coincidence rates, position of intewactand so on. We use this event reliability
analysis to reduce the impact of data uncertaimtneserrors in the images reconstructed. This
is presented in chapter 7.
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The design of modern scanners is nowadays pacédtiagt development of Monte
Carlo simulation tools, which will thus play an olyesignificant role in the definition of the
next generation of PET scanners. In chapter 8 wenisnsively the Monte Carlo simulations
to determine the parameters of PET scanners thattha largest impact in performance.






1. Principles of PET

1.1. Introduction

Positron Emission Tomography (PET) (Cheatyal, 2003) is a technique used in
clinical medicine and biomedical (preclinical) rasgh to create images that show how certain
organs perform their physiological function. Radibge nuclei are introduced into the patient
to label tracer molecules that probe physiologmalcesses. These radioactive nuclei emit
positrons that annihilate with electrons from tissue. An annihilation event usually results
in two gamma photons being emitted at nearly 18§raess and with an energy of 511 keV
each. The gamma photons are detected in coincidareeletector ring so that two gamma
photons detected in coincidence definéna of respons€LOR) along which the positron
annihilation took place. The information recordedevery possible LOR is assembled and,
with the aid of image processing tools, it is enyplibto produce an image of the activity and
thereby of the functionality of the organism.

18F
9

Figure 1.1. Decay scheme ofaradionuclide and the positron-electron pair adailin. This figure
conveys the basic principles of PET.

1.2. Physics principles

1.2.1. Beta decay

Beta particles are fast electrons or positrons ywed in the (weak interaction
mediated) decay of neutrons or protons in neutmoproton rich nuclei (Krane, 1987). In a
neutron rich nucleus a neutron can transform irggooton via the process

n- p +e+0, (1.2)
where an electron and an antineutrino are emilegk neutrons also decay according to this
disintegration scheme with a half-life of 10.25 otes (Cherryet al, 2003). The daughter

nucleus now contains one extra proton so that@sia numbelZ increases in one unit. This
can be written as

X3 - X{+e+o, (1.2)

In proton rich nuclei, a positron and a neutrine amitted in the complementary
process (Krane, 1987) to the one previously desdrib



+ +
p* - n+€ +u,

1. PRINCIPLES OFPET

(1.3)

This f* process cannot happen to free, isolated protaresta energy constrains, but
the corresponding decay in nuclei can arise whes @nergetically possible (Powsner and
Powsner, 2006) and it is written as

zZ zZ-1 +
xN - XN+1+e +Ue

(1.4)

The daughter nucleus now contains one proton léss the decay; therefore the
atomic number has decreased by one unit. Theldsasaahird process in nuclei mediated by
the weak interaction. It is called electron capt(ifeane, 1987). In this process an atomic
electron is captured by the nucleus

p +e€ - n+0, (1.5)
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Figure 1.2. Experimentdi-spectra obtained from decayifi§u. p~ particles are affected by the electric
field of the positively charged nuclei and thus émergy spectrum is shifted towards lower energieparticles,
on the other hand, are repelled by the nuclei s@ttergy spectrum it is shifted towards higher giesr

A basic characteristic of th&decay process is the continuous energy spectruireof
J particles. This is because the available energiiendecay is shared between fhearticle
and the neutrino or antineutrino. Typical energect@ are shown in Figure 1.2 (Krane,
1987). The number off particles emitted with momentum betwegrand p + dp can be
expressed as

N (p)dp = Cp°q’dp (1.6)

whereC is a constant anglis the momentum of the neutrino.

The distance from the emission point to the anaticih point is known as th@ositron
range, that is one of the main limiting factors to theasal resolution of PET (Levin and
Hoffman, 1999). Positron range effects depend enetergy of the emitted positrons. The
distance in the normal direction to the locatioriref decaying atom to the line defined by the
annihilation photons is thpositron range blurring relevant for PET projection data (see
Figure 1.3). Because positrons are emitted withrge of energy and follow a tortuous path
in tissue, the positron range is a non-Gaussidnluision as described by Derenzo (Derenzo,
1979) and Levin and Hoffman (Levin and Hoffman, 2p9
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positron

range -

Y

Figure 1.3. Scheme representing the definitionhef positron range. From its emission, the positron
follows an erratic path until the annihilation pess.

When the positron reaches thermal velocities (ad®ly it either annihilates directly
with an electron into two gammas, or first formssigmnium in the singlet'&, para-
positronium) or triplet I5,, ortho-positronium) state (Berko and Hereford, @)95Para-
positronium decays only into two gammas with atilife of 7,,=1.26-10°s (Patro and Sen,
1971), while ortho-positronium decays into threenges with a lifetime ofrgy:1.42-1d S
(Westbrooket al, 1987). These respective decay times were measar@ositrons in metals
with a 2/3y branching ratio of 372 (Berko and Hereford, 19%d%0, for both positronium
states, the pick-off annihilation is possible, whehe positron annihilates with another
electron from neighboring atoms before it is aldeahnihilate with its positronium partner
(Colombinoet al, 1965).

As the majority of disintegrations occur with bgtbsitron and electron at thermal
energies (much less than their rest masses), twtops with a characteristic energy of 511
keV are produced, for the majority of annihilationsvater or tissue, with a relative angle of
approximately 180° (DeBenedesti al, 1950). These almost collinear gammas can be used
for PET because their direction includes informmataiout the annihilation position. As the
momentum of the positronium will be small, but iengral non vanishing in the laboratory
system, there is a slight deviation from collinganvhich is given by (Erdman, 1955):

np=L (1.7)
m.C

DeBenedetti et al. (DeBenededti al, 1950) measuredy ~ 0.4°-0.5°. This photon
non-collinearity is another limiting factor of sgtresolution in PET, because it introduces
an uncertainty in the location of the annihilatmoint (Herraizet al, 2007).

There are just a few radionuclides, maifig, *N, °0, **F, and®Rb that have the
adequate chemical and physical properties (seeeThlh) which make them suitable fior
vivo biochemical and physiological studies (Raichle83)9 In particular, these radionuclides
are isotopes of elements that can be incorporatedmolecules that participate in metabolic
processes and therefore enable thevivo study of the behavior of these molecules.
Furthermore, their short half-lives reduce sigmifity the radiation dose to both the subject
and the people handling the radionuclides. Theetattlis the need for a dedicated cyclotron
(or of a generator for the case®&Rb) in the vicinity of the PET facility.



10 1. PRINCIPLES OFPET

3+ 2.602 z
22
. 11Na
S B*,EC|
o
‘QV
9.7 ps 2+ w 1,27458 B*90.4%,EC9.5% /.4
' o
0+ 0 A* 0.06% 127
22
10Ne

Figure 1.4: Level scheme showing the deca$®é (Krane, 1987).

Table 1.1: Physical properties of positron emit{@ailey et al, 2004).

Range in Water  Emission energy (MeV)

Radionuclide Half-life (min) (mm)
Max Mean Max Mode
e 20.4 4.1 1.1 0.959 0.326
N 10.0 5.1 1.5 1.197 0.432
e 2.07 7.3 2.5 1.738 0.696
18 110.0 2.4 0.6 0.633 0.202
#Rb 1.25 14.1 5.9 3.400 1.385

1.2.2. Interactions of gamma radiation with matter

When a monoenergetic gamma ray with intenkityosses matter, it interacts with the
electrons of the material. As a result of theserattions, some gammas will be removed out
of the incident ray by either photoelectric absimmpi{absorption coefficienf), or Compton or
Rayleigh effects (absorption coefficien), or pair production (absorption coefficier}
(Knoll, 2000). An overall absorption coefficient results from these three individual
absorption coefficients:

U=T+0O+K (1.8)

Thus the overall absorption can be described by
| =1 g™ (1.9)

wherelgis the incident antithe resulting intensity after crossing a distaxioé material.

Photoelectric absorption

During photoelectric absorption, the incident ganwith energy Eis absorbed by an
atom of the traversed material. An electron froen ¢kectron shell of this atom is then ejected
with energy

E. =E - Bouna (1.10)



1.2. Physics principles 11

where Epoung is the binding energy of the knocked out electrhe resulting hole in the
electron shell is filled by the remaining electramighin the shell or by the capture of a free
electron from the surrounding medium.
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Figure 1.5. Cross secctions for the interacctioptaftons in water (top) and LSO (bottom). This figgl
include total, photoelectric absorption, Comptod &aleight scatter, and pair production. The maintribution
to the total cross section at 511 keV in waterue tb the Compton scatter while for LSO is sharetivben
Compton scatter and photoelectric absorption. Rglylscatter is almost negligible in both cases (E@UNIST
XCOM data base).
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Compton and Rayleigh scattering

A gamma of energfg,, that interacts with a shell electron of the traed material by
the Compton effect (Compton scattering), is defebétem its incident direction by an angle
and loses an energy given by conservation of mameas

Ee, = Ey - Ebound_ E;/ (111)

where E’, is the energy of the gamma after the interactibnis amount of energy is
transferred to the electroB:, depends on the scatter an@laccording to (Knoll, 2000)

E
E = 4 (1.12)

L -5 (1- co¥)
m.c

mec” being the rest-mass energy of the electron (514).KEhe maximum energy transferred
to the electron occurs when the scattering afigler.

_ 2E,/m ¢
B e = EV(WJ (1.13)

This gives rise to the Compton edge in the enepggtsum of monoenergetic gamma
rays as seen in detectors of finite size (KnolQ®@0

When elastic scattering occurs, the incident phat@tattered without ionizations nor
other energy losses in excitations of the intestaties of the constituents of the material. This
process is known as Rayleigh scatter.

i T T rrmm T T TTrme 1 T 1T
120 — =

100

Pair production ]
dominant —

Photoelectric effect
80 dominant

60 |

Compton effect
dominant

Z of absorber

40 —

20

1151 S 0 0 O O 0 M N
0.01 0.05 0.1 05 1 5 10 50 100

Av in MeV

Figure 1.6. Relative importance of the three majges of gamma-ray interaction for different
combinations of Z and+Eis shown. For 511 keV gamma rays, only photoeateeind Compton interactions are
relevant, whereas pair production can be neglgétadll, 2000).
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Pair production
The energy threshold for pair production

y->e+e (1.14)

iIs 2 x 511 keV = 1.022 MeV. This interaction caryotake place in the presence of a third
partner to pick up recoiling energy and momentunthet energy-momentum conservation
can be verified. Additional energy of the gamma Wwé converted into kinetic energy of the
electron, positron and recoiling partner. As tlatet is usually a relatively heavy nuclei, its
recoiling energy can be neglected. Both electrod @ositron produced will undergo

interactions with matter, and positron will finallyoduce annihilation radiation at the end of
their path.

1.3. Detectors

Detection of gamma radiation is a very common tegh in experimental nuclear
physics. Existing knowledge in experimental nuclglaysics has been adapted to the specific
requirements of PET. In essence, a gamma detesy&iem is a block of material where the
gamma photon interacts. This block then transfothes absorbed energy of the gamma
photon into a measurable property. If this meadarptoperty is a number of visible photons,
like in the scintillation detectors which will beestribed in the next subsection, it is usual to
couple the block to a device that transforms this 6f visible photons into an electric signal.
For energy measurements, the electric signal pextiby the detector should be proportional
to the measured energy. To look for coincidenceBE, in order to extract the coincidence
events and to evaluate and store the energy aniioposf each coincidence event, the output
signal is later processed and compared with theubgignals of other blocks.

1.3.1. Scintillation detectors

An scintillation detector emits light (that is, ghos in the visible energy range) when
it is excited by radiation of higher energy. Theemyy range of the light emitted for most
employed scintillators spans from the ultraviolettie infrared ends (100 - 800 nm). There
are several scintillating materials in use todagaaic and inorganic scintillators in solid,
liquid or gaseous forms. The advantage of inorgaaictillators lies in their greater stopping
power, thanks to their higher density and atomimber Z (Knoll, 2000). They also have
some of the highest light outputs (humber of phstemitted per unit of deposited energy).
High light output results in better energy resantibecause larger number of visible photons
will be produced. This will reduce the broadenirigh®e energy spectrum, because this later
effect is basically due to statistical fluctuatiorighis makes these inorganic scintillators
extremely suitable for the detection of gamma r@ayd, by far, the most employed materials
in PET detectors.

The time structure of the light emitted by sciatitirs can often be approximated by
(Ljungberget al, 1998)
“YTea — at/Trise
N(t) = N, & © (1.15)

Tear " Trise

whereN(t) is here the number of photons emitted by the deitars at timet, Ny is the total
number of photons emitted, amgh . andzrisgare fall and rise constants of the scintillator.
The time response of the crystal should be as daspossible to avoid coincidences of
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uncorrelated photons and pileup of consecutivegsubnd to reduce the dead time of the
system.

Table 1.2. physical properties of inorganic sdiatidr most used in PET (Bailet al, 2004).

Nal BGO LSO GSO
Composition Nal:TI  BiGeO;,  Lu,SiOs:.Ce GdSiGs.Ce
Density (g/cm) 6.67 7.13 7.40 6.71
Effective atomic number 51 74 66 59
Attenuacion coefficient (cif 0.34 0.92 0.87 0.62
Refractive index 1.85 2.15 1.82 1.85
Light yield [%Nal:TI] 100 15 75 41
Wavelength for max. emission (hm) 410 480 420 430
Decay constant (ns) 230 300 40 56
Hygroscopic Yes No No No

PET systems not only need a detector with higtciefiicy but also the best possible
spatial resolution. For that purpose, most systelses segmented scintillators that try to
minimize the uncertainty in the location of theeirsiction. Current high resolution PET
scanners employ arrays of pixelated scintillatorstals (Casey and Nutt, 1986). Scanners
with blocks made of continuous crystal are lesgudently used for high resolution scanners
(Jounget al, 2001).

1.3.2. Photosensors

A typical scintillation detector consists of a ddlating crystal coupled to a
photomultiplier tube (PMT) all housed in a metabicield. Photomultipliers are constructed
from glass vacuum tubes which house a photocathselcral dynodes, and an anode.
Incident photons strike the photocathode materiaichv is present as a thin deposit on the
entry window of the device, with electrons beingoduced as a consequence of the
photoelectric effect. These electrons are diredigdthe focusing electrode towards the
electron multiplier, where electrons are multiplieg means of secondary emission (Knoll,
2000).

The electron multiplier consists of several eledt® called dynodes. Each dynode is
held at a more positive voltage than the previaus. @he electrons leave the photocathode,
with the energy of the incoming photon, minus therkvfunction of the photocathode. As
they move towards the first dynode they are acatddrby the electric field and arrive with
larger energy. After striking the first dynode, mdow energy electrons are emitted and
these, in turn, are accelerated toward the secgndde. The geometry of the dynode chain is
such that a cascade occurs with an ever-increasingpber of electrons being produced at
each stage. Finally the electrons reach the andeeenthe accumulation of charge results in a
sharp current pulse indicating the arrival of atphaat the photocathode. The PMT will give
an electric pulse proportional to the number ohtiiation light quanta that reaches the
photocathode which is proportional to the energgodéed. Thus, energy spectroscopy is
possible with scintillation detectors and PMTs. Tdan is defined as the total number of
electrons that arrive to the anode for the produmctf a single electron in the photocathode.
Gains from 18to 1& can be reached with these devices.



1.3. Detectors 15

Photomultiplier tubes typically require a power tage of 1000 to 2000 volts for
proper operation. The most negative pole is comaettd the cathode, and the most positive
pole is connected to the anode. Voltages are blig&d to the dynodes by a resistive voltage
divider. The divider design influences aspects saglirequency response and rise time, and
therefore may be critical to certain applicatiog¢hile powered, photomultipliers must be
shielded from ambient light to prevent their destian through over excitation.

Fhotocathode Anode
e / Electri::uns Electrical
photon ~, Connectors
\/\ Scintillator O\ @$\ \
el A \ —
\'(O N, /=
\ =
| \ ‘
Light :
photon Flor:Lt15|gg Lynode .
eleclroge Photomultiplier tube (PMT)

Figure 1.7. Principle of operation of a photomuiéptube (PMT) (Knoll, 2000).

As mentioned before, spatial resolution is an irtgodrparameter in PET. Scintillation
arrays are usually coupled to a single photomudtighat must be able of localize the point
where the light has entered the device. For thipgme, position sensitive photomultiplier
(PS-PMT) were developed. These devices have ap afr@nodes where the collected charge
is distributed. The distribution of charged amoiiffedent anodes can be used to calculate the
incident light position (Anger, 1969). Other dewdcas APDs (Pichleet al, 1998), PIN-
DIODES or more recently SiPMs are also being uSdteet al, 2005; Espariat al, 2008).

1.3.3. Electronics

Pulse processing

In order to measure time intervals precisely, theval times of different events must
be exactly derived to achieve optimal time resolutiTo obtain good timing signals,
Constant Fraction Discriminator (CFD) are employ@&te output pulse coming from the
anode of the PMT, is fed to the input of the CADFIgure 1.8 the principle of operation of a
CFD is illustrated (Knoll, 2000).

The CFD is designed to trigger on a certain optinftantion of the pulse height, thus
making the performance (labeling of the onset efgghlse) of the CFD independent of pulse
amplitudé. Furthermore, leading-edge discriminators are eygnl to provide energy
selection. Events not with energy below the thré&shall give rise to a signal from the CFD
and thus will be excluded.

! Assuming all pulses have the same shape. Noisbaswdine shifts can prevent this.
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Figure 1.8. The formation of the constant-fractsignal.

The events triggered in a detector are fed inta@dence units that test whether each
event is close enough in time to other events fiher detectors, so that they can be
considered as coincidence events. The time oftfligken by the gamma photons from the
positron annihilation time to the detector is o tbrder of hundreds of picoseconds, what is
less than the time resolution of most of PET scesitdowever, scanners with time-of-flight
(TOF) capabilities have been developed (Allemaidal, 1980; Mullani et al, 1981,
Moszynski et al, 2006). The time resolution achievable by the seans the result of a
convolution of the time resolution of each sciatiir, PMT and electronics. It is usually of
the order of a few nanoseconds (Knoll, 2000).

Data acquisition system

Once pulses have passed all discriminators, thditaichg of the signal, that contains
the energy information for the event, must be oi®di All output lines of the PS-PMT that
have been triggered are integrated to obtain tta¢ ¢barge for the energy calculation and the
location of the interaction. This is usually perfmd by electronic modules that, first,
integrate the charge of each output line and canber resulting integrated charge into a
digital number (ADC conversion) that is transmittatt stored in a PC. The transmission of
this information to the PC maybe performed via Eibg fireware, USB, PCI-X or other
connections (Lewellest al, 2001).

1.4. Sorting of the data acquired

1.4.1. Look up tables

The measured energy and PMT XY location for ea@nemust be processed in order
to obtain energy and crystal identification. Theergy is used to select which coincidence
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events are accepted, usually when both single s\arthe coincidence are within a specific
energy window. This energy window can vary depegdihthe purpose of the study, but it
surely includes the 511 keV photopeak. Due to n@ifeum gain in the photomultipliers, each
crystal element must be individually calibratedemmergy (Cherryet al, 2003). In order to
perform these energy calibrations, an energy spectmust be acquired with a source
phantom that irradiates all LORs as evenly as ptessihis source must contain at least one
distinguishable gamma emission with energy in gregge 100 keV to 700 keV. Using gamma
emissions with two different gamma energies makgsssible to establish a (most often
linear) dependence of the integrated charge omdpesited energy. A simplified version of

this method would employ only the 511 keV peak asdume that the zero channel of the
ADC corresponds to zero energy of the gamma.

Crystal identification must be achieved from exigtiinformation. A similar
acquisition to the one done during energy calibratis used, where the XY locations
extracted from the PS-PMT signals are histogranmol & flood field image (Figure 1.9)
(Cherry et al, 2003). This image is then segmented by an algurithat builds a
correspondence between each region of the imageaidcrystal element.
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Figure 1.9. Flood field image of a crystal arrayigled to a photomultiplier (left) and its look wgbte

for pixel identification. Hamamatsu H8500 (8 x &das) coupled to a 30 x 30 MLS crystal matrix vilith mm
of pixel size (Vaqueret al, 2005).

1.4.2. Data organization
List mode

One way to store the measured coincidence eventsrtber processing is to write the
information from prompt events in order of occuerin the acquisition system. An event
packet would include crystal number, energy, positig, etc. In addition, gantry information
(e.g. count rate and time information) as well s&mal data (e.g. gating and patient motion

information) can be inserted into the list modeatn in the form of tag words (Byme, 2001;
Parra and Barrett, 1998).

The event packets stored are processed afterwadigentually transformed into
sinogram data sets or LOR histograms (Kadrmas, )200dile the timing information is
analyzed so that the data set can be split inferdifit time frames.
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Projections and sinograms

A projection represents a set of parallel LORs apacific angleg (Bailey et al,
2004)

p(s0)= | 1 (xv)ay, (1.16)

wheref(x,y) is a two-dimensional representation of the agtidistribution, s is the radial
coordinate, ang is the transversal direction coordinate.

The projections from all angles can be arranged matrix. Because a point source
will be represented by a sine curve in this magpresentation (see Figure 1.10), said matrix
is called a sinogram (Bailest al, 2004; Bendriem and Townsend, 1998). Sinogramshare
basis of most of the image reconstruction scheBesdriem and Townsend, 1998).

- V Projection
I %\S‘/ - profiles
z\ N

}\ Point source

Figure 1.10. The projections of a point sourceiffi¢i@nt angles (left) are represented with a simee
in a sinogram representation the data acquired.

180°

Sinogram

1.5. Corrections

Quantitative measurements and images free frorfaetgi require corrections to the
acquired data before, during, and after reconstmciThis section introduces some of the
corrections that are applied to PET acquisitions.

1.5.1. Decay

During multi-frame studies, tracer activity decresslue to radioactive decay of the
radionuclide. Usually tracer activity is expressedhe time of injection of radiotracer to the
patient with the following formula

A= AD (1.17)

whereA; is the mean tracer activity during framandD; is the decay correction factor
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At
D = At Ae

i 1_e—/]mi (118)

with 4t the duration of the frame that was started at ttm®,; can be derived from the
following considerations:

The numberN]) of counts measured during the acquisition tithés

A s At _ A) A (4 20
N—L A(t)—jti Abet—7et(1 &) (1.19)
The initial activityA; can be calculated using this and
NAe"
A= (1.20)

what yields equations (1.17) and (1.18Nf= AAt is used (Baileyet al, 2004).

1.5.2. Attenuation

Attenuation correction is an important correctioegquired for quantitative PET.
Annihilation photons in positron emission tomogradPET) are subject to attenuation as
they travel through the imaged object. This effectuces the number of photons detected in
each line of response. If the material propertieshe object are known, the measurement
along each line of response can be corrected attenuation effect (Huargg al, 1979). A
coincidence event requires the simultaneous deteatf both photons coming from the
annihilation of a positron. If either photon is aldsed within the body or scattered out of the
field of view, a coincidence will not occur. Theopability of detection, therefore, depends on
the combined path of both photons. Since the pa#i length is the same for all sources lying
on the line that joins two detectors, the probabitif attenuation is the same for all such
sources, independently on source position.

The attenuation probability depends exponentiatiytle attenuation coefficient)(of
the crossed material and the length travelled engidAs both annihilation photons travel in
the same direction, the total length is alwaysdame. Thus, if the length travelled by one
photon isx and the total length iB, the number of non attenuated coincidences isngbye
(Bailey et al, 2004):

N = Ny e ™ = |\ e (1.21)

This is true even if the source is positioned asthe body. In this case, the
probability terms are” and e for the near and far detectors respectively (whzris the
total thickness of the body), and the number of atd@nuated coincidences is:

N = N,ee* = N é&° (1.22)

which is the same as it would be obtained fromrd@rnal source. Therefore, the problem of
correcting for photon attenuation in the body iwieglent to the determination of the
probability of attenuation for all sources lyingoag) every line of response (Bailey al,
2004). The probability of attenuation for each lioé response can be determined by
comparing the count rate from an external (transimig source with the unattenuated count
rate from the same source when the patientis ntdtarntomograph. With the advent of dual



20 1. PRINCIPLES OFPET

modality scanners capable of acquiring PET and &f& during the same imaging session,
there has been considerable effort put into theldgment of methods to employ CT data for
PET attenuation correction. When low statistic $raission scans are employed for
attenuation correction, the segmentation into alsmanber of attenuation coefficient classes
is frequently applied in order to reduce noise lwe tcalculated attenuation coefficients

(Papenfuset al, 2000).

1.5.3. Scatter

When a positron annihilates in the body, there isasonable chance that one or both
of the annihilation photons will scatter in the paat in the detector itself. At the energy of
annihilation photons (511 keV), the most likely ¢ypf interaction is Compton scattering.
Since the coincidence LOR formed after one or lpdtbtons undergo Compton scattering is
no longer collinear with the annihilation pointcbuevents degrade the quality of PET image.
Indeed, except for high energy resolution detedfG&T, HPGe, Si(Li), BrLa(Ce)) (Vasket
al., 2005; Cooperet al, 2007), scattered coincidences are not easilyridis@ated from
unscattered ones, solely based on their energytharsdmay significantly degrade both image
quality (due to loss of contrast) and quantitataceuracy(Wirth, 1989). The proportion of
accepted coincidences which have undergone Consgptitering prior to detection, is named
as thescatter fractionand its magnitude depends on several factorsudimg size and
density of the scattering medium, the geometryhef PET scanner and the width of the
energy acceptance window. There are several cleaistats of scattered coincidences which
can be exploited to estimate their distributiond(@otentially correct for it) in the measured
data (Baileyet al, 2004):

* LORs recorded outside object boundaries can onlgxptained by scatter in
the object, assuming that random coincidences (& subsection) have been
subtracted.

* The distribution of scatter counts is very smoa#th, it contains mainly low
spatial frequencies.

* The region of the coincidence energy spectrum belosv photopeak has a
large contribution from scattered events.

» Scattered coincidences that fall within the photdpeindow are mainly due
to photons that have scattered only once.

These various characteristics have given rise twide variety of approaches for
estimating and correcting scattered coincidenc&&n data (Bailey and Meikle, 1994; Levin
et al, 1995; Chernet al, 1993).

1.5.4. Random coincidences

Random coincidences arise when two unrelated pboswa detected in opposing
detectors, close enough in time to be acceptechéytiine-window criteria that the system
employs to identify coincidences. Such events Wi# considered by the system as a
coincidence event, in spite of whether or not tkheyne from the same annihilation event.
Random coincidences add uncorrelated backgrounat€so PET images and hence decrease
image contrast, if no correcting measures are téRaitey et al, 2004).

The number of random coincidences detected caedeed by choosing the scanner
geometry so that the FOV for single events is redu@adawiet al, 2000) or by reducing
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the time coincidence window of the system. The eaigroduced by random coincidences
can also be reduced by estimating their numbeawfilom counts on each LOR and taking
this estimation into account in the reconstructibhe number of random coincidences on a
particular LOR can be estimated in different wa@esdkeet al, 1984). For instance, the rate

of random coincidencdg; on an LOR joining two detectorsindj is

R, =2rrr, (1.23)

wherer; andr;j are the uncorrelated singles rates on detectansij respectively (Oliver and
Rafecas, 2008), andis the time coincidence window of the system (Kn2000). When the
single rate is measured, all correlated and unikde@ events will be detected. Thus,
correlated single events, those that produce wueitence events, must be substracted from
the total singles rate in order to achieve a mooei@te estimation of random coincidences.

Another way of estimating random coincidences eymla delayed coincidence
channel. In this scheme, timing signals from oneaer are delayed by a time significantly
greater than the time coincidence window. In theywall detected coincidences will be
uncorrelated and the number of coincidences fouiidow a good estimate of the number of
random coincidences in the prompt signal. Thislteguestimate is then subtracted from the
number of prompt coincidences to yield the combimadnber of true and scattered
coincidences (Knoll, 2000). The advantage of thithud is that the delayed channel has
identical dead-time properties to the prompt chanfee disadvantage is that the statistical
quality of the random coincidences estimate is @oasR;, ri andrj are subject to Poisson
statistics andR; may be a significantly smaller quantity than eitleor r; (Casey and
Hoffman, 1986).

1.5.5. Normalization

Lines of response (LOR) in PET datasets have e@iffiesensitivity due to variations in
detector efficiency, solid angle subtended, etcil@gaet al, 2004). Information on these
variations is required for the reconstruction ohqtitative, artifact-free images. Indeed, most
algorithms require that these variations are remgw#or to reconstruction. The process of
correcting for these effects is usually knowmasmalization(Hoffman et al, 1989; Badawi
and Marsden, 1999a).

In a block detector system, detector elements wagfficiency because of position of
the element in the block, physical variations ia tnystal and light guides and variations in
the gains of the photomultiplier tubes or corresfiog detector elements. Other causes of
differenced sensitivity are the energy window sidédor each crystal element and the time
window alignment (Bailewet al, 2004).

Accurate normalization is essential for good quatin in PET. Traditional solutions
to the normalization problem include direct and poment-based methods. With indirect
methods, a known source of activity is scannedj the normalization factors are estimated
as the ratio between the known ideal number ofcidénces and those actually measured
(Defrise, 1991). The main problem with this methedhat it requires the accumulation of a
very large number of counts in order to achieveeptable statistical accuracy for each line of
response (LOR). Component-based methods dividentimalization factors into detector
efficiency and spatial distortion correction, ingsic detector efficiency, geometric factors,
crystal interference, dead time factors, etc (Badaw Marsden, 1999a).
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1.5.6. Dead-time

PET scanners may be regarded as a series of semsystach of which requires a
minimum amount of time to elapse between successreats, for them to be registered as
separated. Since radioactive decay is a randonmegsocthere is always a finite probability
that successive events will occur within any minimtime interval, and at high count-rates,
the fraction of events falling in this category datome very significant. The main effect of
this phenomenon is a loss of the linear relatignbletween the number of coincidence events
registered by the PET scanner and the total agtimgide the FOV. The parameter that
characterizes the counting behavior of the systehigh event rates is known dgad time
(Knoll, 2000). The fractionatiead timeof a system at a given count-rate is defined as th
ratio of the measured count-rate and the countitedée would have been obtained if the
system behaved in a linear manner (Casegl, 1995).

One source of dead time is the integration timat t, the time spent integrating the
charge from the photomultiplier tubes (or correspog devices) arising from a scintillation
flash in the detector crystal. Other sources ofddi@ae are the time needed for analog to
digital conversion and the data transmission siBadey et al, 2004).

To measure the dead time behavior in a PET scaer function of count-rate, a
decaying source experiment may be performed (Gevnaga Hoffman, 1988). A uniform
source containing a known quantity of a short-liyeditron emitter is placed in the field of
view of the PET scanner. Repeated measurementfieofsingles, prompt and random
coincidence rates are then made as the activityarield of view decays. The incident count
rate for a given level of activity in the field gfew is obtained by linear extrapolation from
the count-rate response measured when most ottivityahas decayed away and dead time
effects are small. The ratio between the inciderd emeasured count-rate then gives the
fractional count-rate losses.

Dead time correction schemes are usually constfueteasuring the live time (1-
fractional dead time) for each subsystem. If thgs not possible, an analytic model
incorporating knowledge of the system architectsreonstructed, and fitted to data from
decaying source experiments. The decay correctibanse then consists of applying a serie
of measured and modeled correction factors to eta dcquired. The live time in a sub-
system may be measured in several ways. One playgsbito implementing a second circuit
parallel to the measurement circuit for which tive time estimate needs to be made. Regular
pulses are sent down from the second circuit toumnter (Daube-Witherspoon and Carson,
1991).

Dead time models usually treat system dead timebeing separable into two
components, described as paralyzable and non-patdéy (Knoll, 2000). The paralyzable
component describes the situation where the sygemable to process events for a fixed
amount of timer after each event. If an event arrives while thstey is busy due to a
preceding event, the system remains dead for heurtseconds from the time of arrival of
the second event. The relationship between theunségvent raten, the actual event rate
and the dead time resulting from a single eveghisn by:

m=ne™ (1.24)

In the non-paralyzable case, the system is agaitered dead for a timeafter each
event, but while the system is dead, further evéiatge no effect. For such systems, the
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measured count rate tends asymptotically to aitigivalue oft™ as the actual count-rate
increases, and the relationship between andz is given by (Knoll, 2000)

m=—" (1.25)

1.5.7. Pile up

Pulse pile up occurs when a photon deposits enertjye detector crystal while the
signal from the previous event is still being ingd. Pile up events cause two types of
errors in PET data. The first one occurs when tleeyp event provides a large enough signal
to fall outside the energy window and the eventost. Under this situation, deadtime
corrections will be required for quantitative me@snent. The second error is interaction
misspositioning. In detection systems, which empo2-D matrix of crystals and analog
logic to identify the crystal of interaction, theigtillation photons from all crystals are
processed as a single event, and for pile up eubet@pparent location of the interaction
results from an average of the crystals that alesbradiation. If these events are not rejected,
they will cause misspositioning of valid coinciderevents. This will cause loss of resolution
and contrast in the image, and cause a transfawfts between image planes, leading to loss
of counts in the originating plane and additionatkground events in the destination plane
(Germano and Hoffman, 1990; Badawi and Marsden9ip@&ee Figure 1.11).
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Figure 1.11. Simulated flood histogram for a Hamamatsu 8520-C12 coupled to an array of 15
x 15 LYSO crystals with (right, activity = 1mCi) and without (left, activity = 10 uCi) pile-up events. Pile-
up produces misspositioned of detected photons.

1.6. Performance evaluation

1.6.1. Energy resolution

Energy resolution measures the precision with whieh system can determine the
energy deposited by incident photons. For a soofc®ll keV photons, an ideal system
would show a well-defined peak for 511 keV. Energgolution is usually measured by
histograming the energy of the events acquiredmotting the number of events versus the
energy measured. In scintillation detectors eneegplution is a function of the relative light
output of the scintillator, as well as its intriosenergy resolution. The intrinsic energy
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resolution accounts for non-statistical effectst thiése in the energy measurement process.
Good energy resolution is necessary for a PET tieten order to achieve good image
contrast and to reduce background counts (Letad, 2006).

dN/dE A

g
E

511 keV

Figure 1.12. Energy spectrum of 511 keV gamma rapergy resolution is measured as the full width
at half maximum of the photopeak.

1.6.2. Timing resolution

The timing resolution of a PET detector describbe tincertainty in the time
determination of the arrival of the photon as meagiy the detection chain, on an event-by-
event basis, due to statistical fluctuations. Otiteg good timing resolution of a PET detector
is a challenging goal because it involves detectibceorrelated photons that will arrive to
detectors with time differences of a few hundrefipiooseconds. Since timing resolution
represents the variability in the arrival times flifferent events, it needs to be properly
accounted for when detecting coincident events. dike of the coincidence time window
should be chosen taking into account the timinglwg®n of the system. Since random
coincidences are proportional to the coincidenocangy window, a narrow window helps
reducing their occurrence. Hence, for PET imagifagt scintillator with good timing
resolutions are desirable in order to reduce thetisn of random coincidences.

1.6.3. Spatial resolution

Spatial resolution can be presented as the minindistance between two point
sources that allows them to be disentangled (Bategl, 2004). Spatial resolution is usually
determined measuring the width of the profile aledi when an object much smaller than the
expected resolution of the system is imaged. A commethod consists in imaging a point
source and measuring the point spread fun¢B&@+). Usually, the resolution is expressed as
the full width at half maximum (FWHM) of the pradil A good approximation often
employed for this profile is a Gaussian functiomi{By et al, 2004).

There are many factors that influence resolution:
* Non-zero positron range after radionuclide decay.

* Non-collinearity of the annihilation photons dueth@ residual momentum of
the positron.
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» Distance between detectors.

* Width of detectors.

» Stopping power of the scintillator.

* Incident angle of the photon at the detector.

» Depth of the interaction of the photon.

* Number of angular samples.

* Reconstruction parameters (matrix size, reconstnuditer, ...).

Usually, the resolution along several directionsas the FOV of the PET scanner is
given, such as transaxial and axial resolutiorsaaspling is not necessarily equal in all these
directions. Generally, ring-PET systems are ovemgad transaxially, while axial sampling
is just enough to realize the intrinsic resolutafrine detectors. Transaxial resolution is often
measured for both radial and tangential directaingdifferent distances off the central axis of
the camera, as it varying in ring geometries dudifferential detector penetration at different
locations in the x-y plane (Bailest al, 2004).

1.6.4. Sensitivity

The sensitivity of PET scanners represents theatyabil detecting coincident photons
emitted from inside the FOV of the scanner. It @imy determined by two parameters of the
scanner: geometry and stopping efficiency of theaers for 511 keV photons. The scanner
geometry defines the fraction of the total soliglancovered. Small-diameter and large axial
FOV geometries, typically lead to high-sensitistganners. The stopping efficiency of a PET
detector is related to the type of detector beisgdu Usually, scintillation detectors provide
high stopping power for PET imaging with acceptadtergy resolution. The stopping power
of the scintillation detector is dependent upondbasity andeof the crystal used. A high
stopping power, which allows for shorter crystats,also desirable for the reduction of
parallax error in the images acquired (Baiétal, 2004).

1.6.5. Scatter fraction

Scatter fraction is defined as the fraction of th&l coincidences recorded in the
energy window which have suffered scatter, in eithee or two events of the coincidence
pairs of valid coincidences (Bailest al, 2004). Scattered events decrease image contrast i
PET by misplacing events, and cause errors in ¢keenstructed radioactivity distribution.
The scatter fraction (SF) is also a critical comgminof the noise equivalent count rate
(NECR) calculation (see next subsection), widelgdugs a golden measure to optimize
acquisition parameters such as timing and energyows, and for making comparisons
among different clinical (NEMA, 2001) or preclinicd EMA, 2008) scanners. Scatter can
arise from three major sources: scatter insideadthject, scatter at detector elements, and
scatter from the gantry and surrounding environmémthuman imaging, object scatter
generally dominates (Chersgt al, 2003). Standards have been developed for meagstimn
SF in clinical PET scanners (NEMA, 2001), and thesthods are quite robust across a wide
range of scanners and imaging parameters.
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1.6.6. Count rate performance. NEC

Count rate performance refers to how many eveetsyktem can actually process in a
given time. It is related to the time that the eystneeds to process a photon. After a photon
is detected in the crystal, a series of optical aledtronic steps take place, each of which
requires a finite amount of time. As these combmseries, a slow component in the chain
can introduce a significant delay. The determimatd count rate losses for PET systems is
employed to compare performance among differentrera (NEMA, 2001; NEMA, 2008).
The method employed in PET for count rate and dead determinations is the use of a
source of a relatively short-lived tracer in a mtrime dynamic acquisition protocol. Then, a
number of data frames are recorded with short durabver a number of half-lives of the
source. Often, a cylinder containing a solutiort®f¥ in water is used. From this data, count
rates are determined for true, random, and scaiteponents (Bailegt al, 2004).

The purpose of estimating count rate performandeegiesire to assess the impact on
image quality of increasing the count rate. Thesa@quivalent count (NEC) rate (Strotleer
al., 1990) provides a indicator of count rate perfamoeaof tomographs, or of the same
scanner operating under different conditions (€B.,and 3D acquisition modes). The noise
equivalent count rate is the count rate which wddde resulted in the same signal-to-noise
ratio in the absence of scatter and random evénis.always less than the observed count
rate. Indeed, the noise equivalent count ratefineld as (Baileyet al, 2004)

T 2

|:Ttotal (S"‘Tj:|
NECR= (1.26)
(Ttotal + 2 fR)
whereToa IS the observed count rate (including scattereatsyel andS are the unscattered
and scattered event rates respectiveig, the random field fraction that is, the ratiotbé
source diameter to the tomograph transaxial fiéldi@w, andR is the random coincidence
event rate. Some caution is required when compalBg results from various systems,
namely which scatter fraction was used and howas determined, how the randoms fraction
(R) was determined and how random subtraction waBeapplowever, NEC curves permit
comparisons of count rate, and therefore are @teployed to compare image quality among
systems (Bailewt al, 1991).

1.6.7. Partial volume effect. Recovery coefficients

In quantitative PET, the reconstructed image showdg the radiotracer concentration
with uniform accuracy and precision, throughout tie¢d of view. However, due to partial
volume effects (Hoffman, 1979), the bias in recanged pixel values may vary depending
on the size of the structure being sampled andaitkoactive concentration, relative to
surrounding structures. The sensitive volume hasedsions approximately equal to twice the
FWHM resolution of the reconstructed image. There several approaches to correct or to
minimize these partial volume effects. These ineludethods that attempt to recover
resolution before or during image reconstructiod arethods that use side information from
anatomical imaging modalities such as CT and MPRIugsett al, 1998).

Recovery coefficients (RC) are defined as the rafiobserved to true activity in a
(PET) image. RC are usually measured for sourcediffrent sizes and represents useful
tool to relate measured and true activity (Baiewal, 2004).
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Figure 1.13. NEC rate simulated with PeneloPET &Bsmgt al, 2006) for a mouse size phantom
acquired in a Siemens Inveon (Kempal, 2006) scanner, with an energy window from 35830 keV. True
and random components are also shown in the fighsethe random rate increases, the NECR reaches a
maximum value and then starts decreasing.

1.7. The state of the art in small animal PET

Small animal PET scanners have been developed tioripe imaging of small
anatomical structures in laboratory animals. Theettisions of organs such as the brain in
mice and rats are, respectively, nearly 8 times Bhtimes smaller than in human subjects.
The need to achieve much higher resolution antheasame time, good sensitivity is a hard
task (Greeret al, 2001; Myers and Hume, 2002; Chatziioannou, 200@bjerms of design,
the reduced size of scanners offers some advantigesknown that the maximum spatial
resolution is limited in PET by the non-collinegriaf the two annihilation photons, besides
positron range. Reducing the distance between tbeseitnplies that the effect in the system
resolution of non-collinearity of the photons cae teduced. Other advantages are raw
material savings due to the smaller size of théesys

The detection systems in PET have mostly been dpedlusing scintillator materials
(Melcher, 2000; van Eijk, 2002; Humat al, 2003; Nutt, 2002; Zanzonico, 2004; Townsend,
2004). Inorganic crystals such as BGO, LSO (Ce)@8® (Ce) have been employed in the
construction of human scanners, and then usedniall inimal PET scanners (Lewas$ al,
2002; Chatziioannou, 2002a; Schafers, 2003). Irerotal achieve a high spatial resolution in
scintillator based small animal PET scanner, tize @if the scintillator crystals must be
reduced compared to human tomographs. As a conseguthe solid angle covered by a
single (small area) crystal and detector elemesitnigller than in human scanners.

Considerable effort has been put into the coupioclgeme between scintillator and
photomultiplier tubes, in order to optimize lighdllection and/or to simplify the design and
maintenance of a PET detection system (Laroleinal, 2006). Block detector (Nutt, 2002)
represent a breakthrough that makes it possibledéwelopment of modular structures to
detector rings reducing the number of photomukiplubes required. This technique is still in
use. More recently, optical fiber coupling has bpeoposed to give more flexibility to the
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design of scintillator arrays, with high packingdtion (Cherryet al, 1996). Continuous
light-guide backed to an array of photomultiplieis,another effective coupling scheme to
improve light collection for large area continuopiselated detectors (Surét al, 2000).
Avalanche photodiodes (the solid state versionhaftpmultiplier tubes) for the read-out of
scintillation crystals has also been investigat&drtj et al, 2000; Ziegleret al, 2001),
although these are only implemented in very few mancial PET scanners. Researchers are
now exploring innovative solutions regarding bothrdware (detector material, detector
configuration and detector read-out) and softw&@f@ (econstruction algorithms), to build
systems with improved performance characteristieGrabina et al, 2006). For example,
SiPMs (Otteet al, 2005) are promising devices for the readout oftdator detector in next
generation of PET scanners.

High spatial resolution and sensitivity are impottaggoals in positron emission
tomography (PET), especially for small animal inmggapplications. With the increased use
of (translational research) mouse models in bicldbggre are many examples where the
ability to visualize and accurately measure radasptaceutical accumulation, in structures
that have dimensions of a millimeter or less iresis important (Larobinat al, 2006).
Obvious examples include early detection and evialnaof metastasis disease in mouse
models of human cancer, and the study of cell dyc&in relation to the immune system and
novel stem cell therapies. Achieving these goalguires the highest possible spatial
resolution and sensitivity. While other consideyai, such as tracer specific activity and
concentration of biologic target within the aninaaé also critical in determining whether a
specific signal is measurable by PET, the rangappfications for which small animal PET is
suitable will clearly be dictated, to a large extday the resolution/sensitivity trade off of the
imaging system.

The sensitivity of most current small animal PE@rsters is in the range of 0.5-10%
(Lageet al, 2008; Wanget al, 2006; Visseret al, 2009). This indicates that a large number
of decays do not lead to recorded events. Therénareanajor ways in which events are lost.
First, one or two of the 511 keV photons may néernsect the detector system. This can be
fixed by designing PET systems with large solid langoverage. Current animal PET
scanners have an average solid angle coveragessftian 20%. Second, if a photon
intersects a detector, it may not interact in teéector. To improve on this, detectors with
larger intrinsic efficiencies will be required. Tigpl efficiencies are in the range of 20—70%,
and of course depend on the detector materialtaokiness.

The path towards much higher sensitivity, smallmai PET systems, without
increasing cost, requires the design of high-afficy (>60%) detectors with adequate depth
of interaction capability. These detectors can tmpht in close to the animal, reducing the
detector area required per unit of solid angle caye. This approach should yield system
sensitivities in the range of 10-20% (Larobetal, 2006).

The other major issue of animal PET design is apatisolution. The intrinsic spatial
resolution of PET detectors is determined by matyadrs, including positron decay physics,
photon interaction physics, and detector materral geometry (Larobinat al, 2006).
Current systems are based on scintillators withviddal detector elements as small as 0.8 to
1 mm in cross section (Ta&t al, 2003). These detectors have reported resolutimmging
from 0.8 to 1.25 mm, which can be directly relatedhe size of the detector elements, with
additional effects due to light production and eotion, inter-crystal scatter and electronic
multiplexing. More recently, solid state detectbesre shown promise as room temperature
detectors for nuclear medicine applications (Vaskal, 2005). Direct detection eliminates
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the complications related to scintillation light lleation and detectors can also be
manufactured with smaller pixels than what is riyadchievable in scintillation crystals. To
determine whether further significant gains cannme in PET detector resolution, and to
identify possible detector configurations that cachieve such gains, it is necessary to
understand how much each these factors contribictethe overall resolution of PET
detectors. Since these factors cannot be easiigtésbto study them experimentally, Monte
Carlo simulation and modeling is the most feasibgproach for exploring the resolution
limits, and for predicting the performance of nestettor designs (Braeet al, 2004).

Positron Photon Energy deposited Detector Detector
range non—colinearity m detector [esponse read out

Figure 1.14. Linear system model of sources oflutiem degradation in PET (Bailest al, 2004).

Signal
processing

1.7.1. Depth of interaction

For research studies in biomedical sciences, samthal PET scanners must be
highly sensitive. Much effort has been devoted mpriove the spatial resolution of small
animal PET scanners (Kitamueaal, 2004), but the requirement of high sensitivitydaot
been satisfied. The scanner should contain longtals/in the radial direction and have a
larger solid angle to increase its sensitivity; leeer, parallax error would prevent realizably
both conditions simultaneously. Depth of interactiDOIl) detectors are one way of
achieving high sensitivity without being affectegt parallax (Seidelet al, 1999) errors.
Many types of DOI detectors have been proposedh@swich-type detector using the
difference of scintillation decay time of the maés that form the scintillator layers (Seidel
et al, 1999), a multiple layer detector with insertidretween crystals producing a shift in a
two-dimensional projection of the collected light the PMT (Murayamaet al, 1998), a
detector that uses the signal ratio of two photteaters coupled at both ends of crystal
elements (Braemt al, 2004), among many other methods.
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Figure 1.15. This figure shows the line spread fiancacross lines of response with different inaide
angles.
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2. Basics of image reconstruction

2.1. Introduction

The goal of PET image reconstruction is to obtherhost accurate three dimensional
map of source distribution, using the informatidrire data acquired with the scanner. There
is a large variety of reconstruction methods tleat be used to achieve this. In this chapter,
the main features of these methods will be desdribe

One way of representing the imaging system is bynmaeof the following linear
relationship (Bendriem and Townsend, 1998; Hereaial, 2006)

p=SRMIf +n (2.1)

where p is the set of observations (the dat8RM is the known system moddi,is the
unknown image, and is the error present in the observations, or dfeces not included in
the SRM The goal of the reconstruction is to find the g@athat most adequately reflects the
datap, represented as projections through the unknoyetbb

The standard parameterization of 2D PET data erspgaygrams. For a fixed plane,
Figure 2.1 defines the variablesand @ used to parameterize a straight line (LOR) with
respect to a Cartesian coordinate syspeny)in the plane. The radial variabdas the signed
distance between the LOR and the center of thedowate system. The angular varialdbe
specifies the orientation of the LOR.
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Figure 2.1. Schematic representation of a ring searnlhe tube of response between two detectors is
represented in grey containing the corresponding L@hich connects both detectors. The sinogranakbass
and® define the location and orientation of the LOR.

The functionp(s@®) is referred to as a sinogram and contains theititegyrals across
the objectf(x, y) For a fixed angled = &,, the set of parallel line integratgs®o )is a 1D
parallel projection of.

2.2. Analytical methods

The central-section theorem states that the Fotwrdgrisform of a one-dimensional
projection is equivalent to a section, or profée¢,the same angle through the center of the
two-dimensional Fourier transform of the object kkeand Slaney, 1988). Figure 2.2 shows a
pictorial description of the central-section themrewhereDl{ p(sgo)} is the one-dimensional
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Fourier transform of a projectionjz{ f(x, y)} is the two-dimensional Fourier transform of
the image, andy is the Fourier space conjugate>ofThe central-section theorem indicates
that if we know P (u,,¢)at all angles, then we can fill in values R)(rux,uy). The inverse

two dimensional Fourier transform Gf(ux,uy) will give f (x, y).

P.®)=0(p(s)=0.(f ()}, = F (avy)

(2.2)
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Figure 2.2. Pictorial illustration of the two-dimg@anal central-section theorem, showing the
equivalency between the one-dimensional Fouriersfoam (top right) of a projection at angle(top left) and
the central-section at the same angle (bottom flefugh the two-dimensional Fourier transform g bbject
(bottom right) (Baileyet al, 2004).

Backprojection is the adjoint operation to the fard projection process that yields
the projections of the object. Figure 2.3 shows llaekprojection along a fixed angte.
Conceptually, backprojection can be described asipy a value op(s@) back into an
image array along the appropriate LOR but, sineekimlowledge of where the values came
from was lost in the projection step, a constadtivas placed into all elements along the
LOR (Henkinet al, 2006).

One might assume that a simple backprojectionldhal collected projections will be
enough to return a good image, but this is nottds® due to the oversampling in the center of
the Fourier space. In other words, each projecfibs in one slice of the Fourier space
resulting in over sampling in the center and lesa@ing at the edges.

The over sampling in the center of Fourier spacsado be filtered in order to have
equal sampling throughout the Fourier space. BHgicthe Fourier transform of the

backprojected image must be filtered with a rammrfi(u:,/uf+uj). This cone filter

accentuates the values at the edge of the Foysresand deaccentuates the ones at the
center of the Fourier space.
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Figure 2.3. Backprojectiorh(x,y®), into an image reconstruction array of all valoép(s®) for a
fixed value of® (Henkinet al, 2006).

The filtered-backprojection (FBP) reconstructiontinoel is probably the most well
known standard method for reconstruction which i@splhe concept of backprojection and
filtering explained before. Within FBP, the geneeadpression employed to calculate the
source distribution from projection data is (Herma®80):

f(xv) =TD?{IUSI 0f p(so)}} do (2.3)

The inverse problem of equation (2.1) is generatinsideredill-posed in several
ways (Baileyet al, 2004). In particular, its solutions are unstaldethe sense that small
perturbations of the data (i.e. noise) can leaghjoredictable changes in the estimation of the
reconstructed image. As photon detection is a si&tehprocess, some form of regularization
is required to constrain the solution space to jglayly acceptable values.

The most common form of regularizing the image nstaucted is by means of simple
smoothing. Within the FBP algorithm this can betten as:

f(xy)= [ E{W(o.)oof o so} o (2.9)

0

where W(s) is the smoothing function, that can take any shdpe is deemed most
advantageous based on the image SNR, or otherdewasons (Henkiret al, 2006). A very
common smoothing function is the Hamming functieeg Figure 2.4) (Bendriem and
Townsend, 1998).
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Figure 2.4. lllustration of the use of an apodizamp filter W(ps) to suppress amplification of high-
frequency noise above the cut-off frequency (Beardrand Townsend, 1998).

2.3. Rebinning

Rebinning algorithms allow for the sorting of ddtam oblique sinograms of a 3D
data set into the corresponding planes of a 2D skdtdn this way, it is possible to reconstruct
a 3D data set with conventional 2D reconstructidmesnes, while maintaining the sensitivity
of 3D acquisitions. Mainly two approaches are ugedinical routine: single slice rebinning
(SSRB) (Daube-Witherspoon and G., 1987) and Fouwdbimning (FORE) (Defriset al,
1997).

2.3.1. SSRB

This approximate algorithm (Daube-Witherspoon and 1®87) is based on the
assumption that each obligue LOR measured crossgsacsingle transaxial section within
the support of tracer distribution. SSRB defines thbinned sinograms by (Baileyt al,
2004):

6,

max

Peen (S @ 2)226’—(52) R(sp.l= 20) @ (2.5)
B, (S, 2 = arcta M (2.6)
max 4 Rf _ SZ .

wherefmaxis the maximum axial aperture for an LOR at a distess from the axis in slice,

R4 is the scanner radius, ahdthe number of transaxial sections sampled. Theridgn is
exact for tracer distributions which are linearzirfor realistic distributions, the accuracy of
the approximation will decrease with increaseddsximl FOV radius and with increas@gh
Axial blurring and transaxial distortions, whichcirease with the distance to the axis of the
scanner, are the main drawbacks of the SSRB appatixn.

2.3.2. FORE

The approximate Fourier rebinning algorithm (Dedfred al, 1997) is more accurate
than the SSRB algorithm and extends the range d?BD studies that can be processed using
rebinning algorithms. The main characteristic offEDis that it proceeds via the 2D Fourier
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transform of each oblique sinogram. Rebinning seldaon the following relation between the
Fourier transforms of oblique and direct sinogrdBualey et al, 2004)

P(v.k 20)= R(v,k{ = 2 karg/( 2v) 6) (2.7)

wherek is the azimuthal Fourier index. The FORE method ldiep slightly the statistical
noise, as compared to SSRB, but results in sigmflg less azimuthal distortion.

2.4. Iterative methods

2.4.1. EM-ML

The most widely applied algorithm for finding theaximume-likelihood (ML)
estimation of activityf given the projectiong, is the expectation maximization (EM). This
was first applied to the emission tomography prnobley Shepp and Vardi (Shepp and Vardi,
1982). ML, though, is a general statistical meth@mmulated to solve many different
optimization problems of physics, biology, econoand others. The EM-ML algorithm can
be written as (Herraiet al, 2006)

L
ZL:SRM( L V)ZSRM(pL(, \2) fi ( V)

> SRM(L V)

(2.8)

fit+l (V) - fit (V)

wheref is the reconstructed image,is the data acquired argRMis the system response
matrix. TheSRMis a precalculated matrix that contains the prdipatihat one emission
occurred at voxeV is detected in a detector eleméntThe accuracy of this matrix will be
extremely important for the quality of the imagesulting from the reconstruction method
(Mumcuogluet al, 1996).

Usually, iterative algorithms based on ML statatienodels assume that the data
being reconstructed retain Poisson statistics (&l Vardi, 1982). However, to preserve
the Poisson statistical nature of data, it is nemgsto avoid any pre-corrections (&t al,
1998) to the data. Corrections for randoms, scattbel other effects should be incorporated
into the reconstruction procedure itself, ratheanttbeing applied as pre-corrections to the
data. At times, sophisticated rebinning strategiesemployed to build sinograms into radial
and angular sets. This also changes the statidisaibution of the data, which may no
longer be Poisson like (Kadrmas, 2004).

A serious disadvantage of the EM procedure isld® £onvergence (Lewittet al,
1994). This is due to the fact that the image idatgd only after a full iteration is finished,
that is, when all the LORs have been projectedoaalt projected at least once. In the ordered
subset EM (OSEM) algorithm, proposed by (Hudson lzandtin, 1994), the image is updated
more often, which has been shown to reduce the aumibnecessary iterations to achieve a
convergence equivalent to that of EM:

convergence Subiterations= Iterationsx Subsets (2.9)

According to the literature, EM methods have anotingortant drawback: noisy
images are obtained from over-iterated reconstyastiand this is usually attributed to either
the fact that there is no stopping rule in thisdkaf iterative reconstruction (Johnson, 1987) or
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to the statistical (noisy) nature of the detectiwacess and reconstruction method (Bettinardi
et al, 2002; Biemoncet al, 1990). In practice, however, an image of reaskengbality is
obtained after a few iterations (Hudson and LarkB94) (se&igure 2.5.

Figure 2.5. Reconstructed images of a cold Dergafmntom filled with FDG and acquired with the
VISTA scanner. The left image has been reconstidugting a FORE-2DFBP method and the right image has
been reconstructed using a 3ADOSEM method. Thia sxample of the improvement in resolution and llefe
noise that can be achieved when statistical metacelemployed.

Several techniques have been proposed to addressdisy nature of the data:
filtering the image either after completion of ttezonstruction, during iterations or between
them (Slijpen and Beekman, 1999), removal of ndisen the data using wavelet based
methods (Mairet al, 1996) or smoothing the image with Gaussian ker{®leves method)
(Snyderet al, 1987; Liow and Strother, 1991).

Maximum a priori (MAP) algorithms are also widely used (Green, J9890AP adds
a priori information during the reconstruction process,tipcal assumption being that, due
to the inherent finite resolution of the systeng thconstructed image should not have abrupt
edges, at least not more abrupt that what one xpace from the resolution of the system.
Thus, MAP methods apply a penalty function to theseels which differ more than a certain
threshold from their neighbors. Whether the maximetffective resolution achievable is
limited, by the use of these methods, is still prroissue (Alessiet al, 2003). On the other
hand, a proper choice of reconstruction paramesers) as number of iterations, the use of an
adequate system response and a smart choice adtsfpscan yield high quality images by
means of the EM procedure (Herraizal, 2006).
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3. Monte Carlo simulations
3.1. Introduction

There is a class of numerical methods employedlicescomplex problems, based on
simulations that are at least partially stochastiaf is, they use random numbers (Kalos and
Whitlock, 1986). These methods allow for simulasiari complex physical processes in cases
where a realistic solution is impossible (or veayd) to find by analytic means. For instance,
in the description of radiation-matter interactidimere are many variables to be considered,
that define the path and fate of each particle.ufations are a common resort to study the
interaction of radiation with materials (Briesmeist1993; Baroet al, 1995; Agostinelli,
2003).

Simulations can yield information over the procesamder study with several
advantages over experiments. For any given maddslyery easy to change the parameters of
the simulation and to investigate the effect okthehanges in the performance of the system
under study. Optimization of the design of imagsygtems can largely benefit from the use
of simulations (Braenet al, 2004). Furthermore, by means of simulations cae study
directly, properties of the scanner that cannoimieasured experimentally. For example, it is
impossible to accurately measure the scatter coergoaf the radiation emitted from a
distributed source, independently on the unscatt@@mponent. By using Monte Carlo
techniques that incorporate the known physics ef ghattering process, it is possible to
simulate events scattered at the object and tordete their effect on the final image. Hence,
simulations can help to understand the underlymoggsses, since all the history of simulated
events is accessible (Ljungbezpal, 1998).

3.2. Random numbers

Monte Carlo simulations employ random numbers. gusace of random numbers is
such that it is impossible to predict which will thee next number in the sequence. Sequences
of perfectly random numbers are almost impossiblegénerate, by definition. Instead,
pseudo-random numbers are employed. These psendomanumbers are generated by an
algorithm that produces sequences of reasonablyedigtable appearance and with very long
repetition cycles. These algorithms use a seeditalinumber as a starting point for the
generation of the sequence. Two sequences wiltdeetical if they are generated from the
same seed and algorithm and therefore, differemiissenust be used in each simulation. In
addition, these sequences of random numbers aga bfiilt so that they produce random
variables that follow an uniform distribution in specific range of values, that is, the
probability of appearance of any number in the rirdk would be the same (Kalos and
Whitlock, 1986).

Most programming languages include algorithms toegate sequences of random
numbers uniformly distributed in the interval (0. These are used as the basis for the
generation of more complex distributions suitalole Monte Carlo methods. In what follows
we introduce a few statistical definitions thatlveié useful for Monte Carlo methods.

The probability distribution function (PDF) of armuous variablex (p(x)) is the
function that contains the probability fartaking a specific value. This function must be
positive and normalized to unity in a range of eslmin Xnay (Ljungberget al, 1998).

p(x)=0 [ p(%) dx= (3.1)



38 3. MONTE CARLO SIMULATIONS

The cumulative distribution function (CDF) of a ialex is the function that contains
the probability that the value of the random vaedialls within a particular intervakf,n X].
It is therefore a non-decreasing function frBix,in)=0 to P(xnay=1 (Ljungberget al, 1998).

P(x)=[" p(X) dx 3.2

(x)=[" p(x) d (32)
The first ingredient of a Monte Carlo calculatiantihe numerical sampling of random

variables with specified PDFs. Different technigt@generate random values of a variable

distributed in the intervalk,in, Xnay according to a given PD{(x), are explained below and
in more detail for instance in (Sempaiual, 2003).

3.2.1. Inverse transform method

The cumulative distribution function gf(x) is a non-decreasing function gfand,
therefore, it has an inverse. The transformatienP(x) defines a new random variable that
takes values in the interval (0, 1), owing to tberespondence betwegmmand(.

Therefore, the variabbedefined asc = P*(¢) is randomly distributed in the intervad (
min, Xmay- 1his method is called the inverse transform iangsed when the inverse pfx) can
be found analytically.
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Figure 3.1. PDF p(x) and the corresponding CDF .P@hiform random numbers and their
corresponding CDF can be used to generate randanbers that follow a particular PDF. One takes a
uniformly distributed random numbérin the (0, 1) interval. The inverse of the PDFIi¢ applied to the
value to yield thex value of the random variable distributed with tlesired PDF.

As an example, consider the exponential distributd the free pathkx of a particle
between interaction events,

p(x) =%exp(—>§/)l) (3.3)

where /1 represents the mean free path. In this case thatieq can be solved using the
method described above.
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&= j /]lexp(—x’//l) dX = x=-4 In(1-¢) (3.4)

The inverse transform method can also be usedesftlg for random sampling of a
continuous distributionp(x) given in numerical form, or that is too complicatedbe solved
analytically. This can be achieved by usingagoriori calculation of the CDF foN values of
Xn, keeping constant the difference between the H@ermsecutive values.

P(x)=[" p(¥) = (3.5)

The accuracy of the simulation will depend on thenber of points employed to
subdivide the range of interest. A way of choosiadues ofx, in the simulation with this
method is to generate a random numband to consider the quantify= & N, which takes
values in the interval () (Sempatet al, 2003).

3.2.2. Rejection methods

The inverse-transform method for random samplingb&sed on a one-to-one
correspondence betweenand ¢ values, which is expressed in terms of a singlaeth
function. There is another kind of sampling methbdt consists of sampling a random
variable from a certain distribution, different pgx), and subjecting it to a random test to
determine whether it will be accepted for use gated. These rejection methods lead to very
general techniques for sampling any PDF (Kalos\&ihitlock, 1986).

First of all, a functiorG(x) is chosen such thas(x)= p(x), and a random number

is obtained using any method according to thattfanc After this, another random number
uniformly distributed between 0 arl(x) is chosenx values are rejected yflies abovep(x)
or accepted if/ lies belowp(x). This process gives rise to valuesxdafistributed according to
P(X).

The efficiency of the method (the fraction of adeelx trials) can be calculated with
the following expression:

. pr(x) dx
IbG(x) dx

a

(3.6)

3.2.3. Variance reduction methods

Monte Carlo simulations can be time consuming. Thiparticularly true when the
majority of photon histories generated by a stathddonte Carlo simulation are likely to be
rejected, for example when simulating a point sewtca large distance from a small detector,
so that the probability that a photon would hit tleeector is small.

Variance reduction techniques can then be applieatder to improve the efficiency
of the simulation, and hence the statistical progerof the images produced. These
techniques are based on computing a weMhtfor each photon history. This weight
represents the probability that the photon padsesigh a particular history of events. These
techniques are based on assumptions about prdpdhitictions of the physical processes,
either to reduce the variance per history or teedpgp the simulation to allow more histories
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to be simulated during the same CPU time. To aehibis, to each photon is associated a
weight W, which is the quotient between the true probabiitstribution and the fictitious
probability distribution that the photon goes thybua particular series of events (Ljungberg
et al, 1998).

In applying variance reduction techniques to tmeusation of random walk processes
(such a photon passage through matter), variolmigees can be used. An initial weight is
attached to each particle history as it is beingegated. The history weight is then updated
event by event by multiplying it by the correct glei factor for the variance reduction
technique, if any, used at that step of the sinmdatAs an example, we consider a method
where weforce all the interactions to reach the detectors. Tlegght of the history in this
case, will simply be given by the probability ofr@mdom interaction to reach the detector,
which can be computed by simple geometrical argusp@md thus only photons whose paths
intersect the detector need to be simulated.

3.3. Use of Monte Carlo techniques in Nuclear Medic  ine

Historically, it was in nuclear medicine that mo$the early Monte Carlo calculations
in radiation physics were performed. Today, the efs®lonte Carlo simulations in this field
continues to increase. The energy range of theopkatised in nuclear medicine calls for a
minimum emphasis on the production of secondaryrggth particles and high-energy
processes that yield an electromagnetic cascadee ather extreme, very low-energy photon
can be practically ignored. On the other hand, tleed for detailed simulations of
complicated geometry configurations, is sharedyddamany other applications, and nuclear
medicine is not exception in adopting the enormpatential provided by some of the major
public Monte Carlo codes and their advanced gegmetipabilities (Agostinelli, 2003;
Briesmeister, 1993).

Currently there are many Monte Carlo simulation kages with different
characteristics, suitable for either PET (PositEonission Tomography) or SPECT (Single
Photon Emission Computer Tomography) processekffatent levels of reliability. Accurate
and versatilegeneral-purposesimulation packages such as EGS4 (Rogers, 198CNRM
(Briesmeister, 1993), and most recently PENELOPEr@Bet al, 1995) and Geant4
(Agostinelli, 2003) have been made available. Thasepackages require a lot of expertise in
order to model emission tomography configuratidghgther, SImSET (Harrisoet al, 1993),
GATE (Janet al, 2004), Eidolon (Zaidi and Scheurer, 1999) and 8IBT (Thomsonet al,
1992) are powerful simulation codes for specifiplagations in PET and SPECT. Nowadays,
SIMSET and GATE are probably the most extensivelgdu(Barretet al, 2005; Duet al,
2002; Lazarcet al, 2004; Cheret al, 2006). Table 3.1 shows the principal featurethete
Monte Carlo codes.

3.3.1. SImSET

SIMSET (Harrisoret al, 1993) uses Monte Carlo techniques to model thesipal
processes and instrumentation employed in emissiaging. First released in 1993, SIMSET
has become a primary resource for many nucleargimedimaging research groups around
the world (Barretet al, 2005; Duet al, 2002). The University of Washington Imaging
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Research Laboratory keeps on the development o§Eimadding new functionalities and
utilities (Schmitzet al, 2007; Harrisoret al, 2003). SImSET is freely availaBle

Table 3.1. Main features of PET Monte Carlo codéexelized attenuation body and activity
distributions are employed to define very complermetries. Simulation of positron range and nofiraarity
is mandatory to achieve realistic results. If pitetl detector capability is included, the reflectmterial placed
among crystals can be considered. Random coincdeaie very important when simulating high coutgga
Some of the codes have been validated againstimqraal data.

Voxelized Positron
att / act Range / Pixelated Randoms Validated
o Non- Detectors
distrib. . )
collinearity
PETSIM No Yes Yes Yes No
GATE Yes Yes Yes Yes Yes
Eidolon Yes Yes Yes No No
SIMSET Yes Yes No No Yes
PeneloPET No/ Yes Yes Yes Yes Yes
SimSET Software

The Simulation System for Emission Tomography
is a Monte Carlo model of the physical processes
and instrumentation used in emission imaging

Parameter Files

and Data Tables
Binning
Module

Photon History Histograms
Files and Statistics and Images

Figure 3.2. Block diagram illustrating how the di#nt modules fit together in the SImMSET package.

A diagram of SImSET modules is shown in Figure J.Be software is written in
modular form, and the core module is the PhotortdrfsGenerator (PHG), which models
photon creation and transport through heterogenatiesuators for both SPECT and PET.
The Collimator Module receives photons from the PH@I tracks photons through the
collimator being modeled. The Detector Module reesiphotons either directly from the
PHG module or from the Collimator module. It tragh®tons through the specified detector,
and records the interactions within the detectorelach photon. Each module can create a
Photon History File that contains information ore tbhotons it has tracked. The Binning
Module is used to process photon and detectiorrdecand can be used on-the-fly or on pre-
existing history files.

All the modules in SIMSET are configurable by tlseru Configuration is achieved by
editing ascii text files. The PHG, Detector and l@mhtor modules are configured using
Parameter Files and Data Tables. Digital phantoonghfe PHG (Activity and Attenuation

2 http://depts.washington.edu/simset/html/simsetnrhéil
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Objects) can be created. SIMSET also comes witAnger of utilities for manipulating
datasets and history files. It does not handleaarsdnor the time-structure of PET-counts.

3.3.2. GATE

The first version of GATE (GEANT4 Application forniission Tomography) is
availablé since 2003 (Jast al, 2004). It is a generic simulation platform baseda general
purpose code GEANT4 (Agostinelli, 2003) and desigrier PET/SPECT applications.
Several research institutes dealing with SPECTREaT are involved in the development and
validation of GATE within the OpenGATE collaboratigThiamet al, 2008; Lazarcet al,
2004). In particular, GATE allows for the descrigtiof time-dependent phenomena such as
source or detector movement and source decay &sndtiincludes geometry modeling tools
for complex scanner geometries, models for deteel®ectronic response, and visualization
utilities. Modeling of CT scans and estimation afsd can also be performed with GATE
(Chenet al, 2006; Thiamet al, 2008).

GATE combines the GEANT4 physics models, geometrgscdption, and
visualization and 3D rendering tools, with origirfi@htures specific to emission tomography.
It consists of several hundreds of C++ classes.hsleisms to manage time, geometry, and
radioactive sources from a core layer of C++ clasdese to the GEANT4 kernel (see Figure
3.3) are available to the user. An application tegléows to implement user classes derived
from the core layer classes, e.g. to build spegéometrical volume shapes and/or to specify
operations on these volumes such as rotations amslations. As the application layer
implements all needed features, the use of GATEs dud require C++ programming. A
dedicated scripting mechanism, that extends capabibf the native command interpreter of
GEANT4 allows to perform and to control Monte Caslmulations of realistic setups.

Modifications of the geometrical elements are syontzed with those of the sources.
For this purpose, the acquisition is subdividea itine-steps during which the elements of
the geometry are considered at rest. Decay timeegarerated within these time-steps so that
the number of events decreases exponentially fiora-step to time-step, and decreases also
inside each time-step, according to the decay kinieif each radioisotope. This allows to
model time-dependent processes such as countoatéstector dead-time on an event-by-
event basis. Detector electronic response is mddak a chain of processing modules
designed by the user to reproduce e.g. the deteates-talk, its energy resolution, or trigger
efficiency. It allows to define of detector deanhi and coincidence time windows which will
significantly effect NEC curve estimation (Asgtal, 2004).

— Defines basic mechanisms

\\C ; ;\\ dvadlable in GATE
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Core layer / |\ specific modelling
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Figure 3.3. Sketch of the layered architecture AT& (Janet al, 2004).

3 http://opengatecollaboration.healthgrid.org/
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3.3.3. PeneloPET

A new PET Monte Carlo code has been developed alhdbevpresented in the next
chapter (Espafia et al., 2009). The main purposiei®hew PET simulator is the optimization
of the design of small animal PET scanners. Motnothese scanners are made of multiple
scintillator arrays read by Anger-like logic, argaa in complex geometries with millions of
lines of response. Design optimization requires perform many high statistics test
simulations, each of them with different settings the scanner, varying geometry (scanner
diameter, crystal size), materials (scintillatohietding and other scatter elements),
electronics (integration time, dead time, coinciterwindow, pile up rejection). For this
purpose it is of paramount importance to have #s¢et possible simulation tool, capable of
running in parallel in clusters of computers, amdviling an easy way of executing many
simulation instances with small changes of scam&dinition. While the ample variety of
detector philosophies that the combination GEANTAI& allows for is appealing, it is also
true that it comes at the price of an importantvgafe overhead that makes the simulations
with GATE in need of much computing resources. étJeGEANT4 offers a broad selection
of physics models that are thus available for GAU&ers, but this also makes GATE
simulations rather slow (Jan [2¢al, 2007).

PeneloPET is based on PENELOPE (Ber@l, 1995), a Monte Carlo code which is
written using FORTRAN. The FORTRAN language is ygstandardized and is available in
any computer architecture aimed to scientific cotimgu FORTRAN compilers are optimized
for speed and accuracy. Being written in FORTRARNELOPE is bound to be both fast
and portable.
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4. PeneloPET, a Monte Carlo PET simulation tool based on
PENELOPE

4.1. Introduction

Monte Carlo simulations play an important role ilBTPimaging, as an essential tool
for the research and development of new scannatanadvanced image reconstruction.
One of the main purposes of this thesis was toldpwe PET Monte Carlo tool, which will be
introduced in this chapter. The availability of penful computers has encouraged the use of
PET-dedicated simulation codes in the last few yieBxamples of areas that benefit from
extensive simulations are the design of new PETrsaas (Braenet al, 2004; Heinrichset
al., 2003), the development and assessment of imagestuction algorithms (Herraét al,
2006) and of correction techniques (Lewh al, 1995), among other applications (Zaidi,
2000; Ay and Zaidi, 2006; Ortufet al, 2003; Ortuficet al, 2006; Torres-Espallardet al,
2008). Simulations make it possible not only tanefthe design parameters of PET scanners,
but they also help to identify bottlenecks regagdiount rate, resolution, sensitivity, etc.

There are several Monte Carlo codes (for a shaitrasent review see Buvat and
Lazaro 2006) that simulate the transport of radmatithrough matter, e.g. GEANT4
(Agostinelli, 2003), MCNP (Briesmeister, 1993), EG&awrakow and Bielajew, 1998), and
PENELOPE (Baréet al, 1995; Salvatet al, 2006). Either based upon these codes, or in
tables of photon cross-sections, a number of twsl$ET simulation have been developed,
such as SIMSET (Harriscet al, 2003), PETSIM (Thomsoet al, 1992) or Eidolon (Zaidet
al., 1998), based on MCNP, and GATE, based in GEANJah ¢t al, 2004). Probably
(Buvat and Lazaro, 2006) one of the most widelyviumas GATE which, being based in
GEANT4, can include a large variety of photon digescand targets the large community of
high energy and nuclear physics users that haveaatgance with GEANT4. GEANT4 is
powerful and flexible enough to simulate PET scasinbBowever, its learning curve is both
steep and long. A superficial knowledge of C+isuifficient to optimally use GEANT4, and
the installation process requires more than basmputer skills. This is why GATE was
developed. GATE consists of hundreds of classeaspifewide useful functionalities for PET
simulations. No C++ programming is involved andsthuis easier to learn and use, unless
there is a need to create new classes to addresicproblems.

We have chosen PENELOPE as the core of our PETlaiom tool. PENELOPE is a
Monte Carlo code for the simulation of the transpgormatter of electrons, positrons and
photons with energies from a few hundred eV to ¥ Geis then less generally aimed as
GEANT4, but it suits well PET needs, it is fast anfjust, and it is extensively used for other
medical physics applications, particularly for doeiry and radiotherapy (Sempau and
Andreo, 2006; Panettieet al, 2007). PENELOPE is written in the FORTRAN prograimg
language.

4.1.1. Why another PET simulator?

The main purpose of our PET simulator is the omtation of the design of small
animal PET scanners. Most often, these scannemade of multiple scintillator arrays read
by Anger-like logic, arranged in complex geometrie@gh millions of lines of response. In
order to optimize the design of the scanner, magl-htatistics simulations have to be made
and studied, each of them with different scannéinggs, as for instance geometry (scanner
diameter, crystal size), materials (scintillatohietding and other scatter elements),
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electronics (integration time, dead time, coincwewindow, pile-up rejection), etc. Thus, it
is desirable to have the fastest possible simulatoml, capable of running in parallel in
clusters of computers, and able of providing anyesay of executing many simulation
instances with small changes of the scanner deimitThe ample variety of detector
configurations allowed by the combination GEANT/GATs appealing, but it comes at the
cost of increased need for computing resourcesdBand Lazaro, 2006).

The FORTRAN language is highly standardized and &vailable in many computer
architectures aimed to scientific computing, to etthiFORTRAN compilers have been
adapted and optimized for speed and accuracy. efiritt FORTRAN, PENELOPE is bound
to be both fast and portable. On the other handlewgtill widely used by physicists and
mathematicians, FORTRAN is not the most populagmmming language among young
researchers, and lacks the object-oriented streichat is appealing when writing modular
codes. On these grounds, we have developed PerlglaHEDRTRAN package that allows to
easily define complete simulations of PET systentBiw PENELOPE. PeneloPET is capable
of preparing sophisticated simulations just byiadita few simple input text files, without
requiring knowledge of FORTRAN or any other progmamg language. Simulations
prepared with PeneloPET are straightforward toupeim parallel in clusters of computers.

4.1.2. Introduction to PeneloPET

The basic components of a PeneloPET simulatiodetextor geometry and materials
definition (including non-detecting materials, lilshielding), source definitions, non-active
materials in the field of view of the scanner, aldctronic chain of detection. All these
components are defined with parameters in the ifilgst Different levels of output data are
available for analysis, from sinogram and linegegponse (LORS) histogramming to fully
detailed list mode. These data can be further @eolowith the preferred programming
language, including ROOT. The detailed list modeegates a file with all the hits, single or
coincidence events, and the corresponding infoonatabout interaction coordinates,
deposited energy in the detectors, and time and tfpcoincidence: random, scatter, true,
with pile-up, etc.

In this work we have performed several compariseitis another PET-dedicated code
(GATE) and with studies obtained from four commardPET scanners. The agreement
between PeneloPET simulations and the results r@ataiin real scanners, confirms
PeneloPET as a powerful tool for PET research amgeldpment, as well as for quality
assessment of PET images. PeneloPET can be obtamded request from the authors. The
reader interested can visittp://nuclear.fis.ucm.es/peneloget details.

A few definitions

A coincidence event is noted pfle up when at least one of the single events has
suffered pulse pile up. A coincidence is considexg@scattercoincidence when at least one
photon that triggers the detectors has sufferedimeeaction before reaching the scintillator.
A coincidence is considered asaamdomcount when the two photons in the coincidence pair
come from two different, uncorrelated, annihilatiprocess. Aself-coincidencesvent arises
when the same photon produces both triggers of dimgle events. The remaining
coincidences are consideredtasg events, that is, those for which both photons phatuce
the triggers are originated in the same annihilaioocess, do not interact before reaching the
scintillator and no pulse pile up has occurred iy af the detectors that take part in the
coincidence event.
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4.2. Main features of PeneloPET

4.2.1. Source code

Our goal with PeneloPET has been to develop anteasse program that includes all
the physical and electronic processes involvedBEi.FPeneloPET requires a moderate time
investment for the preparation of the simulatiotugeand it runs very efficiently, with modest
computational burden compared to other PET simanatools. It can be ported to any
platform and operating system capable of compiR@RTRAN programs. We have tried
PeneloPET under Windows, Linux/Unix, and Mac OS Mktfprms and with different
FORTRAN compilers (gnu-g77Absoff, Intef) without porting problems.

The source code consists of two main modules. Titet bne deals with the
PENELOPE simulations and the level of detail cho$aenthese, and takes care of the
information about scanner detectors and matersalsrce and decay. This module includes
the routines involved in the distribution of isoéspand emission of particles generated in the
decay processes, as well as their interactions.

The second module post-processes the decay amddtibe data generated by the first
module. It takes into account, for instance, thegémnlogic for positioning the interaction
inside the crystal array, detector pile-up, enemgpolution in the scintillator, and aspects of
the electronics, such as coincidence time windaeddime, time resolution, and integration
time. No PENELOPE routines are generally involvedhis second module. Energy windows
can be applied in this second module. Continuousixalated detectors can be managed by
this second stage of the simulation package.

In order to run the simulations on clusters of cateps, a simple and portable Python
script is provided with the code. The use of a Bythnables to run the script under Windows,
Linux/Unix, and Mac OS X. After configuring Penel6P for the execution of the desired
setup in a single-CPU, the Python script launciessimulation on the number of CPUs
desired, with different random seeds, and takes chthe initial activity and the acquisition
time for each sub-process, in order to simulate shme number of decay events as the
equivalent single-CPU run. In this way, the simiolattime is reduced proportionally to the
number of CPUs employed.

4.2.2. Description of PeneloPET input files

Four input files have to be prepared by the usarder to set up a simulation. As an
example, Table 4.1 shows these input files forsihmulation of a point source in the SUINSA
rPET scanner (Vaqueret al, 2005). The first input file in Table 4.1 (mairpincontains the
general parameters of the simulation, such asdgeisition protocol and acquisition time. It
also enables simulation of secondary particledesired, and controls whether positron range
and non-collinearity are taken into account. Thls tontains options also for scanner
rotation, energy and coincidence windows, contrdng to dead time, output format, and type
of study.

“ http://www.gnu.org/software/fortran/fortran.html
5 http://www.absoft.com/Absoft%20Compilers.htm
® http://www.intel.com/cd/software/products/asmoemay/compilers

7 http://www.python.org/
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Table 4.1. PeneloPET input files needed to simwdgteint source in the rPET scanner (Vaquedral,
2005). Full detail about these input files and apsi can be found in the PeneloPET manual. In tigatifile,
‘F’ stands for false or disabled option, while ‘Gtands for true or enabled option.

12345 54321

--- GENERAL PARAMETERS --- (main.inp)
IRandom number genessteds

90001 F IAcquisition timge€); Number of Frames; Read Frame List File
1000 ILimit numberiaferactions for each particle

FTT ISecondary PaescSimulation; Positron Range; Non-Collinearity
0 180 3000 40 lInitial & Final ang p@®g); Numb of Steps per cycle; time per cycle)se
0. ILower Leveh&rgy Threshold (eV)

1000000. IUpper Level Enefdyeshold (eV)

5 ICoincidencen€& Window (ns)

0.1 ITrigger's Deaine (ns)

150 lintegration Erns)

1200 ICoincidence’sddeTime (ns)

FFT IHits LIST; Simg LIST; Coincidences LIST

F IWrite LOR Higfram

T 117 190 4.49684
F 9999 554.48 4.2

IWrite Sinogram; radialspiangular bins; maximum radio
IWrite Emission Image; X Yoxels, Transaxial & Axial FOV (cm)

F IHits checking

T IVerbose

F INeglecting at®if more than 2 singles in the coincidence timmedow
--- SCANNER PARAMETERS --- (scanner.inp)

4 INumber oétectors per Ring

1 INumber oétectors in Coincidence in the same Ring

1 INumber ahBs

0. IGap Betwdings (cm)

30 INumber adrisaxial crystals per detector (columns)

30 'Number ofalcrystals per detector (rows)

1 INumber ofstal layers per detector

1.2130.261400.01

0.16 0.16
8.

ILAYER: Length (cm); MRtResol.; Rise & Fall Tim (ns); Tim Error (ns)
IPitch: Distarmsween centres of adjacent crystals (cm)
IRadius: @erFOV - Centre Front of Detector (cm)

CcC 1 0. 0.0.

--- BODY PARAMETERS --- (object.inp)
1.62 5.0 0. !Shape Mat XY ZR1 R2 HEIGHT (cm) PH TH @le

--- SOURCE PARAMETERS --- (source.inp)

P1E6F10.51.2.0.0.0.0.0.0.0.0. 188dBAct Units Isot X Y ZR1 R2 H PH TH TH1 TH2

In the second file (scanner.inp), which contairs shanner definition, multiple rings
and layers of crystals can be specified. Although main goal was to simulate pixelated
detectors for high-resolution small animal PET imgg PeneloPET is also suitable for
continuous scintillator blocks or even detectors$ In@sed on scintillators (such as CZT or
silicon strips) with small or no changes.
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Non-radioactive materials other than the scintifatalready defined in the file
scanner.inp), such as surrounding materials andldshg, are defined in a third file
(object.inp). The radioactive source is definedasately in a fourth input file (source.inp),
which contains source geometry and information &bactivity and isotope. Keeping
separated definitions for sources and materialpl#ies the comparison of simulations of
ideal sources, without scatter or attenuation, toremrealistic sources. Details about
PeneloPET input files and options can be foundiéinReneloPET mandal

Typical materials for crystals, shielding and ploam$é are predefined in PeneloPET
and, if necessary, new materials can be createdstaightforward way. The visualization
tools built in PENELOPE (gview2d, gview3d (Salvet al, 2006)) are also available in
PeneloPET to display and test geometries. Thigpégially useful during scanner design
stages (see Figure 4.1). Note that the definitiongable 4.1 do not correspond to the scanner
depicted in Figure 4.1.

Although the examples presented in this work ded#h wreclinical scanners,
PeneloPET is also capable of simulating clinical BREanners.

4.3. Description of PeneloPET output files

Output files generated by PeneloPET can offer thierent levels of detail. At the highest
level, all the information about each interactienrecorded for further analysis. At the
intermediate level, just the single events and ittiermation needed for their analysis is
recorded. The possibility of pile-up and cross falkaken here into account. At the third, and
lowest, level of detail, only coincidence eventg aecorded in a compact LIST mode.
Information about pile-up, scatter, random and-seifcidence events, obtained from the
simulation, is also summarily available.

A coincidence event is labeled as pile-up wherastl one of the single events has suffered
pulse pile-up. A coincidence is considered to Iseatter coincidence when at least one of the
photons that trigger the detectors has interactéore reaching the scintillator. A coincidence
is considered as a random one, when the two phatotiie coincidence pair come from two
different, uncorrelated, annihilation process. $®eihcidence events may arise when the same
photon, after scattering in a first detector, remsch second detector. If the energy deposited in
each detector is above the detection thresholehay trigger two single events and yield a
self-coincidence count. The remaining coincideraresconsidered as true events.

PeneloPET generates several output histogramsh#éiptto understand the results of the
simulations, as for instance sinogram projectidi@R histogram, single and coincidence
maps, and energy spectrum. In order to simplify rdgonstruction of simulated data, the
format of the sinograms conforms to that expectethb STIR library.

ROOT (Brun and Rademarkers 1997) is an object-tetenlata analysis framework that
provides tools for the analysis of experimentabd&eneloPET LIST files can be converted
into ROOT format. As an example, Figure 4.2 showws@dimensional energy histogram of
the single events that yield the coincidence evavitéch has been plotted with ROOT.

8 http://nuclear.fis.ucm.es/penelopet/

9 http://stir.sourceforge.net
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Figure 4.1. View of the SUINSA ARGUS (Wargg al, 2006) scanner obtained with the gview3d
application distributed with PENELOPE. An annullsptom can also be observed, centered in the FOV.
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Figure 4.2. A two-dimensional energy histogram iofjle events belonging to the same coincidence,
histogrammed with ROOT, from the file generatedhwite ROOT-output option of PeneloPET.

4.4. PENELOPE

PENELOPE is a code for the Monte Carlo simulatibnaupled transport of electrons
and photons. It is suitable for the range of erexdietween 100 eV and 1 GeV, and allows
for complex materials and geometries. Due to itsueacy and flexibility, PENELOPE is
being broadly employed, with numerous applicationthe field of medical physics (Sempau
and Andreo, 2006; Panettiazi al, 2007).

PENELOPE consists of a package of subroutines,kewdy a main program that
controls the evolution of the stories of particteunters and accumulates the magnitudes of
interest for each specific application. These sutimes are written in the FORTRAN77
programming language, and are distributed by NudiEsergy Agency - Organization for
Economic Co-operation and Development (NEA-OECDHe Tauthors are Francesc Salvat
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and Jose M. Fernandez-Varea of the Physics Depatrtofi¢he Universidad de Barcelona and
Josep Sempau of the Institute of Energy of the ehsidad Politécnica de Catalufia.

The simulation of electrons and positrons incluthesfollowing types of interactions:

» Hard elastic collisionf(> 6 ).

* Hard inelastic collision(> 0 ¢).

* Hard Bremsstrahlung emission.
* Delta interaction.

» Atrtificially soft event ¢<6.).

* Inner-Shell impact ionization.

* Annihilation (only for positrons).

* Auxiliary interaction (an additional mechanism thraay be defined by the
user, e.g., to simulate photonuclear interactions).

The simulation of photons includes the followinggiractions:

» Coherent scattering (Rayleigh).

* Incoherent scattering (Compton).
* Photoelectric absorption.

» Electron-Positron pair production.
* Delta interaction.

* Auxiliary interaction.

For further explanation of the physics includedtirese interaction the reader is
referred to (Sempaet al, 2003).

Each interaction can lead to secondary particlesctwizan be later tracked and
simulated. For example, the positron annihilatieadss toy photons and the photoelectric
effect will lead to free electrons.

The use of PENELOPE requires to prepare a mainrgnogvhich will be responsible
for calling the PENELOPE subroutines and for stprihe information about the trajectories
of the particles simulated. The main program shopldvide PENELOPE with the
information about the geometry and materials, dad ather parameters as type of particle,
energy, position and direction of movement of thartiple to be simulated. Through
appropriate use of these tools, the user can ceeatmulation environment to carry out the
desired studies. PENELOPE is of relatively commse i experimental nuclear physics and
medical physics (Panettiest al, 2007).
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PENELOPE includes a subroutine for generating sétsandom numbers, that is
based in an algorithm due to (L'Ecuyer, 1988). Tdigorithm yields 32-bit real numbers
distributed uniformly over an open interval betweeno and one. Its period is approximately
10'8, which is infinite for most practical purposes.

45. PeneloPET in more detall

PeneloPET is a Monte Carlo simulation environment positron emission
tomography (PET). The PENELOPE package is usedirtmlate the physics of the
interaction of radiation with the matter. The apation makes use of PENELOPE
subroutines and other new subroutines that ded thi2¢ remaining emission and detection
processes. This section details the operationeseisubroutines.

At the first level of simulation, the PENELOPE soilitines are used. The information
obtained here is the type of particle, and itsahitoordinates, as well as the coordinates of all
its interactions, deposited energy and body/mdtefi@ach interaction. Four different kinds
of information are stored in this simulation level:

* Angular position of the scanner (in the case ofimukation of a rotating
scanner).

» Decay position.
» Starting position of secondary particles, suchrashalation photons.

» Interaction coordinates, with indication of the odf material and energy
deposited in the interaction.

For every interaction event the following infornmatiis stored: block detector number,
crystal number inside the block, energy deposit@ecay number, annihilation photon
number, scatter flag, and time stamp.

Once the buffer is filled (typically 500,000 eventdhe first photon track is analyzed.
If the first interaction of the photon occurs odttbe detector material, it is flagged as a
scattered photon, that then would contribute atecabount. The first interaction inside a
detector activates a trigger mark and a time ftags time flag is somewhat blurred using the
time jitter value input in the simulation definitip If more interactions occur in the same
activated detector, all of them are stored with $laene trigger time until the end of the
integration process. The coincidence window foidaliectors connected with this one is open
and all the detectors in coincidence are lookedrfggers inside the coincidence window. If
in one or more detectors a trigger is found befol@sing the coincidence window, a
predefined coincidence matching is used to sorintHer further processing. While the
integration time of the marked detector has noisfied, all interactions produced at the
mentioned detector are stored. Once the integraitios is elapsed, the total charge collected
from the beginning of the trigger to the end of thtegration time is computed. This process
can include the tails of previous pulses and tlelbef later pulses.

Single events are later matched to form coincidgraies which are also stored with
the following information: block number, crystalkeiatification number and energy deposited
at both single events, time difference between dbmcidence events, time stamp, and
coincidence type. There are five different coinaicketypes:
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» Pile-up: at least one of the single events hassedfpulse pile-up.

» Scatter: at least one photon that triggers thectmt® have suffered one
interaction before reaching the scintillator.

 Random: the two photons in the coincidence pairedrom two different,
uncorrelated, annihilation processes.

» Self-coincidence: the same photon produces bajgdrs of the single events.

* True: the remaining coincidences that do not falloithe four former
categories, are consideréie events, that is, those for which both photons
that produced triggers are originated in the samehéation process, do not
interact before reaching the scintillator and ndés@wile-up has occurred in
any of the detectors that belong to the coincidexvent.

45.1. How to use PENELOPE subroutines

The first step is to define geometry and maternidilthe system. Geometry definition
requires to prepare a file written in the specfbemat of PENELOPE. All bodies must be
characterized by their limiting surfaces so thasatfaces are defined first, and finally bodies
are constructed by combining several of these sestaThe subroutine that extracts the
information from the geometry file is called GEOMIN

Table 4.2. First lines of GEOMIN subroutine.

SUBROUTINE GEONMIN (PARINP, NPINP, NMAT, NBOD, IRDWR)
C This subroutine

C initializes the geometry package for Monte Carlo

C simulation of particle transport.

C

C Input arguments:

C PARINP ....array containing optional parametetsch may

C replace the ones entered from the input file.

C NPINP .....number of parameters defined in PAR(Nge.0).
CIRD....... input file unit (opened in the mairogram).

CIWR ....... output file unit (opened in the maitogram).

C Output arguments:

C NMAT ...... number of different materials in fldbdies (excluding void regions).
C NBOD ...... Number of defined bodies.

Materials that composes each body must be spedifidde geometry file. The cross
sections of the materials employed shall be cone&tel in a different file, that the PEINIT
subroutine reads. The order in which the cross@esciare concatenated must agree with the
numbering used in the geometry file.



54 4 PENELOPET,A MONTE CARLO PETSIMULATION TOOL BASED ONPENELOPE

Table 4.3. First lines of PEINIT subroutine.

SUBROUTINE PEINIT (Emax, NMAT, IRD, IWR, INFO)

C

C Material input of data and initialization of sitation routines.

C Each material is defined through the input (ileit = IRD), which is
C created by the program 'material' using inforomatontained in the
C database.This file can be modified by the Usmiore accurate information
C teraction data are available. Data files fofedént materials must
C CONCATENATE be in a single input file, the M4ttaterial in this
C file is identified by the index M.

C Input arguments: Emax

C ...maximum particle energy (kinetic energy flacé&rons and

C positrons) used in the simulation. Note: Posgraith

C E may produce energy photons with energy E ER2

C NMAT ...number of materials in the geometry.

C IRD ....input unit.

C IWD ....output unit.

C INFO ...determines the amount of informatiort teavritten on

C the output file,

C INFO = 1, minimal (composition data only).

C INFO = 2, medium (same information as in theamat

C definition data file, useful to check that theu€ad -

C ture of the latter is correct).

C INFO = 3 or larger, full information, includirigbles of

C interaction properties used in the simulation

Initial information for every particle such as typd particle, its energy, spatial
coordinates and direction of movement, must bedfiaethe beginning of the simulation of
the particle track.

The remaining subroutines that must be used imthi@ program in order to simulate
every particle are:

* CLEANS: This subroutine initializes the list of sedary particles. It must be called
before starting the simulation of each primary ighet

» LOCATE: This subroutine determines the body thantams the point with
coordinates (X, Y, Z) where the patrticle interadtse output values are:

o [IBODY: the body that contains the particle.
o MAT: material of that body.

* START: For electrons and positrons, this subroutarees the following interaction
event to be a so#rtificial one. It must be called before starting a new prynoa secondary
track and also when a track crosses an interfamepltotons this subroutine has no physical
effect. However, it is advisable to call START famny kind of particle because it checks
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whether the energy is within the expected rangd,iinan thus help to detect bugs in the
main program.

 JUMP: It computes the free path from the point eparture to the position of the
next interaction, and the probability of occurrent¢he different types of interactions. The
output value is:

o DS: free path of the particle

e STEP: This subroutine computes the final coordmatesing the initial coordinates
and direction. Furthermore, it returns the new badg material where the particle is placed
after this step.

* KNOCK: It simulates the interaction. The outputgraeters are:
o DE: energy deposited by the particle in the materia
o ICOL: type of interaction suffered by the patrticle.
o (U, V, W): new direction of the particle after theteraction.

 SECPAR: This subroutine returns the initial paraanef the next secondary particles
to be simulated and removes them from the lisecbadary particles. The output value is:

o LEFT: number of secondary particles remaining ie fist of secondary
particles.

An initial call to subroutine LOCATE returns thedy and material where the particle
is at the beginning. CLEANS initialized the list secondary particles. Each time the
simulation of a particle is finished, it must berified whether there are secondary particles
remaining to be simulated in the list. The STARDrawtine must be called each time the
simulation of a primary or secondary particle iartgd, the particle enters into a new body.
Once the particle comes into a new body, the JUMPaitine must be called to compute the
free path before next interaction. The new partideation is updated using the STEP
subroutine. An interaction will be valid if it oouin the same body of start. If the final body
is different, the distance from the start to tha pwints of the body is stored, and subroutines
START, JUMP and STEP must be called again, takmgtarting point the entry point into
the new body. The simulation of the interactiontherefore conditioned by the distance
traveled across previous bodies. Once it is vetifieat the starting and interaction bodies are
the same, the subroutine KNOCK should be called,iaeimulates the event of interaction.
The call to the subroutines START, JUMP and STE®ukhcontinue until the particle has
lost all its energy, off a predefined cut-off ener@Once the simulation of a particle is
finished, a call to SECPAR returns the number aosdary particles in the list, and the
whole process is repeated until a null value fernbimber of remaining secondary patrticles is
obtained. All this is transparent to the user.

4.6. Description of some specific PeneloPET routine s

A set of additional subroutines have been impldeteto perform full simulations of
PET scanners, with just a few lines of input codes.
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Figure 4.3. Flowchart of the basic kernel of int¢i@n between PENELOPE and PeneloPET.
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4.6.1. Geometry of the system

As we saw in the previous section, the definitibnh@ geometry must be supplied to
PENELOPE routines. To ease this task, several stibes have been implemented that
automatically build the geometry file required bEENELOPE, for common PET scanner
configurations. The definition of the geometry hmeen divided into two sections, one that
defines the detection system (scintillation crystalnd other that deals with the remaining
bodies (shielding, source, ...).

Scanner definition

Many modern PET scanners are made of blocks congist a crystal matrix of one
or more layers of scintillators (Wangt al, 2006). Each crystal, usually of square or
rectangular cross-section, has a length much latigen the side of its cross-section.
Therefore, blocks have a prismatic shape with reptlar base. The input parameters that
define the geometry of the blocks and the scanser\&hole are defined in a plain text input
file (see table 4.4). The number of blocks, numdiecrystals per block, and the size and
material of each scintillator crystal, are typig#gbrmation that must be specified in the input
file.

Table 4.4. Input file used for the definition oétecanner.

------ SCANNER PARAMETERS ------
10 I Number of Detectors by Ring

3 I Number of Detectors in Coincidence in the s&ting
36.0 ! Angle Between adjacent Detectors
2 I Number of Rings

0.5 ! Gap Between Rings [cm]

20 I Number of transaxial crystals by Detector [CMINS]

20 I Number of axial crystals by Detector [ROWS]

1 I Number of crystal layers by Detector

1.54 !Length and materials for each crystagtdgm] [table materials]
0.10 ! Pitch: Distance between center of the adljacrystals [cm]

7.0 ! Radio: FOV Center - Center Front of Detegton]

PeneloPET subroutines create a geometry file foNEIEDPE that contains the
definition of the surfaces and bodies, and a pexdeéhed numbering for both. This body
numbering is used inside PeneloPET routines toidottee block where the particles interact.
Each block and layer of crystal is defined as aependent body.

Other bodies

Objects that are not part of the detection systam loe easily defined. Common
objects to define are the shielding of the scamamerthe phantom or activity sources. The list
of objects to be simulated must be defined in atependent file (see Table 4.5), indicating
their shape (spherical, cylindrical, prismatic, .sige, location, orientation and composition.
The definition of these objects is important in erdo take into account the effects of the
scattering and absorption of annihilation photons.



58 4 PENELOPET,A MONTE CARLO PETSIMULATION TOOL BASED ONPENELOPE

Table 4.5. Input file used to define shielding @h@ntom bodies.

------ OBJECT PARAMETERS ------

S10. 0.0.2.3.0.TYPE MATER XC YC ZC RI RE H [cm]
C10. 0.0.2.3.1.TYPE MATER XC YC ZC RI RE H [cm]
R50. 0.0.3.3.5.TYPE MATER XC YC ZC LX LY LZ [cm]

An example of geometry input file generated for FERPE is shown in Table 4.6,
and the resulting scanner is shown in Figure 4.4.

Figure 4.4. Graphical display of the Argus drT searwith a normalization annulus phantom inside the
FOV, as defined from a PeneloPET input file simtathe one in table 4.4. The right panel include®lding
materials, presented in dark colour. The gview3s psogram included with the PENELOPE distributioasw
used to draw these figures.

Table 4.6. Typical appearance of a PENELOPE gegnirgbut file generated from PeneloPET scanner
definition of table 4.4. All surfaces is definedfirst place, and the bodies are later built fréma intersection of
the predefined surfaces.

00000000000000000000000000000000000000000000000000
SURFACE ( 001)

INDICES=( 0, 0, 0, 1,-1)
Z-SCALE=(+0.200000000000000E+01, 0)
000000000000000000000000000000000000000000000000000
SURFACE ( 002)

INDICES=( 0, 0, 0, 1,-1)
Z-SCALE=(+0.200000000000000E+01, 0)
THETA=(+0.120000000000000E+03, 0) DEG
000000000000000000000000000000000000000000000000000

000000000000000000000000000000000000000000000000000
BODY (001)

MATERIAL( 002)

SURFACE ( 003), SIDE POINTER=(+1)

SURFACE ( 004), SIDE POINTER=(-1)

SURFACE ( 005), SIDE POINTER=(-1)

SURFACE ( 006), SIDE POINTER=(-1)

SURFACE ( 001), SIDE POINTER=(-1)
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4.6.2. Definition of materials

PENELOPE includes a database with the necessaormiation about elements.
Furthermore, cross section files for elements, ammgs or mixture of compounds can be
easily built if needed. Cross section files for jmamaterials used in PET have been included
in PeneloPET (LSO, GSO, BGO, Nal, LaBr, CZT, leatkal, copper, aluminium, water,
delrin...). When a simulation is performed, all wggd cross section files must be
concatenated in a single file in the same ordenabe geometry file. PeneloPET includes
subroutines to perform this.

4.6.3. Isotopes

PeneloPET is ready to simulate comnfidrisotopes. Isotopes are defined in an input
file (see Table 4.7) that can easily be extendethbyuser. Each isotope is referenced by its
half life and a list of emitted particles that indes the type of particle, emission energy (in
the case of electrons and positrons, this refetedoralue of Q, or maximum kinetic energy)
and the fraction of occurrence, or branching ratio.

Table 4.7. Input file with isotopes pre-definedPieneloPET.

--------------------- ISOTOPES ----------=----moe -

1 6586.2 9 F18 !Order-label Half_Life[sec] Z lspe_name
B+ 633.5E3 0.9673 IType Energy Fraction

2 1223.4 6 Cll !Order-label Half Life[sec] Z lspe_name
B+ 960.2E3 0.9976 IType Energy Fraction

3 597.9 7 N13 !Order-label Half_Life[sec] Z Ispto hame
B+ 1198.5E3 0.9980 IType Energy Fraction

4 122.24 8 015 !Order-label  Half_Life[sec] Z lspe_name
B+ 1732.0E3 0.9990 IType Energy Fraction

5 8.210972E+07 11 Na22 !Order-label Half Life[set] Isotope_name
B+ 545.7E3 0.9033 IType Energy Fraction

G 1274.54E3 0.9994

4.6.4. Distribution of activity

The activity distribution can be defined by meahsimple geometrical shapes or by
means of a voxelized distribution.
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Predefined geometrical shapes.

Emission points homogeneously distributed at ranaothin defined regions will be
chosen. There are subroutines for the followingdgsometries:

* Rectangular prismCartesian coordinates (x, y, z) are employed Umexdhe
probability distribution is uniform in all of theseoordinates, and they are
independent.

p(x)=p(y)= o 9=1

fx :ﬁ: X:fx()ﬂnax_ Xmin)+ Xmin

(4.1)

» Cylindrical region.Cylindrical coordinates are used to maximize tHieiehcy
of the choice of random emission points. Azimutiradl vertical distribution of
emission points are homogeneously produced, wihide radial distribution
varies linearly according to the Jacobian for thrangformation from
cylindrical to Cartesian coordinates:
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r

(4.2)

» Spherical region.The use of spherical coordinates is more efficienthis
case. The azimuthal angle is distributed homogesigowhile the radial
distribution varies as the square of the radiusg, thuie polar angle distribution
follows the cosine of the polar angle, accordinght® Jacobian transformation
from spherical to Cartesian coordinates:

p(¢)=1;p(8)=sin(8) ;p(r)=r

3 3
J'r r2dr L}
— *Imin — /3 — 3 3 3
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rdar ‘max 'min
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Voxelized distribution

Any complex distribution can be defined using ael@ed definition with the initial
activity for each voxel. This type of source ddifimm does in fact not result in any increase of
computational time. Mixture of different isotopeandbe employed in the same simulation.
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4.6.5. Direction of the particles emitted

The direction of the particles emitted after thealeof radioactive nuclei or resulting
from the annihilation of positronium, is distribdtésotropically. The emission direction is
defined by the polar and azimuthal angles, in Sphkecoordinates. For most studies, it is
desirable to reduce the range of possible emisdiogctions assuming that the particles
emitted in directions outside some range do nottritmrte to the final outcome of the
simulation. In this case, a correction factor te Simulated efficiencies, equivalent to the
fraction of the angular range employed to the tatalid angle subtended n§} is
automatically applied.

4.6.6. The Gaussian probability distribution

Gaussian distribution appears when simulating maysprocesses. The Gaussian
probability distribution is defined as follows:

p(x) ! exp{—(x_’u)zj (4.4)

oo 20°?

whereo is the standard deviation of the distribution, and the mean. There is no analytical
solution to the inverse transformation method foe Gaussian distribution. This is why the
Box-Muller algorithm (Bratleyet al, 1983) explained below, was implemented. This
algorithm is based on the product of two Gaussiatisthe same.

2+2

Lo XY
p(x) p(y) dxdy= 2ﬂexp[ 5 j dxdy

e 5o

X=rcos@ ;y=r sirgd

in this way, a cumulative distribution functiondbtained which is separablerrandé:

_[;rexp(—r;jdr 1- ex;{—r;j
é = = ={"2In¢,

= —r= r
o _r2 q 1
J'Orexp 5 |dr

Therefore, each time a pair of random numbé&rgsj is generated; two other random
numbers, according to a Gaussian distribution, balbbtained by means of.

x=,/-2In¢, coy 2%,)
y =4-2In¢, sin( 27%,) 4.7)

To get a distribution with meam and standard deviatiow, the following
transformation should be used:
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X

=X_’u:>>(=,u+ax (4.8)
o

4.6.7. Range of positrons

When a positron is generated in a decay procelasia kinetic energy that depends on the
energy shared with the neutrino created in the sammeess. This yields a continuum energy
spectrum distribution, which is easily computedrirtheoretical grounds, either for allowed
or superallowed transitions, and including the ©ow correction factor (see for instance
equation (13) in (Levin and Hoffman, 1999)) aft®&ighardson and Kurie, 1936). In PET
positron range simulations, this latter Coulombrection factor is often either neglected or
only treated in a nonrelativistic approach. PenElbRuses the exact expression for the
Coulomb correction factor, which, albeit relativedpse to one for light nuclei and positron
emission, it may significantly distort the beta cpem for medium to heavy nuclei,
particularly in the case of electron emission. Fégdl.5 shows the normalized positron spectra
corresponding t6®F, and*®Gef®Ga, with and without Coulomb correction.

PeneloPET has two possibilities for incorporatimgitron range. The first one tracks
the path and energy spectrum for each positronmgfndom the decay process. This will lead
to accurate results, but at the expense of anaseref computational time. In the second
approach the profile of the positron range in wasegenerated, from a detailed simulation
(like the one described for the previous approaeir),only once with high statistics, saving
the resulting profile for later simulations, whefige positron annihilation point will be
randomly generated from these pre-computed posiange profiles. Positron range profiles
for ¥ isotopes widely used in PET are included with REPET (see Table 4.8). Profiles for
other isotopes can be added with the tools providiéd PeneloPET. By default, uniform
positron range across the FOV is considered ingde®nd case. Non-uniform positron range
can only be considered within the first, more dethiand computationally expensive (more
than 10 times slower), approach.

4.6.8. Non-collinearity

When an annihilation process takes place with th&tmn and electron at rest, two
photons are produced with the same energy, 511 Ke\tonserve energy and momentum,
both photons should be emitted along the sameblirieén opposite directions (Knoll, 2000).
Because usual annihilation takes places with thieeteatrons and positrons, that is, electrons
and positrons of a few eV of energy, the emissibphmtons is not exactly collinear. Note, a
few events would be produced where the positrone mat been showed down to thermal
energies. For these events, the non-collinearigxgected to be much higher. However these
are a tiny fraction of all events, (Halpern, 1958his non-collinearity is included employing
a Gaussian distribution of 0.5 degrees FWHM thahseto agree with the experimentally
measured (Harrison et al 1999).
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Figure 4.5. Simulated positron spectra obtainech vidleneloPET and employed in positron range
calculations. From left to right'®F, ®®Gef’Ga, dashed lines without Coulomb correction, sdiligs with
Coulomb correction. The horizontal axis represémskinetic energy normalized to the maximum valfieach
spectrum.

Table 4.8. List offi+ isotopes already defined in PeneloPET, with aldél positron range profiles.

Isotope Half Life
tc 20.4 min
3N 9.97 min
0 2.04 min
18 110 min
*Na 26y
4.6.9. Distribution of radioactive emissions

Activity is the number of decays that are produted certain amount of radioactive
material per second (Knoll, 2000). The decay conis{g is the probability of decay for a
nucleus per time unit and has a characteristicevidu each isotope. The Poisson distribution
describes the statistics of radioactive decay. @tggibution is a special case of the binomial
distribution when the probability of success (s close to zero and the number of attempts
(N) tends to infinity, so that the product of bottslza{N-p) finite value. The decay constant is
usually very small and the number of nuclei (atteshm a radioactive sample is always very
high, hence the Poisson distribution is appropfiatehis case. The probability of observing
decays following the Poisson distribution is (L&694):

P(r)= ”rre;_y 4.9)

whereu is the mean, given by the prodita
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(AN) &

(4.10)
r!

P(r)=

This function (see Figure 4.6) represents the fibbato obtainr decays in a sample
of N nuclei with a decay constahtn an interval of 1 second.

The simulation of the decay rate should assignrarsson time coordinate to each
decay process. To achieve this goal, the probgbdistribution of time between two
consecutive decays, for a specific activity andageconstant, must be obtained. The
probability for any decay during a time intervals:

ANGt)° gNet
P(0) - ANy =g =g (4.11)
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Figure 4.6. Time distribution of the probability ecurrence of 0, 1, 2 and 3 decays fof Bg of *°F.

Therefore, a distribution of random numbers is gateel as follows (see chapter 3):

ooy _Af-et) o g

y (4.12)
jo e"'d(a1) A A

When a photon deposits energy larger than a giwesshold in a detector, a pulse (
single event trigggris generated. The shape and duration of thisepissdefined in the
simulation definitions input file. Due to the fimittime response of the scintillator, an
integration of the pulse during, typically, a huadirof nanoseconds, is needed in order to
measure the energy deposited by the photon andradce@d to the localization of the
interaction. If any other photon interacts with 8sne detector within this integration period
of time, an overlap of both pulses (detector pipe-will result (see Figure 4.7) (Knoll, 2000).
This will cause incorrect energy and pixel crystintification. The time response of the
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detectors and the acquisition electronics, can akent into account in high detail with
PeneloPET, which allows for realistic implementataf pulse pile-up. Pulse pile-up rejection
in the electronics can also be simulated. Figu& ghows the distortion of the energy
spectrum due to pulse pile-up, as obtained fromel&ET simulations (Espafiet al,
2007a).

pulse 1 ——
pulse 2 -~

".. el FHITE . .‘.‘. v
! integration‘time

voltage (a.u.)

0 50 100 150 200

time (ns)

Figure 4.7. Signal, showing stacked (piled-up) esildue to the arrival of a second pulse within the
integration time of the first one.

Counts (a.u.)
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= 10 MBq -
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b
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Energy (keV)
Figure 4.8. Energy spectrum for acquisitions simadaat different activity levels, with linear (top
panel) and log (bottom panel) scales. This simtetias performed for a rat-size phantom filled Wfhin the

ARGUS scanner. Counts at the right of the photomeakdue to detector pile-up events, whose conioibus
more conspicuous for larger activities. Pile-upraselso fill in slighly the region around the Campedge.

4.6.10. Resolution in energy

PENELOPE does not simulate the details of the pbkatssion and detection of
visible photons in the PMT, or similar devices. $hthe energy measured by the detectors
according to PENELOPE must be blurred in orderaketinto account the finite energy
resolution of the detection system. By default,rgpeblurring is assumed to be of Gaussian
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shape. In the input file, the FWHM in energy foetbll keV photopeak is introduced
(usually taken from comparisons to actual experisjewhile blurring for other energies is
computed assumingE proportional to B2

When a gamma photon interacts within the detedtosf interaction should be
assigned to a specific crystal of the array. Algjlowf course it is well known from the
simulation, in most actual scanners the locatiothefinteraction inside a pixel crystal is not
available (Dongminget al, 2006). Once the interaction is determined to talleee inside a
pixel crystal, the transverse central point of thatstal is taken as the interaction point.
Additional Gaussian blurring can be added to ctystantification in order to match the
observed (experimental) results for particular seas. When the photon interacts in more
than one crystal, the energy centroid is computdguall illuminated crystals weighted by
the energy deposited on each one. This is a proeegionilar to the one introduce by Anger
(Anger, 1969) and mimics the behavior of many seasinVariations of the Anger algorithm
can be easily implemented in PeneloPET. With tlgerghm, X and Y coordinates (as well
as energy E) are assigned to each interaction. |&iims can be employed to determine the
percentage of success (that is, of events withigfe crystal of interaction assigned) for these
algorithms (see chapter 7).

X=>(ExX)E (4.13)

4.6.11. Time coincidence window

To implement the effect of the time coincidence daws in the scanner, two
parameters must be defined: the resolution timethef detection system and the time
coincidence window. The arrival time of a photoratdetector is randomly blurred following
a Gaussian distribution according to the time nesmh of the system. The time of flight of
the photon can easily be included in the simulatidfhen a photon reaches a detector
producing a single event trigger, all detectorsvadld in coincidence (this is included in the
definition file for the scanner) are looked for #mer single event trigger within the time
coincidence window. If more than two events areedetd inside the coincidence window, a
decision protocol is used to sort these eventsoinctdence. PeneloPET includes different
protocols to handle multiple events in coincidenabgch can be chosen in the input files, for
instance, it can get rid of these events, or it damose one of these events randomly, or use
an average of them.

4.6.12. Dead time

Dead time occurs when the acquisition mechanisbusy analyzing previous events.
In general, gamma detectors suffer from severalribarions to dead time. First of all, in the
detection process, a trigger flag is activated abswme energy threshold. This single trigger
flag will not be ready to measure new events fqusually very short) time (single-trigger
dead time). Events are accepted if a coincidenbg & hardware pre-coincidence filter (if the
scanner works in coincidence-mode acquisition). édeer, for single-mode acquisitions,
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every single event is acquired and converted, andcitlence sorting only occurs later in

software. In either case, an additional acquisiiead time during which no other photon can
be detected by the same electronic input (singladdene or coincidence dead-time,

depending on the acquisition mode) can be considdiieis dead time usually lasts from the
time that the trigger flag was set and until whitiindegration and electronics conversions are
performed by the acquisition electronics. Onceitfiermation from the gamma interaction

has been recorded (typically by an ADC gate) it ivhes sent to the computer for further
processing. Very high count rates can produce elmsies during the transmission to the
computer. Further, CPU dead time can also causssadf events. All sources of dead time
can be included in PeneloPET and are explainechat follows:

» Coincidence window: All detectors connected in calence can produce
coincidences for single trigger events, within mdi difference smaller than the
coincidence window. If more than two single evaetsch the coincidence unit while
the coincidence window is open, some of them calodtedepending of the matching
protocol.

» Trigger dead time: A single trigger event is proeldiavhen a photon reaches
an inactive detector. The time that must be elapsgi a next single trigger event
can be resolved, is fixed by this parameter. Omlgistered triggers can produce
coincidence events.

» Integration time: During the integration processaaletector, the singles from
all photons that reach the detector will not pradaay further single trigger event
but instead they will be integrated together witle bne that triggered the detector
and thus affect the energy and location valuedtiegurom the ADC procedure.

» Singles dead time: There is usually an additiomaktafter the integration
stage that is needed to perform digital converdiuring this stage the detector can
not process additional interactions, that is, ndhier single trigger events will be
processed. These interactions will not contribudeptle-up, contrarily to those
described in previous paragraph.

Coincidence Events (a.u.)

-10 ) 0 5} 10

Time Difference (nsg)

Figure 4.9. Histogram of time-differences for thetsingle events in coincidence pairs. This sinoitat
was performed using a rat-size phantom filled withMBq of *°F for the ARGUS scanner. Log scale is used for
the y axis. A time-resolution of 2 ns FWHM been s to reproduce the behaviour of the actual scanne
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Table 4.9. Lines in the main.inp file that set plolesdeadtime effects. The first line sets the mmaxin
difference in the arrival of two single events ®® donsidered as a coincidence event. The thirdelgtablishes
the time during a pulse is integrated. The fouirte kets the total time that needs to be elapsed fhe trigger
for an integrated event until the detector is refadyurther analysis.

3 [Coincidence Time Windaous)]
200 [Trigger Dead Time (ns)]
220 [Integration Time (ns)]
1200 [Single Dead Time (ns)]
4.6.13. Constraints in energy and type of particle

PeneloPET offers all the possibilities of PENELOIBE constraining the energy and
the kind of particle that is included in the sintida (Salvatet al, 2006). Depending on the
purpose of the simulation, the user may chooséitrgall photons, electrons and positrons,
including every secondary particle, or just somehein. It is also possible to track only the
particles with energy above a certain thresholtb@top tracking a particle when its energy is
below a low energy threshold. Faster simulationa ba performed by tracking only
annihilation photons. This should be a good appnation since the mean free path of
secondary particles is short enough for the casetefmediate energy photons employed in
medical imaging (Ljungbergt al, 1998).

4.6.14. Response of the system

Iterative reconstruction methods require the kndgéeof the system response matrix
(SRM) (Herraizet al, 2006). The SRM contains the elements represetii@grobability of
detection of an event coming from a voxel, at aacfft LOR. PeneloPET includes the
possibility of building the SRM for a specific LORor this purpose a point source of the
selected isotope is placed in different locatiol@ the channel of response (CHOR), or
region of space that is connected (that is, camlym® a coincidence event) to the LOR
(Herraiz et al, 2006). Parameters can be chosen to define hawafasaccurate the results
should be. The SRM can be also computed for rajaaanners, for which the probability of
detection for each sinogram bin, instead of forhe@&OR would be computed (Herragt
al., 2006). PeneloPET can be employed to compute @M §ecifying just a few lines in the
input files.

Table 4.10. Detail of thmain.inpfile required to compute system response simuiattrst and second
lines establish whether it will a LOR-based or Sjreon-based response calculation. Third and founibs|
establish the periodicity and size of the samplntume. The last line specifies the allowed angutarge

around the direction of the LOR for the emitted foins, and the number photons used for the calouladf
every coefficient of the SRM.

T [System Response SimutatibOR-RESPONSE]

F [System Response SimuatiSINOGRAM-RESPONSE]
21 21 19 [Chord points - Transaxial &xiongitudinal]

05 05 10.0 [Chord size: Transaxial; Axladngitudinal(cm)]

2 5E6 [Chord Aperture, Decays/Point]
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4.7. Conclusions

We have developed PeneloPET, an easy to use siamulglackage for PET
simulations. For its versatility, speed, and easgftalyze outputs, PeneloPET is a tool useful
for scanner design, system response calculatieslabment of corrections methods, and
many other applications. PeneloPET emerges as arfidwool for PET simulations. Some
applications will be shown in the following chapter
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5. Validation of PeneloPET
5.1. Introduction

In the previous chapter PeneloPET has been preseradidation of the code must be
performed in order to assess its reliability siming each specific scanner. Simulation
parameters must be tuned for each scanner until ggoeeement between real and simulated
data is obtained. Once the code is validated fecamner, it can be used for research and
development in that specific scanner in order t@rowe its performance. This chapter
presents the results of simulations obtained wiémePOPET and compares them to real
scanner measurements and to results from othetatiorupackages.

To start with the validation, a comparison betweesults obtained with PeneloPET
and those provided by the GATE simulation toolgkishown. An axial sensitivity profile for a
simple configuration based on rPET (Vaquetal, 2005) scanner was estimated, from both
PeneloPET and GATE simulations. In the remaindethi section, we compare simulated
measurements with real measurements for four comatamall-animal PET scanners: rPET
(Vaqueroet al, 2005), ARGUS (Wangt al, 2006), Raytest CLEARPET (Heinricles al,
2003) and Siemens INVEON (McFarlaatal, 2007). The real measurements from ARGUS,
CLEARPET and INVEON scanners were taken from (Wanhgl, 2006), (Sempere Roldan
et al, 2007), and (Blakest al, 2006) respectively. The simulations tried to osjuce as
accurately as possible, with the information avdédathe geometry and materials mentioned
in said references.

5.2. SUINSA rPET scanner

rPET (SUINSA Medical Systems, (Vaqueei al, 2005)) is a rotating scanner
consisting of 4 PMT detector modules, each one leguf a single layer array of 30 x 30
MLS crystals (Pepiret al, 2001). Pitch size is 1.6 mm, individual crysthdth is 12 mm,
and the ring diameter is 16 cm. A point source leesn simulated at several axial positions
along the axis of the transaxial FOV. Figure 5.oveh the ratio of detected coincidences to
annihilations at the source, for three differenérgy windows. Source activity was kept low
enough so that dead time, random and pile-up sffegtld be considered negligible. The
number of positron (& annihilations simulated per second using one obran Intel Xeon
X5472 3.00 GHz quad-core processor, were 75006ke and 12000°sec, for PeneloPET
and GATE codes, respectively. In both cases, onhjitalation photons of 511 keV were
simulated, no angular restrictions were imposed, ram secondary particles nor X-rays were
considered.

Regarding the accuracy of results, there are sgualhtitative differences (about 5%)
between the sensitivity predictions for the casethaf 100-700 keV energy window. For
GATE simulations, the GEANT4 standard electromaign@M) model was chosen. Three
EM models are available in GEANT4, and thus als@&#TE: The standard one, the low
energy one and the same PENELOPE model that weogrmpPeneloPET. It has been found
in several works that these three models produightli different predictions (Poon and
Verhaegen, 2005). Some authors (Cletral, 2006) have suggested that the PENELOPE
model may be more adequate for Compton interactithreslow energy model for Rayleigh
scattering, and the standard EM model of GEANT4plootoelectric absorption of photons.
One must be aware that we simulate not only theraction of annihilation photons with
biological tissue, but also with detector materiagch as scintillator and shielding. Thus
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Compton scattering and photoelectric absorptiorplodétons are equally relevant for our
simulations. In any case, the differences betwhesd three models are not large, except for
the lowest energy photons, which are of little valece for the results of PET simulations.

&5 ) T
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GATE (100-700 keV) -—>—
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Figure 5.1. Axial sensitivity profile for the rPEStanner, obtained from simulations of a low adtivit
¥ point source. PeneloPET results agree with tldsained with GATE, within error bars, except foet
energy window with the lowest energy threshold,vitnich GATE sensitivities are larger than PeneloRIEEs
by about 5%. The error bars are takentathe standard error obtained from four runs of $ations with
different random seeds.

Furthermore, real and simulated sinograms from aseaghantom acquisition were
compared. The real acquisition was performed atplalsGeneral Universitario Gregorio
Marafién, in Madrid. The mouse phantom was made ofdafilled with **F, 1 cm off-
centered in a water cylinder of 2.5 cm of diameted 6 cm in length (see appendix A). In
this comparison we show the radial profiles of calences for two different angles. The
initial activity was 25QuCi and no energy window was applied. Figure 5.2xshtiat there is
good agreement between real and simulated datatlinpgeak and background areas.

5.3. SUINSA ARGUS scanner

The ARGUS small-animal PET scanner (Wang et alQ62Qconsists of 36 PMT
detector modules, each one coupled to a dual Eyay of 13 x 13 LYSO+GSO scintillation
crystals. Each pixel crystal has a cross sectiol.45 x 1.45 mrhseparated by a white
reflector 0.1 mm thick. The resulting pitch sizeli®5 mm and the length of the LYSO and
GSO layers is 7 and 8 mm respectively. The 36 mesdake arranged in two rings of 18
modules each, with a diameter of 11.8 cm. All threasurements described in this section are
taken from (Wang et al., 2006) except the one diggrthe annulus phantom, which was
obtained at Hospital General Universitario Gregdfiaranion, in Madrid.
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Figure 5.2. Comparison of real and simulated siaogr of a water filled cylinder plus an off-centered
rod with *®F (250 1Ci), acquired with the rPET scanner. Radial prefite two different angular positions are
shown in the bottom panel with both log (bottomtpirthe figure) and linear vertical scales. The @&vrows in
the sinogram of the top panel indicate where tkh@tarofiles shown in the bottom panel are located

For the first measurement, an annulus phantom roéa@poxy containing®Ge was
acquired. This annulus is normally employed to granf normalizations and calibrations of
the scanner. It has an inner diameter of 6.92 twalls are 2 mm thick, and its total activity
is about 50QuCi. Acquisitions were obtained with three energypdaws (100-700 keV, 250-
700 keV and 400-700 keV). Figure 5.3 shows a comsparof count profiles resulting from
all coincidence events coming from crystals in faene axial row, with the ones from the
simulation. The overall shape of these profilesvedl reproduced by the simulations. The
discontinuity at the center of the profile is doghe gap between the two detector rings. Both
real acquisitions and simulations have a very largmber of events, so that the statistical
error is negligible. The ripple observed in thel l@afiles may be due to a non uniform axial
distribution of shielding and other scanner matsri@ombined with edge effects of the
PMTs, and with the unavoidable (although smallfedénces in the positions of the real
crystals with respect to theateal locations. In the simulation, ideal geometriestfa crystal
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arrays, PMTs and photocathodes, as well as shgeleve been employed. It is thus
reasonable to expect a more uniform axial structorehe profile of simulated counts than
that exhibited by an actual machine. In any cdss ripple observed in the real acquisitions is
about 5% and the difference observed with the satedlresults is in the same order.

We can notice a change in shape of the axial poficcording to the energy window
selected. From the simulations we can obtain s&mhreontributions to the axial count
profiles from true, random and scatter counts, e & from counts that are affected by pile-
up. According to the simulations, we can attribtite largest contribution to this change in
shape of the profiles to scatter counts. Furthmret is a noticeable difference in the fraction
of scatter coincidences registered with the 100k&@ energy window, as compared to the
narrowest one (400-700 keV). The annulus acquisitprovides with the necessary
normalization information and it is also very udeilu order to tune the system response
employed by iterative reconstruction codes (Heredial, 2006).
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Figure 5.3. Profiles of coincidence counts for tajsin the same axial row, from a 5QCi ®*Ge
annulus. Different energy windows are shown: (i@ib}l100-700 keV, (top-right) 250-700 keV, (bottoAr)0-
700 keV. Real (thick solid lines) and simulatedr(tbolid line) results from PeneloPET are presentdsb, for
the simulations, contributions of true, random andtter counts, as well as counts that are affdnyedetector
pile-up are displayed separately. The small errars ivisible only in the simulated profiles) indieathe
expected statistical errSr

Table 5.1 presents the results for the scattertibrac real and simulated with
PeneloPET. Real values were taken from (Wanhgl, 2006). Differences between real and
simulated values are below 5% for both the 250-@10@ 400-700 keV energy windows. For

n this work the term ‘statistical error’ denotéwe tvariation in the measured magnitude inducedtéiystical fluctuations, that is, a
variation of +1/N , beingN the number of counts accumulated for said measmem
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the 100-700 keV energy window, the simulated valaes systematically lower (by about
10%) than the real ones, most likedye tothe fact that the simulations did not include
secondary particle emissions, such as X-rays, taat contribute at low energies. The
expected relative statistical error of the simolasi ist 5%.

Table 5.1. Scatter fraction for the ARGUS scanner.

Energy window Mouse phantom Rat phantom
(keV) Real Simulated Real Simulated
100-700 33 % 29 % 48 % 42 %
250-700 27 % 27 % 37 % 38 %
400-700 19 % 20 % 29 % 29 %

Figure 5.4 shows the comparison of simulated as@asitivity profiles against real
data from the ARGUS scanner. The agreement ofithelations with the data is very good at
the centre of the scanner (they agree within 5%jleathere are somewhat larger differences
(about 10%) in the relative minima of the sendiyiyprofile, corresponding to the center of
each ring. Outside these two minima, the differenoetween simulations and real data are
below 5%. Overall, the agreement between simulaiwhdata is good.

T T - : |
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Simulated --------- i

Sensitivity (%)

Distance to CFOV (cm)

Figure 5.4. Axial sensitivity profile of the ARGUSanner measured with a 18F point source shifted in

small steps along the central axis of the FOV, caneg to PeneloPET simulations. Data are from Ward e
(2006). The simulations include inert material ahélding.

Figure 5.5 presents a comparison of radial resmiutieasured for #Na point source
placed at different radial distances from the searaxis, for real and simulated data. The
resolution obtained from the simulation is in vggod agreement with the experimental data
at the center of the FOV while for larger offsetmjall deviations of the simulations to the
measured results (of no more than 7%) can be obderv
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Figure 5.5. Radial resolution of the ARGUS scanmerasured with &Na point source placed at
different radial positions in the central axiaktsli

Finally, simulations to obtain the noise equivalentint rate (NECR) for a rat-size
phantom have been performed. NECR peak valuesnalstdrom real data were taken from
(Wanget al, 2006). NECR data simulated with PeneloPET wegtyard to find the position
of the NECR peak. Agreement of simulated and réaCR values is good, as shown in Table
5.2. Due to the fact that a finite number of staps employed to find the maximum of the
NECR curves, we estimate that these figures aeei@dl by a relative error lower than 5%, in
both position and value of the peak.

Table 5.2. Peaks of the NECR curve of a rat-siznfdm for three energy windows, for the ARGUS
scanner.

NECR (kcps) [Activity (kBg/cc)]  100-700 keV250-700 keV 400-700 keV

Real 120 [92] 140 [78] 145 [43]

Simulated 125 [86] 130 [74] 150 [40]

5.4. Raytest CLEARPET scanner

The CLEARPET (Heinrichset al, 2003) scanner consists of 80 PMT detector
modules, each one coupled to a dual layer arr&y>08 LYSO+LuUYAP scintillation crystals.
Each pixel crystal has a cross section of 2 x 2°rand there is a reflector 0.3 mm thick
between crystals. Pitch size is 2.3 mm and thethenfyboth LYSO and LUYAP layers is 1
cm. The 80 modules are arranged in four rings ofr@lules with a diameter of 13.5 cm.
Every four contiguous modules in the axial diregtiorm acassetteEvery second cassette is
alternatively shifted by 9.2 mm in the axial direction.
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The axial sensitivity profile for the CLEARPET scem was simulated for
configurations with different number of detectoBmulations of &°Na point source placed
in the axis of the FOV at many positions along @&l direction, are compared to real data
taken at 18 positions of the point source alongsttener axis The sensitivity was calculated
as the ratio of the number of coincidence eventasmed inside the energy window of 250 to
750 keV, and the total number of decay processesriad during the acquisition time. Figure
5.6 shows this comparison. There is good agreemehte central region of the axial profile,
where simulation and data are within few percentath other, and a worse agreement
towards the edges of the axial FOV. This is mdadlyi due to the fact that, in this case, the
simulation did not include any shielding materiaghielding material can increase the
number of events, due to photons that first inteirathe shielding and are then back scattered
into a detector. This should have a more noticeafflect near the edges of the axial FOV,
increasing the sensitivity there.
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Figure 5.6. Axial sensitivity profile of the CLEARH scanner. The figure shows measurements and
results from simulations for three different scanoenfigurations (12, 16, and 20 detectors per)ringh a
detector diameter of 13.5 cm. Real data are tat@n {Sempere Roldagt al, 2007) and are represented with
points.

5.5. Siemens INVEON scanner

The INVEON (McFarlancet al, 2007) scanner consists of 64 PMT detector mogdules
each one coupled to a single layer array of 20 kR0 scintillation crystals. Each crystal has
a section of 1.55 x 1.55 nfrand are separated with a reflector 0.05 mm tHiiich size is
1.6 mm and the length of LSO crystals is 1 cm. Benodules are arranged in four rings of
16 modules with a diameter of 16.1 cm.

An estimation of the sensitivity of this scannerswaade with a line source 14 cm
long filled with 1.3 MBq of*®F and placed along the central axis of the scanfiee.
simulation included all materials of the line sauin order to take into account attenuation
effects at the source. The sensitivity obtainedtfa line source activity was converted to
equivalent sensitivity for a centered point soure,explained in (Kempt al, 2006). The
sensitivity estimated from real measurements byr(get al, 2006) was 52.0 cps/kBq. The
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sensitivity estimated from the simulations was 5 %/kBq, in good agreement with the real
measurement.

Figure 5.7 shows the noise equivalent count rateqR), obtained from a simulation
of a mouse size phantom of plastic material witB.&amm hole, 1 cm off-centered. A line
source filled with FDG is introduced in the holedaan acquisition with an energy window
from 350 to 650 keV is performed. This simulatiommcs the setup described by (Kerap
al., 2006) to measure the INVEON NECR curve. We haker the acquisition performance
parameters (time and energy coincidence window), atcording to the values quoted by
(Kempet al, 2006). Figure 5.7 shows the components of NECRiéd from the simulation
and the simulated NECR compared to the real measnms. Good agreement for the
position of the NEC peak and the maximum NEC coumtiound. Agreement is worse at
higher rates, probably due to differences in dead tind pile-up rejection mechanisms of the
real scanner and the ones included in the simulatio
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Figure 5.7. NECR curve for a mouse-size phantomuiaed with the INVEON scanner. Simulated
results are compared to the measurements of refer€amp et al (2006). Total coincidence rates anod, t
scatter and random counts contribution are alsastior the simulation.

5.6. Simulation speed

The number of decay events simulated per secontul@iion rate) depends strongly
on the geometry of the scanner, shielding and soding materials included in the
simulation. A'®F point source placed at the centre of the FOVhauit any other material,
apart from detector scintillating material, has rbeemulated for the four different scanners
studied in this work. The simulations tracked oahnihilation photons. Results are reported
in Table 5.3. Simulation rates correspond to a adran Intel Xeon X5472 3 GHz quad
processor. The parallel version of the code carthuséour cores of the processor obtaining a
four-fold increase in these simulation rates. Thebers in the table correspond to the actual
rate of processed decays, without any angularicestr for the direction of the photons
emitted.
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Table 5.3. Number of decay events simulated pesrsk¢simulation rate) for F point source at the
center of the FOV and different scanner geometries.

Scanner Simulation rate
rPET 75000 s
ARGUS 12000 #s
CLEARPET 11000 ¥s
INVEON 17000 é&/s

5.7. Conclusions

Due to its versatility, good simulation speed, aady-to-analyze outputs, PeneloPET
is a useful tool for scanner design, system regpeagulations, development of corrections
methods, and other applications. Though a detadethparison between GATE and
PeneloPET was not the goal of this work, for theppee of validation of this new PET
simulation tool, we have compared PeneloPET to GAiEone instance, showing that
PeneloPET seems to be faster than GATE, while mioduresults that differ less than few
percent of GATE’s predictions. Detailed comparisoh$SATE and PeneloPET simulations
will be dealt in further works. We have also comgaasimulations of PeneloPET against real
measurements from four different small-animal PE&nsers. We have compared both
integral or extensive properties of scanners, sigchensitivity, axial profile of counts, scatter
fraction, and NEC rates as well as intensive omesnely sinogram profiles and spatial
resolution, finding in general good agreement betwsimulated and real data (Espaifial,
2009).
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6. Estimation of the system response matrix

6.1. Introduction

Previous chapters introduced and validated Pendlofspafaet al, 2009), our
Monte Carlo tool for PET applications. In this ctepwe apply PeneloPET to the calculation
of the system response matrix (SRM) for statistreglonstruction methods. The main goal
would not be only to store a very accurate SRM #&igb to reduce its size as much as
possible, in order to achieve fast reconstructions.

Small animal PET scanners require high spatialluéiso and good sensitivity. To
reconstruct high-resolution images in 3D-PET, tigeamethods, such as OSEM, are superior
to analytical reconstruction algorithms, althoudteit high computational cost is still a
serious drawback (Johnsat al, 1997; Herraizet al, 2006). The performance of modern
computers could make iterative image reconstrudashenough and able of dealing with the
large number of probability coefficients of the t&ym response matrix, in high-resolution
PET scanners, which is a difficult task that prdsethe algorithms from reaching peak
computing performance. Considering all possiblealagnd in-plane symmetries, as well as
certain quasi-symmetries, it has been possibleetiuge the memory needed to store the
system response matrix (SRM) well below 1 GB, whallowed us to keep the whole
response matrix of the system inside the RAM presanordinary industry-standard
computers, so that the reconstruction algorithm aemeve near peak performance. If the
SRM does not fit in RAM, the performance of thearstruction is affected significantly, due
to the large time required to access the hard disskur implementation, the elements of the
SRM are stored as cubic spline profiles and matt¢bedbxel size during reconstruction. In
this way, the advantages omn-the-flycalculation and of fully stored SRM are combin€tde
on-the-flypart of the calculation (matching the profile ftinos to voxel size) of the SRM
accounts for 10-30% of the reconstruction timeeteing on the number of voxels chosen.
This approach has been tested with real data frammanercial small animal PET scanner.
The results (image quality and reconstruction tirslepw that the technique proposed is a
feasible solution.

Statistical 3D reconstruction methods such as daien maximization (EM) (Shepp
and Vardi, 1982; Browne and de Pierro, 1996; Der®iand Yamagishi, 2001) have shown
superior image quality than conventional analyicanstruction techniques. Moreover, EM
has some desirable properties, such as consendtitve number of counts, non-negativity,
good linearity and dynamic range. One of the keyaathges of statistical reconstructions is
the ability to incorporate accurate models of tlel Ricquisition process through the use of
the system response matrix (SRM). However, SRMBIISystems are of the order of several
billions of elements, which imposes serious demdadstatistical iterative methods in terms
of the time required to complete the reconstructiwacedure and the computer memory
needed for the storage of the SRM. A new EM-bagednstruction methodology has been
designed, developed, implemented and tested, thatides fast reconstructions while
remaining very flexible. With this approach, the aisdifficulties of iterative reconstruction
methods regarding the large size of the SRM, orube of unrealistic estimates of it, are
overcome by means of a compressed and realistic.SRM efficiency of the proposed
method relies on the design and method of storing SRM. The imaging process of
obtaining they(i) counts on each of thepair of detectors, from an object discretized(j)
voxels, can be described by the operation

y(i) =2, Al i)x(J) (6.1)
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whereA(i,j) is the SRM, the vectax(j) corresponds to the voxelized image afi) to the
measured data. Each elemét,) is defined as the probability of detecting an aitaiion
event coming from image voxglby a detector pair. This probability depends on factors
such as the solid angle subtended by the voxehdodetector element, the attenuation and
scatter in the source volume and the detector resspoharacteristics.

The forward projection operation just introduce\ad estimates the projection data
from a given activity distribution of the sourceadkward projection is the transposed
operation of forward projection; it estimates arsewolume distribution of activity from the
projection data. The operation corresponds to

b(i)=> A(i,i)y(i) (6.2)

where b(j) denotes an element of the backward projection en&pth the forward and
backward projection operations require the knowdedd the SRM (Fresest al, 2001,
Rafecaset al, 2004). lterative reconstruction algorithms repdbt use the forward and
backward projection operations, which are the miste-consuming parts of iterative
reconstruction programs. Some implementations tradeuracy for speed by making
approximations that neglect some physical processgsh as positron range, scatter and
fractional energy collection at the scintillatonsuvisible light loses in the detectors (Vaguero
et al, 2004; Leeet al, 2000; Yamaga and Murayama, 2002-2003). This ambraimplifies
these operations to gain speed, but this tradeftdh leads to non-optimal images.

The evaluation and storage of SRM elements is § aetive subject of research.
Ideally, the SRM could be calculated, using MC et (Rafecaset al, 2004) or from
empirical data (Freset al, 2001), and stored once and for all before thenmégg of the
reconstruction process. In practice, memory requér@s for doing this have become
prohibitive so far. A number of methods have beesppsed to compute and handle huge
sparse matrices, like usual SRMs. Some implementsitompute the elememsi,j) on the
fly, only if and when they are required (Kudradi al, 2002), thus avoiding the need to store
the whole SRM.

Table 6.1. Vista parameters (Wang et al., 2006).

Ring diameter 11.8 cm
Aperture 8cm
Axial FOV 4.8 cm
Number of DOI detector modules 36 position-sensitive PMTs
Number of dual-scintillator DOI elements 6084
Crystal array pitch 1.55 mm
Total number of crystals 12 168
Total number of 3D coincidence lines 28.8 x 10°

In other approaches, the SRM has been factorizea @soduct of independent
contributions: geometry, attenuation and detecémssivity (Qi et al, 1998). However the
simplifications required byn-the-fly or factorized calculations, often overlook impottan
effects (Leeet al, 2004).

Due to the fact that SRMs are very large, but sparey may be kept on disk using
sophisticated storage schemes and taking advamtbggstem symmetries (Johnson and
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Sofer, 1999) that allow for reducing the size & 8RM to a few tens of gigabytes. Due to the
fact that accessing the SRM from disk for everyiand and backward projection operation is
very slow, it will considerably slow down the resbmuction. Our approach involves
compressing the SRM to an extent that enabledlaisagion in the RAM memory of industry-
standard computers, avoiding disk access duringnggruction. In this way, it is possible to
achieve a sustained performance of around 50%eofhtoretical peak computing capability
of the processors.

6.2. System response matrix (SRM)

The SRM is composed of all thé x L probability elementd(i,j), i = 1,...,L, j =
1,...,V,representing the probability of detecting an ewaarhing from voxeN(j) at detector
LOR (line of responsel)(i). Forward and backward projections require the Kadge of all
of these elements. This matrix depends on factach sas the physics of beta decay,
attenuation and scatter in the source volume, soligle subtended from voxel to detector
element and intrinsic detector response charatitexisFor a reconstruction method to be
accurate, all these effects should be considerdé. dquipment used in this study is an
eXplore Vista-DR (GE) small animal PET scanner (Ve et al, 2004). It is a ring-type
scanner with a diameter of 11.8 cm, a transverdd 6f view (FOV) of 6.8 cm and an axial
FOV of 4.6 cm. Vista technology is based on sdattr detector modules with depth-of-
interaction (DOI) capabilities (Leet al, 2000) arranged in single (SR) or double rings XDR
The detector modules are composed of a 13 x 13atrggay with 1.55 mm pitch size. The

number of LORSs in this scanner is over 2.87><(]s@e Table 6.1). DOI determination enables
both spatial resolution and sensitivity to be im@ simultaneously (Yamaga and
Murayama, 2002-2003).

From the data of Table 6.1, and at nominal imagelwion of 175 x 175 x 62 voxels
(near 1.9 millions of voxels), the number of eletseén the SRM (number of LORs x number
of voxels) is of the order of 5 x 0 Storing all the elements of the SRM would requirere
than 10 TB (Rafecast al, 2004). This exceeds the resources of any ordinamkstation,
making it necessary to disregard all redundant efgmand to perform approximations, in
order to be able to store the SRM in the limitecbant of RAM of ordinary workstations.
Three techniques have been used to achieve thls mdhor almost-null element removal
(matrix sparseness), intensive use of system syresetnd compression of the resulting
SRM employing quasi-symmetries.

6.2.1. Sparseness of the SRM

Every detector pair can receive coincidence coanlg from a relatively small portion
of the FOV. Thus, most matrix elements of the SR®raull and only the non-zero elements
should be stored, reducing considerably the storagerements. To estimate how many non-
zero elements of the SRM have to be taken intowatdcave have proceeded as follows: the
voxels connected to a given LOR (that is, the v@xem which positron decay can produce
with non-negligible probability a valid coinciden@®unt in the detectors that define the
LOR) constitute the so-called tube of response ORT(Michel et al, 2002) for that LOR.
Extensive simulations determine the maximum sizéhef TOR needed and only the SRM
elements that are part of some TOR are stored ox&lwill be considered as not connected
to a LOR (i.e., not being part of the TOR) when ginebability that a positron emitted from
that voxel yields a count in the corresponding cetepair is smaller than one-thousandth of
the maximum value of all the voxels for such giVEDR. For the scanner considered here, it
has been used a nominal number of voxels of 1785xx162 in XYZ to cover the FOV. This
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yields a voxel size of 0.38 x 0.38 x 0.76 f(see Table 6.1) and an average number of
voxels in a TOR of about 6000 for a typical TORestf 150 (longitudinal) x 10 (transverse
width of the TOR in the transaxial XY plane of theanner) x 4 (transverse width in the axial
or Z direction scanner) voxels (Johnson and Sdf@99). With these choices, the number of
non-zero elements of the SRM is then 28.8 %XL1TDRs x 6000 connected voxels on average
or 10''elements. That is, only around 0.2% of the elemehtthe SRM are non-zero. Yet,
storing these non-zero elements as floats (4 y@esSRM element) will require about 600
GB of disk space, still too high for the current RAmount of industry-standard computers.

6.2.2. System symmetries

An additional reduction factor of approximately #0the number of non-null SRM
elements to be stored can be achieved by assurheig (¢xact) axial (translation and
reflection) and in-plane symmetries exist (Johnaod Sofer, 1999). Voxels are chosen in an
orthogonal grid oriented along X, Y and Z-axis,wi being the axis of the scanner. If an
integer number of voxels is employed for the widtithe TOR in the Z-axis, then there is a
Z-translation symmetry, due to the fact that voxelshe same relative position of the TOR
and belonging to parallel TORs should have equlalesa(seeigure 6.).

It must be noted that although our SRM exhibitseeudi this translational symmetry, in
real scanners, due to edge and block effectspitlisan approximate symmetry.

There is also another axial symmetry, Z-reflectipmmetry. Using both parallel and
reflection Z-symmetries, the number of elementsdcstored is reduced considerably. Each
pair of blocks has (2x13x13)x(2x13x13) LORs, buhgsymmetries, only 2x13x(2x13x13)
need to be stored. A factor 13 of reduction is exd.

Another symmetry, namely reflection symmetry ambiacks in the XY plane, also
holds. Using this, the number of pairs of detectbet have TORs with different values is
reduced by a factor of 3. Using them all, as alyeadntioned, these symmetries allow to
reduce by a factor or near 40 the number of diffeedements of the SRM that must be
stored. Storage needs can thus be reduced to &hightly less than 10, for the considered
scanner) GB, small enough to fit in hard disks,tgetmuch to be maintained in RAM.

6.2.3. Compressed SRM

The last step of the method proposed uses additimmaexact symmetries, or quasi-
symmetries, in order to obtain additional reductéthe SRM. Allowing for relatively small
differences between quasi-symmetric elements ofStR¥ (versus no differenca priori in
the case of the exact symmetries), we can groupinetORs into sets of the same quasi-
symmetry class. The differences between elemertteedBRM for LORS belonging to a given
class should be much smaller than between LORs fidfarent classes. Quasisymmetry
classes can be obtained, for instance, by groupigether LORs from crystals with different,
but close, LOR-crystal orientations. The differene@enong the elements of the same quasi-
symmetry class are about 5-10%, depending on tle@inof compression (reduction in size)
desired (Herraizet al, 2006).

In Figure 6.1 to Figure 6.3, this procedure issitated with an example taken from
the simulations. MC events were generated at @iffepositions inside a TOR. As shown in
Figure 6.2, LORs 1-3 are parallel or almost paratiethe crystals and thus the probability
values along these three TORs should be very sinfilaalogously, LORs 4—-6 have a large
LOR-crystal angle, similar for the three of them.Higure 6.3, longitudinal profiles along
these LORs are shown. Indeed, the results of thesM@ilations for the calculation of the
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probabilities for LORs 1-3 (and 4-6), shown by ttega points (which include statistical
error bars), are very similar. It could even besilde to say that these are the same within
error bars. In Figure 6.4, now the profiles of f@Rs along the transverse direction to the
LORs (s-coordinate) are shown at several valueth@fl-coordinate. As in the case of the
longitudinal profiles, it can be seen that the hsswf the simulated data for the near
equivalent LORs 1-3 or 4-6 are very similar. Moow has been realized that the variation
of probability inside a TOR is smooth, which allows to fit the simulated points to profiles
with an smooth interpolating cubic spline. The eliéihces among the results of the
interpolating curves for LORs 1-3 are marginal #mel three interpolating curves could be
considered identical within the statistical errardof the MC points. A similar observation
can be made for TORs 4-6. Our quasi-symmetry assommeans that the same profile
functions will be employed for TORs 1-3 that beldodghe same quasisymmetry class. TORs
4—-6 belong to another quasi-symmetry class andrepeesented by one set of profile
functions, different from those of the other qusyginmetry classes.
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Figure 6.1. Schematic drawing of a Vista small aiRET scanner detector pair, showing the (exact)
translation and reflection symmetries employechis work. All the elements of the SRM belongingptrallel
LORs are, by symmetry, equivalent.

Depending on the geometry of the system, the usgadi-exact symmetries allows us
to obtain a number of quasi-equivalent LOR clasgkat is, TORs with non-equivalent
values) which may be 9 (in the example so far dised) to 25 (for up to five different LOR-
crystal angles in the same quasi-symmetry clagswialg for larger differences among the
profiles within the same quasi-symmetry class) sinsenaller than the number of classes
obtained with only exact symmetries. The elemehthie notably reduced SRM are encoded
as transverse and longitudinal profile functionstamed by cubic spline interpolation of MC
sampled points. For each transversal or longitugirafile, MC estimates of probability at 20
points along or across the TORs, are employedtermée the cubic spline profile functions.
At reconstruction time, the probability element tbE SRM corresponding to each voxel
inside a TOR is obtained by interpolation of thefie functions. If the voxel size chosen is
large, it averages several values interpolated ftbenprofile functions at different points
inside the voxel, in order to compute the probapilor each voxel. The interpolation and
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averaging of probability from profile functions ide each voxel is compared with the results
of average of points obtained directly from the Bi@ulations. From these comparisons, it is
possible to conclude that, for a number of voxélsva or below a factor of 3 of the nominal
number of voxels of 175 x 175 x 62, the interpolagprocedure differs typically by less than
5% from the results of direct MC simulation, in #xeample shown in Figure 6.2 to Figure 6.4
(three different LOR-crystal angles) and by lessnti0% for larger quasi-symmetry class
(five different LOR-crystal angles).
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Figure 6.2. Schematic representation of severakliof response (LOR) considered for the discussion
on quasi-symmetries. Three LORs (numbered 1-3 fapto bottom) with a small relative LOR-crystalgés
and three (numbered 4-6, also from top to bottoith) large relative LOR-crystal angle are depicteghd s are
the coordinates along the LOR direction and nommél respectively.

In short, the same quasi-equivalent profiles carused to build the non-zero SRM
elements for a reasonable range of voxel sizes. dptanal voxel size that should be
employed for each reconstruction may be differeegenhding for instance on the number of
counts of a particular acquisition. This profile@tion approach makes it possible to generate
reconstructions with different voxel sizes, withdlé need to recompute the SRM elements.
Eventually, this process leads to a compressed 8fRMits in 30-150 MB, depending on the
degree of quasi-symmetry assumed.

To end this section, it will be commented on theage strategy that is also useful to
save space. All the cubic spline coefficients foe profiles of a quasi-symmetry class (or
superTOR) are rescaled in order to convert (angk)stbhem as integer values. Two bytes are
employed to represent every coefficient, whichwaiais to represent ratios of more than 60
000 to 1 inside the same TOR. The scale factorxi(man and minimum values of the
coefficients for all the profiles in each superTCiR¢ also recorded as two additional floating
numbers. During reconstruction, the integer valresconverted into the adequate float ones
on the fly. The FOV is divided in voxels arrang@dain orthogonal grid. For a given TOR,
voxels are visited from bottom to top, left to rigind back to front directions. Every voxel in
the superTOR is visited in order and the SRM eleénoemresponding to that voxel-LOR
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combination is obtained by interpolation of the icubpline profiles. Then, the superTOR
values are stored as a list of numbers formed lgy ptobabilities of each voxel of the
superTOR visited in the assumed order. Once ther$@R is obtained (decompressed) on
the fly, all the operations (forward or backwarajpctions) that involve the TORs in the
quasi-symmetry class are performed.
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Figure 6.3. Longitudinal profiles of the probalilielements for the LORs shown in Figure 6.2. The
probability of detection of a coincidence count.i@Rs 1-6 per every positron decay in the axis effflDR as a
function of the distance to the centre of the T@Rshown. The data points represent the resultshtoiMC
simulation described in the text, the error baesgiven by the statistical uncertainty. Symbols leygd are as
follows: 1, plus (+) sign; 2, times (x) sign; 3as{(*) sign; 4, empty square; 5, solid square; rp#y circle.
Profiles fitted to the points by means of cubidregs are also shown. The small crystal-LOR angi@) profiles
are very similar among them, but rather differeatrf the large crystal-LOR angle ones (4-6).

6.2.4. MC simulation

Given the fact that the compressed SRM fits in RAMpes not need to be computed
during reconstruction, nor read from disk once &whdih memory at the beginning of the
reconstruction. Thus, the SRM can be computed usingry realistic model and stored once
and for all. Monte Carlo (MC) methods are, in piohe, well suited to provide realistic
estimates of SRM elements. In this case, a sekénignt MC model, PeneloPET (Espaa
al., 2009), has been used. It includes scatter andmiptete collection of energy in the
scintillator crystals, positron range and non-c@érity effects. Positron range is dependent
on the object. In order to incorporate its effatthe SRM, in our simulations the range is
computed assuming that water fills uniformly theolehFOV. Most importantly, the scatter
of gamma photons when they reach the scintillatystals has been included too. The
comparison of simulated phantoms with actual acgomns reveals that the simulation is very
realistic indeed.
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Figure 6.4. Transverse profiles of LORs 1-6 of Fig6.2. Data points and curves as in Figure 6.3.
Several profiles at different distances | to thatee of the LOR are shown. The transverse widtthefTORs
shown in the figures is around 4 mm, or three atystdths.

A large number of simulated events are accumulateid the statistical uncertainty is
below 5% at the centre of a typical LOR. Severatkgeof computing time were required for
the calculation of the SRM in a cluster composed@fi cores AMD Opteron processors. The
total time employed for the full MC simulation idays.

6.3. lterative algorithms for image reconstruction

To test the accuracy of the compressed SRM obtaihdths been used one of the
most widely applied algorithm for finding the maxim-likelihood (ML) estimation of
activity x given the projectiony, that is, expectation maximization (EM). This wast
applied to the emission tomography problem by Shesug Vardi (Shepp and Vardi, 1982).
ML, though, is a general statistical method, foratetl as a method for solving many
different optimization problems.

Usually, iterative algorithms obtained from the Mtatistical model assume that the
data being reconstructed retain Poisson statidtiosiever, to preserve the Poisson statistical
nature of data it is necessary not to perform amycprrections (Qet al, 1998). Corrections
for randoms, scatter and any other effects shoeldnborporated into the reconstruction
procedure itself, rather than being applied as cpreections. At times, sophisticated
rebinning strategies are employed to build sinogranto radial and angular sets, which
changes the statistical distribution of the datiaicltv may no longer be Poisson like (Kadrmas,
2004). Furthermore, much attention must be paidrder that sinogram rebinning does not
cause a loss in the potential accuracy of the goaction. Our approach does not involve
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sinograms in any way, thus preserving all the imfation obtained during the acquisition.
Uncorrected data, binned into raw 3D-LOR histograstould maintain Poisson statistics
(Kadrmas, 2004).

A serious disadvantage of the EM procedure is lidsv sconvergence (Lewitt and
Matej, 2003). This is due to the fact that the imag updated only after a full iteration is
finished, which implies that all the LORs have bgmnjected and back projected at least
once. In the ordered subset EM (OSEM) algorithroppsed by Hudson and Larkin (Hudson
and Larkin, 1994), the image is updated more ofteémch has been shown to reduce the
number of necessary iterations to achieve a coenerggequivalent to that of EM.

According to the literature, EM methods have anotingortant drawback: noisy
images are obtained from over-iterated reconstyastiand this is usually attributed to either
the fact that there is no stopping rule in thisdkaf iterative reconstruction or to the statistical
(noisy) nature of the detection process and recactsdtn method (Bettinardet al, 2002;
Biemondet al, 1990). In practice, however, an image of reaskenabality is obtained after a
few iterations. Several techniques have been pezptisaddress the issue of the noisy nature
of the data: filtering the image either after coatjgh of the reconstruction, during iterations
or between them (Slijpen and Beekman, 1999), rehmfvaoise from the data using wavelet
based methods (Makeet al, 1996) or smoothing the image with Gaussian kerii8ieves
method) (Snydeet al, 1987; Liow and Strother, 1991).

Maximum a priori (MAP) algorithms are also widelyad (Green, 1990). MAP adds
priori information during the reconstruction process,tifecal assumption being that, due to
the inherent finite resolution of the system, theonstructed image should not have abrupt
edges. Thus, MAP methods apply a penalty functiothbse voxels which differ too much
from their neighbors. Whether the maximum effectresolution achievable is limited, or
even reduced, by the use of these methods isastiipen issue. On the other hand, a proper
choice of the reconstruction parameters, such asnttimber of iterations, the use of an
adequate system response and a smart choice détsnfsallows to obtain high quality
images by the EM procedure (Herraizal, 2006).

An OSEM algorithm has been implemented (Hermtizal, 2006) that includes the
possibility of MAP by means of a generalized orepdate MAP-OSEM algorithm, similar to
the one described in Lewitt and Matej (Lewitt anath], 2003) and Kadrmas (Kadrmas,
2004):

ZiDSubsetSA( t J )(F\j/("'l)S)

ZiDSubsetSA(i' J )(1+ Penalty( J’ n))

Xn,s+l( J) - Xn,s( J

SN—r

(6.3)

where the parameters and functions are definedllasvs: x(j) is the activity of voxej (j = 1,

maximum voxel numbeW), x™j) is the expected value of voxglat iterationn and
subiteratiors, A(i, j)is the probability that a photon emitted from voxil detected at LOR

y(i) is the projection from the object measured at LigiRperimental data)y is the object
scatter and random coincidences at LORenalty(j,n)is the penalty value at voxgland
iterationn, R'is the projection estimated for the image recowesta at iteratiom:

Voxels

R" = Z; AL §) X (1) (6.4)
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This MAP-OSEM algorithm can be considered as a igdization of the ML-EM. It
incorporates a penalty MAP function which can besgm in different ways (Stayman and
Fessler, 2001, Yu and Fessler, 2002, Nuyts anddfe8603), and scatter and random counts
estimates, that may require additional modelingh&fse processes. OSEM reconstruction
without MAP regularization is obtained by settirig tpenalty function to zero. However, it
can be noted that in this chapter are mostly istetein the way to compress the SRM and
not in the effect of MAP on the image quality, ahds all the reconstructed images presented
here are obtained with zero penalty.

With regard to attenuation, as it is a relativelyon effect for small animal PET (Yao
et al, 2005) and our main aim is to test the adequacyuofcompressed SRM and not the
importance of attenuation, it has not been includetie reconstructed images shown.

6.4. Results of simulations

6.4.1. Test set

To test our methodology, it was first reconstructiata from different simulated
phantoms: uniform cylinders and point sources ffedgnt axial and transaxial positions and
simulated microresolution and Defrise phantoms.otder to study the linearity of the
reconstruction method as well as the conservatibthe number of counts and noise
properties, apiral phantomwas designed (Figure 6.8 and Figure 6.9). It wasprised of
three cylinders (background) of 11.5 mm in diametech with two spirals inside: a hot one
(activity four times greater than the backgroundyl @ cold one (activity four times lower
than the background). The diameter of these spirape cylinders are 1.4, 2.2 and 2.6 mm.
Events were generated from these test sets usmgwouMC (Espafi&t al, 2009; Herraizt
al., 2006) method, taking into account positron raagd non-collinearity effects. Neither
attenuation nor scatter within the object wereudeld for these simulations. The response of
the detector was also realistically simulated adersing the main physical effects contributing
to the spread of the energy among crystals duedttes in the scintillators. For each study,
10" events were simulated and stored as projectiam ttshas been realized that the realistic
model of detector response resulted in wider T@QRs¢ch contained many more voxels than
when more simplistic models of the system respansaised. The images reconstructed from
these simulations have a resolution of 175 x 182 woxels. The size of the phantoms and
the images were chosen to be the same as the F@¥ eXplore Vista-DR (GE), nhamely 65
mm in diameter. Thus, the voxel size is 0.38 x x&B78 mm.

6.4.2. Evaluation

Initial tests were run to verify that the compres&RM and the uncompressed SRM
yielded images of similar quality and with no atfs (see Figure 6.5). The effect of
compression in the SRM on the reconstructed imagiebe commented in more detail in the
next section.

In a second step, an estimate of the point spi@actibn (PSF) was obtained by using
a phantom consisting of an array of small sourcested at different radial and axial
positions and separated by 5 mm. Resolution oldafrem reconstructions of simulated
projections as well as from real phantoms are shawnTable 6.2, revealing that
submillimetre resolution can be obtained from ng@ljections. As shown in the figures and
summarized in Table 6.2, very uniform values ofoheson (as measured by FWHM)
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throughout the FOV of 0.7 mm (at centre of the seanto 0.9 mm (2.5 cm off axis) were

obtained.
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Figure 6.5. Reconstructions with different degrégumsi-symmetry assumptions. Transaxial slices of

1 iteration of 100 subsets, 3D-OSEM reconstructioha cold Derenzo phantom (1 mCi 8%Ge, 90 min
acquisition time) are shown at the top panel. kbfe is obtained without quasi-symmetries. Theredione has
been reconstructed using the quasi-symmetries iegplan Figure 6.2 to Figure 6.4. With this degoéejuasi-
symmetry, differences of less than 5% inside sup&3 are found. The right slice has been obtaingd avi
higher degree of quasi-symmetries (and compressmeining up to 10% of difference of the profilaside a
superTOR. At the bottom panel, the activity profilgainst the distance (in mm) from the centre ef lthe
drawn in the slices is shown. Small differenceshim activity profile begin to be visible at the hast level of
quasi-symmetry. Horizontal scale in mm. Darker grethe figure corresponds to larger activity value

Table 6.2. Spatial resolution.

Measured R=0mm R =25mm
Radial 0.7 mm 0.9 mm
Tangential 0.7 mm 0.9 mm
Simulated (MC) R=0mm R=25mm
Radial 0.6 mm 0.8 mm

Tangential 0.6 mm 0.8 mm
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These results of resolution can also be observéld thhe microresolution phantom
reconstruction displayed in Figure 6.6, where th#oum resolution, almost constant along
the radial direction, can be observed.

With regard to linearity, Figure 6.7 and Figure 6w an spiral phantom and the
reconstructed (OSEM) image after 1 iterations d $0bsets. Note the very linear response
exhibited by the reconstructed image: the hot spirdbackground and background to cold
spiral activity ratios are preserved after recarion.
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Figure 6.6. Microresolution phantom, Data Spect@on, Hillsborough, NC. Top: image reconstructed
from real measured projections and from projectiobiined after a simulation. Transverse and daggavs.
Rod diameters: 1.2, 1.6, 2.4, 3.2, 4.0 and 4.8 8eparation = twice diameter. Bottom: transverse ftirofile of
the measured microresolution phantom along thenaimdicated in the figure is shown.

6.5. Evaluation of the effect of compression

To study the effect of the implemented quasi-synmiestit has been chosen a 90 min
acquisition of a cold Derenzo phantom of 1 mCiastiof ®®Ge. In Figure 6.5, it is shown a
slice of the phantom reconstructed after one 3D{@Steration of 100 subsets where the
SRM was dealt for in three ways. (a) Without makirsg of the quasi-symmetries. (b) With
the quasi-symmetries explained in previous sectioaed quasi-symmetry classes
(superTORSs) built from profiles that typically difféy less than 5%. This allows for a
reduction in a factor of approximately 9 in theesaf the SRM that needs to be stored. (c)
With a larger degree of compression, which alloarsa reduction factor in size of the SRM
of approximately 25, with superTORs that repregeaofiles that differ approximately by less
than 10%.
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Figure 6.7. (a) Spiral phantom and (b) 3D repredént of a transverse section of the original dpira
phantom. Z-axis represents counts. (c) 3D repratent of the OSEM-3D reconstructed image after @hre
iterations (25 + 25 + 50 subsets). The three lasg@ders are 11.5 mm in size, and there are twallsomes
inside each large cylinder, a hot one, with agtifitur times larger than the average on the laydiader, and a
cold one, with activity four times smaller than theerage one. Small cylinders are 1.4, 2.2 andn#16in
diameter.

In the bottom part of the figure, the activity pted along the lines indicated in each
slice of the upper part of the figure are shown.l@/the activity profile of the reconstruction
obtained without quasi-symmetry (solid line) and time of the reconstruction obtained with
moderate compression (labeled QS 5%, medium ddstedare hardly distinguishable, the
reconstruction obtained with the most compresselll §Rbeled QS 10%, short dashed line)
begins to deviate slightly from the uncompressedite
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Figure 6.8. Profiles across the spiral phantom sthibwing the activity distribution: phantom (solid
line), OSEM reconstruction (dots) (1 iteration Hisets). Voxel size is 0.38 (X) x 0.38 (Y) x O(ZB mnT.
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Figure 6.9. Single bed study of the head of a 1&&.g35 min intake of 1 mCi of FDG and 60 min scan
acquisition in an eXplore Vista (GE) drT PET scann@D-OSEM with 1 iterations of 100 subsets was
employed.

Apart from this figure where the effect of quasi-syetries has been studied, in the
remaining of this work, the moderate amount of gsgsmetries was employed, which
implies, for the Vista drT scanner, an SRM siz4%s0 MB.

6.6. Results for small animal data

Our reconstruction software was also tested onméee data’®F (fluorine) and FDG
mice wholebody projections were acquired with at&/i&E) drT PET scanner (Vaquesgbd
al., 2004). Figure 6.9 and Figure 6.10 show the relcocted images obtained using the 3D-
OSEM algorithm with 1 iterations of 100 subsetse Hlumber of voxels is 175 x 175 x 62 for
the rat head depicted in Figure 6.9 and 175 x 1768«for the whole body (three beds) mice
of Figure 6.10. In all cases, the voxel size i8030.38 x 0.78 mrh As indicated by the
study from phantoms and simulated data, submillimeetails can be observed in the images
of the mice and the rat head. In the rat headegpdpinal cord and olfactory bulb are easily
identified. For the mice results, the fluorine imatgarly shows small details such as ribs and
spinal bones, and the small bones in the front.|8de FDG image shows the usual
accumulation of activity at the mouse urinary bkagddout no artifacts are produced in its
vicinity.

6.7. Analysis of performance

6.7.1. Optimization techniques in 3D-OSEM reconstruction

Considering all the strategies previously descril@adaccelerated version of OSEM
that can optionally incorporate a penalty functiomhe reconstruction process (MAP-OSEM)
has been implemented. The number of subsets inieaation can be freely chosen between
1 and 100, not limited by system symmetries. Stingestrategies require that all subsets
have TORs evenly distributed along the FOV. In otdeachieve this, superTORs are picked
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in random order and consecutively assigned to sabket. As all the TORs belonging to a
superTOR lie within the same subset, it can bentad@vantage of symmetries and quasi-
symmetries to speed up decompression of the SRMause every TOR needs to be
decompressed once and only once during each deréubsets are thus chosen so that they
include all members of a quasi-symmetry class. Filotn 100 subsets, there are plenty of
choices to build the subsets that fulfil this regment of including all the members of the
classes comprised in a subset. Symmetry classgsisirenosen in each subset at random.
Beyond 100 subsets, however, problems arise beesasg subset will then include too few
symmetry classes.

3000
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Figure 6.10. Reconstructed images of (@) (fluorine) and (b) FDG mouse study acquired wth
eXplore Vista (GE) drT PET scanner. A three-bechszha 25 g mouse, with 5 min scan acquisition lpe,
four slices overlap between beds, 45 min uptak@5éf uCi of FDG (right) or®F (left). 3D-OSEM with 1
iteration of 100 subsets was employed in both cases

Always keeping in mind flexibility as a goal of dgsj the number of subsets as well
as the number and size of voxels or the size oF(D¥ employed can be changed at any time
during reconstruction, even before full iterati@me completed. In this way, different sizes of
voxel, number of subsets and iterations can be w@ied the best combination in terms of
speed, quality of the reconstruction or both carfioo@d. For instance, during the first stages
of reconstruction, when only the low frequencies$g details) of the image are recovered,
the use of a high number of voxels is a waste ofpder power. The number of voxels
employed to represent the image may be increaséteasigh frequency components of the
reconstructed image begin to appear. This strategyeen described in detail in Raheja et al
(Rahejaet al, 1999) and it has been named multiresolutionait be noted that the images
and execution times quoted in present work haven lmdsained without resorting to this
feature.

With regard to reconstruction times, a full iteoatiof an acquisition covering the
whole axial FOV (that is, an acquisition of one lmedL75 x 175 x 62 voxels) typically takes
20 min using 1 CPU (Opteron 244, 1.8 GHz, 2 GB RAMus 60 min are needed for the
single-bed, one-iteration reconstructions showirigure 6.9 of this work in a single-CPU
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computer. For larger animal like rats that spaerayth larger than the axial FOV of 4.8 cm,
the bed that supports the animal is displaced duaicquisition and thus several scans (bed
positions) are acquired consecutively in orderaeet the whole body. More axial slices will
be acquired and reconstruction time will be inceglaproportionally to the size of the axial
FOV. The increase of performance of computers makesry difficult to keep up to ate the
computing time estimates. Most recent implememadiothe code on quad cores reduces this
time substantially (see table 6.3)

Reconstruction time scales approximately with thedpct of the number of LORs
(2.9 x 10) and the number of voxels in a LOR (on averaged&io® the standard resolution
employed of 175 x 175 x 62 voxels). Without compi@s, a similar reconstruction needs to
access above 3 GB worth of SRM elements from disle¥ery subset, which slows downs
the reconstruction by a factor of 10-50, dependimglisk speed and network activity.

The reduction of the storage needs for the SRMwallas to keep it in RAM. The code
is implemented in a way that no disk 1/O is neeshedrder to forward and backward project.
The SRM is read at once at the beginning of thewi@n and the image is written to disk
only after a full iteration is finished. Except fttre short initial and final periods of intense
disk I/O, the common Unix tools measure a CPU asgel than 99%, which indicates that
the elapsed time during execution is mostly CPUnbled. Determining the performance of
computer codes, however, is a very subtle and neialttask. A program can be CPU
bounded yet it may be wasting CPU cycles doingingthseful.

CPU manufacturers often quote peak performanceanferm CPUs, referring to ideal
situations where no cache misses occur, burst raodess to memory is possible, the CPU
internal pipelines are fully used, etc. For insggre peak performance of two flops per CPU
cycle is quoted for AMD Opteron CPUSs, which refersa single multiply and add instruction
performed in a clock cycle. Real life applicatiashespart from the ideal conditions and thus
peak CPU performance is hardly achieved duringasuesti execution of complex codes. In
order to assess the performance of the code, FiR&Tcompiled with the 8.1 version of the
Intel Fortran compiler. The Intel vtune performarmealysis and profiling tool was employed
to determine performance and number of flops reduseeach routine. It can be concluded
that during reconstruction 50% of peak performanas obtained in sustained fashion. It was
also determined that when our compressed SRM tisanhfRAM memory is employed, the
decompression time measured was in the range 080%0-of total reconstruction time,
depending on the number of voxels chosen.

6.7.2. Parallel implementation

Parallel computing on multiple processors is arraetive option to reduce
computational time. The use of protocols like mgsspassing interface (MB) enables
clusters of networked industry-standard PCs (Bebvallisters) to be relatively easy
configured as a multiprocessor unit. Several pdnatiplementations of the OSEM algorithm
have been presented in other works (Johnson arett,3@09; Chen, 1998). A parallel version
of the Fast Iterative Reconstruction Software (FIR®as been implemented to run in
Beowulf clusters of several CPUs in a master/stanrdiguration, characterized by the use of
a master process and several (usually as manyeasiumber of available CPUs) slave
processes. The master distributes the job amongléves and continuously balances the
workload to achieve the best performance taking aucount differences in individual speed

1 http://www-unix.mcs.anl.gov/mpi/
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or workload on each CPU. In spite of its name, rtiester process does not perform any
intensive calculations, though. On startup, thetergsrocess reads from disk (once and for
all) the SRM elements and sends them to the sles@epses. Enough RAM memory to store
the full compressed SRM must be available for edalie process. After startup, the master
process decides which part of each subset (i.eghwdrctual superTORs of such subset) is
forward and backward projected by each slave psd@sce all the slave processes have
finished with their share of each subset, the mastaress updates the image, that is also
stored in memory, and broadcasts the new imag# theaslave processes. Upon completion
of the reconstruction, the master process updategtage on disk. The slave processes are
highly CPU intensive, as they are continuously qaning the forward and backward
projection operations.

Table 6.3. Elapsed time for FIRST reconstructid#er(aiz et al, 2006) of 50 subsets for one bed of 175 x 175
x 62 voxels are displayed for a dedicated machiite two cuad-core Intel Xeon X5472 3.00GHz. Code is
compiled with Intel Fortran compiler 10.1 and 38hibraries on a Fedora core 8.0 x86-i386 opegadiystem.

At least 1 GB per CPU is available in all cases €lapsed time in minutes is shown.

CPUs Version CPU class tirileazl?rsneig)
1 Non-parallel Intel Xeon X5472 3GHz 8.3
1 1 master + 1 slave id. 8.9
2 1 master + 2 slaves id. 4.5
4 1 master + 4 slaves id. 2.7

The master process only takes part in the recartgiruwhenever one of the slave
processes finishes its share of the reconstructisk and claims for more or when all the
TORs of a subset have been visited by all the staweesses and then the image must be
updated and broadcasted. Multitask capabilitiemoflern computers and operating systems
make it possible to have as many slave processagadable CPUs, yet having an additional
master process that will occupy a few cycles of ohéhe CPUs that is running one of the
slave process. Balance of the workload among éifeCPUs is easily achieved as the slave
processes that run faster (because they are erdoyta less busy or faster CPU) will claim
for their share of subsets more often than the tmsun slower. The only caution that must
be taken is that the initial workload sent to ealgve process is similar but not identical for
all of them. In this way, the possibility that mdtren one slave process claims the attention
of the master process at the same time, is minanilte practice, the tasks assigned to the
slave process take from a few seconds to near &efetvs of seconds to be completed, before
requesting the action of the master process. Thetamgrocess, on the other hand, can
comply with the task required by the slave progegsst a fraction of a second.

Overall, the implementation is simple and efficieint Table 6.3, it has been quoted
the elapsed time in minutes taken by the reconstru®f one iteration of 50 subsets at
nominal number of voxels of 175 x 175 x 62. Testsenmade in a single CPU and two core
system comparing parallel to the nonparallel veisidA master plus a slave process parallel
reconstruction in a single CPU takes less than 1d8@er than the nonparallel (only one
process in one CPU) version of the code, workingh@ same single-CPU system. The
additional time is due to the overhead of sendieg$RM from the master to the slave, as
well as the elements of the image after updataagube MPI interface. On the other hand,
the parallel version of FIRST working over seveC&#Us reduces the elapsed reconstruction
time by a factor equal to the number of CPUs alb&laFor relatively small clusters with very



98 6. ESTIMATION OF THE SYSTEM RESPONSE MATRIX

powerful cores with up to 4 CPUs, the results shawnTable 6.3 indicate that the
implementation with only one master process iseamtfficient. When two or more CPU
cores are available, the master process usesi@s2% of the total computing time required
for the reconstruction, according to the CPU usg¢est by the Unix common tools function
ps If a number of CPU cores larger than eight ibeoused, benefits will be found by using
more than one master process. In Table 6.3, a synofeelapsed times with one master
process is shown.

6.8. Conclusions

FIRST (Herraizet al, 2006), a fully 3D-OSEM or 3D-MAP-OSEM non-sinogra
based reconstruction algorithm, using a compresSB# that contains the resolution
recovery properties of EM, has been implementethim work. The full SRM for eXplore
Vista GE can be stored in less than 150 MB of graReconstructed images are
indistinguishable from the ones obtained withoutnpeession. The use of the compressed
SRM allowed for a reconstruction with a more realisesponse of the system. In this work,
an own PeneloPET MC model of the scanner was weleidh incorporates physical effects
such as positron range, non-collinearity and scatteghe scintillator material. Although it
took several weeks, the SRM was computed only dbeeas stored in compressed form so
that the reconstruction program could keep it inaigic memory.

Thanks to this, near peak performance of the algoris achieved with just a slight
overhead (10—-30%) due to the decompression proeedbrs resulted in short reconstruction
times, even if the realistic SRM implies wider TO&sd thus more voxels are involved in
every projection and back projection operation thdren simplified SRM are used. The
algorithm has been validated against simulationswai as real data. Acquisitions of
phantoms and mice from a commercially availablehhgsolution PET scanner were
reconstructed. A realistic SRM from our own MC mlodé¢ the scanner with optimal
resolution recovery was used. This fact, togethih whe intrinsic high resolution (small
crystal pitch of 1.55 mm) of the scanner, resultedvery high quality images with
submillimetre resolution, as shown in Figure 6.8guFe 6.9 and Figure 6.10. The
reconstruction time needed by the algorithm enatdas$ time operation in a small cluster
(less than 3 min per bed and iteration in a regeiad core computer cluster (Herraizal,
2006)) of industry-standard PCs. The results freal acquisitions in terms of resolution and
linearity agree with what is expected from the dated projections that use the same SRM as
the reconstructions. This indicates that the SRkivdd from our Monte Carlo simulations
accurately reflects the response of the real scameey uniform resolution and linearity is
exhibited by the reconstructed images.

The flexibility, reduced reconstruction time, acayrand resolution of the resulting
images prove that the methodologies used to impiéerttee FIRST reconstruction can be
applied to real studies of high-resolution smalineal PET scanners. The use of quasi-
symmetries to reduce (compress) the size of the SB#hs an adequate way of dealing with
the problem of storing the huge SRM resulting fammdern high-resolution PET scanners.
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7. Improved image resolution using a priori estimates
of single pixel events

7.1. Introduction

In this chapter we exploit the information that dam obtained from Monte Carlo
simulations about events detected in a PET scaiméne previous chapter we showed how
to calculate a realistic system response matrixMpBk an efficient way. Here we will
explain how to includa priori information about the counts in the SRM in ordemiprove
the reconstructed images.

Most small animal PET scanners are based on aofgyiselated scintillator crystals.
Electronics read out of individual crystals is &xpensive and thus the identification of the
crystal of interaction, is usually made by centeemergy methods based for instance on the
Anger logic (Anger, 1969). This provides with X aMdinformation that are employed for
the positioning of the interaction of each eventlodk up table can be built from this
information that assigns events to individual aygixels (Dongminget al, 2006). If only X
and Y information is employed, as it can be theedaat the event actually corresponds to a
multiple hit in the detector due to, for instaniceer crystal scatter or if detector pulse pile-up
has occurred, the X Y information obtained withstimethod will produce an erroneous
crystal identification, and it will result in a detoration of the image obtained.

There are several factors that contribute to thgratkation of spatial resolution in
pixelated detector arrays. For instance, countsragpifnom oblique lines of response have an
increased uncertainty in the photon positioninge tlu the effect of the penetration in the
crystal. During the decoding (crystal assignmentpcess, statistically distributed
mispositioning of the crystal of interaction occ¥ping et al, 1996). Scatter within the
detector also contributes to errors in the crystahtification. The ideal situation where the
degradation of spatial resolution due to scattéiwithe detector is minimal, corresponds to
the case for which a photon interacts only in arystal, either because it interacts only once
or because all the interactions for said photoruscn the same pixel of the array. We refer
to those events asngle-crystalevents (Espafat al, 2007a). When a photon goes through a
scintillator detector, it can undergo photoelectsicCompton interaction. If photoelectric
absorption takes place, all the energy is depositetie same crystal but the probability of
this is less than 50% for the scintillator materiased in PET (van Eijk, 2002). If the photon
is Compton scattered, it continuitging with less energy and subsequently there are three
alternatives: The photon can leave the scintillatah less than 511 keV of energy, having
thus produced aingle-crystalevent, or it can undergo another Compton of pHetbec
interaction. In the latter case, the photon camradt in the same crystal of the first
interaction or in a different one. This latter afiion will contribute to degradation of the
spatial resolution. Multiple points of light emisai from the array lead to errors in the
assignment of the crystal of interaction. Theseltiple-crystal events could be, at least
partially, identified with a detailed study of tieod field image built from the Anger logic
centroids. Indeed, events with an X, Y signal igisas close to the maximum of the peak of
each crystal, would correspond more likely to snglystal events. Conversely, events
falling in inter-peak or valley regions, would corftem multiple-crystal events, more often
that those events that fall in the maximum of tbed image.

In order to quantify these statements, Monte Csirfaulation were performed and the
different type of events, contributing to the floleeld images (see Figure 7.1), were studied.
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Figure 7.1. Flood field images obtained with detisimulation with PeneloPET, for a 30 x 30 LYSO
array with pixel dimensions of 1.5 x 1.5 x 12 fooupled to a Hamamatsu H8500 PS-PMT. The block is
illuminated uniformly with a low activity®F radioactive source. Contribution of pile up egsstnegligible for
the low activity employed. Total (top left), singteystal (top middle), and multiple-crystal eveftisp right)
flood field images are shown at the top panel. Paeel at the bottom shows line profiles through the
rectangular area indicated in the flood field inmghs expected, peak regions are composed mostHingfe-
crystal events, while the valley regions receiveticeable contribution from multiple-crystal event

As mentionedsingle-crystalevents are not only composed of photons whiclrante
once in the detector (single-hit), but also by phstwhich interact several times (multiple-
hit) but whose interactions take place in the sgmel crystal. Table 7.1 shows the
guantitative results for each kind of counts, adowy to the simulation performed.

In most cases, the way of assigning events to iddal pixel elements is completely
deterministic, in the sense that every acceptedtasattributed to one and only one crystal,
with 100% certainty. The criteria for accepting etgecan be tightened in aiming to reduce
multiple-crystalcontribution in the acquisitions. For instancengsa more restrictive look
up table (LUT) that does not assign accept eveméd tlo not fall into the (narrow)
predetermined XY range for each crystal. Theserictésti LUT acquisitions produce
somewhat better resolution in the images, buthagla cost in the efficiency.
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Table 7.1. Percentage of single and multiple h#nes (left) and single and multiple crystal events
(right) for the simulation performed. Results shioawv single crystal events get about a 10% confiobutrom
multiple hit events.

Single hit Multiple hit Single crystal Multiple csyal

51 % 49 % 60 % 40 %

In this work (Espafnat al, 2007a; Espafat al, 2009), we propose an alternative
method that, in order to improve the quality of tkeonstructed images, makes full use of
the information obtained by the scanner for evarynadence event, typically XY position
estimates and deposited energy in the detectos. mbthod uses a kind of fuzzy logic, where
every coincidence is not just accepted or rejeetecbrding to the fulfillment of certain
energy and XY range restrictions in a binary logey, but rather, with the aid of extensive
comparisons with real and simulated data, a conibmaof both energy and position
information that represents the likelihood of thvera for being single-crystal is built. Indeed,
the combined criteria is adjusted to yield the tigistimates for single-crystal events at
different count rates, compared to realistic simoles (Espafiaet al, 2006; Espafn&t al,
2007b). Events identified with a high likelihood @dming from a single-crystal interaction
in the detector, are given above average religbivhile others are considered as being less
reliable. The assignation of measured counts tiwithaal crystals in this method is thus not
just 0 or 1, but any number in between, dependmghe likelihood of the count for being
single-crystal. The hypothesis of this work is thage quality obtained with small animal
PET scanners can be improved usangriori estimation of the probability of being a single-
crystal event.
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Figure 7.2. Red line shows the percentage of evihatisare assigned to the crystal where the first
interaction takes place (true crystal identificajiovhen using standard identification methods. édéht points
were calculated using different light output on 880 PMT with 30 x 30 crystals with a size of 1.3.5 x 12
mn?. The results obtained for different real scanr@RET (Vaqueroet al, 2005) and LYSO and GSO
scintillator layers from VISTA (Wangt al, 2006)) are superimposed in the figure. The gieenshows the
same results yielded by the improved method, aadbthe line shows the percentage of effectivelyeptad
events by the improved method each peak to vadlgy.r
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7.2. Method and results

The method proposed has been tested for the Vre&insr (Lageet al, 2008). The
VIPET detection system is based on 4 flat-panelfyePMTs (Hamamatsu, H8500) and
MLS arrays (30 x 30 crystals of 1.5 x 1.5 x 12 fnA rotation of the gantry is performed
during the acquisition in order to obtain full afyusampling. This scanner performs
acquisitions where the data are stored in list métde each event, XY centroids computed
with Anger logic, and the raw energy for both seighents of each coincidence detected is
available in the list file.

Figure 7.3. VrPET scanner diagram showing the gearent of block detectors in the gantry. A
cylindrical phantom is plotted inside the FOV (Lageal, 2008).

Each coincidence is obtained from the two singlenév detected in opposing block
detectors. The probability of each coincidendg))( for being a single-crystal one
corresponds to the product of the likelihood fothbsingle eventsL(, L) for beingsingle-
crystal as in both detection processes the probabilibésbeing single-crystals are
uncorrelated:

|_12 = |_1|_2 (71)

The estimation of the likelihood of a single evéartbeingsingle-crystalis obtained
by means of a combination of real and simulatediia@tpns. Indeed, the likelihood of each
single-event for beinginge-crystalwill be obtained as the product of one factor frum
Anger location xy) and another from the deposited eneilgy:(

L=Lle (7.2)

In the flood field image, the pixel with maximummber of counts for each peak is
considered as the center of the crystal, wherg#éneentage o$ingle-crystalevents is also
the highest. The variation of the likelihood withetdistance to the center of the peak is
obtained from simulations where the detector isnihated uniformly with &% radioactive
source. Once this variation is obtained, a LUT imagntaining the likelihood for a counted
at each sub-pixel of this image of beismgle-crystal is computed. As pile-up event
contribution depends on the activity, this LUT irradepends on the single-event rate, and
thus it must be calibrated by comparison to actjais at different activity levels, where the
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peak to valley ratio variation with the activityrche determined (Figure 7.4). Simulations
are tuned to reproduce the behavior seen in ttee dat
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Figure 7.4. Flood field image (top) obtained fomailtiframe acquisition of a decaying FDG mouse
cylinder phantom, acquired with the VIPET scanisery frame is 30 minutes long and starts two hdatey
than previous one. At the bottom panel, line pesfithrough the peaks contained in the rectangrdar marked
in the flood field image, are plotted for threenfras with different activities. The profiles are malized to the
same peak values, in order to compare the backdrimwel of each one. An extra line (pink) shows fibed
field profile of the frame 1, when the likelihoofl@ach count for being single-crystal is applient] @ach count
is ‘weighted’ by its probability of being singleystal. Notice that the background baseline level tuphoton
detector pile-up and multiple-crystal events isaolg removed by the weighting procedure.

A similar approach is also employed to obtain tlepehdence on the deposited
energy of the likelihood of each count for beinggde-crystal (see Figure 7.5). Due to the
fact that this dependence change with the sourstildition, several likelihood-energy
profiles have been obtained from simulations ofna lsource in air, inside a mouse size
cylinder, and inside a rat size cylinder (see Fagir6). The distribution most suitable for
each acquisition performed, according to the sikdistribution of scattering material in the
phantom or patient, will be employed each time.
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Figure 7.5. Energy spectrum for the acquisition tioeied in Figure 7.4. Profiles are normalized te th
same peak values in all frames. Again, an extra (pink) shows the energy spectrum for frame 1rafte
weighting every count with its single-hit likelihdolt can be seen that this procedure effectivetymaves the
high energy tail due to photon pile-up at the deteand the background due to these events thsitufil the
Compton edge for the acquisitions of either frame.
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Figure 7.6. Likelihood of single-crystal events sues energy deposited in the detector. Results were
obtained from simulations of three different phamscacquired in the VrPET scanner.
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Using the estimated likelihood for a count of besmggle-crystal, the average single-
crystal probability and the histogram of singlesta} likelihood values for acquisitions at
different rates were obtained. Figure 7.7 shows timvaverage likelihood decreases as the
coincidence rate increases and Figure 7.8 showsthevhighest single-crystal likelihood
values appear more often, at lower activity levlligte that these results are obtained for the
VIPET scanner and could be quantitatively differéort other scanners, but qualitatively
similar.

Mean likelihood
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0.15 1 | 1 1 | |
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Figure 7.7. Average values of single-crystal likebd for coincidences versus coincidence rate. High
count rate acquisitions have smaller single-cryiikalinood, due to pulse pile-up.
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Figure 7.8. Histogram of single-crystal likelihoaglues of every coincidence for a multiframe
acquisition. Curves are rescaled to have the sammber of total counts.
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Once the estimation of th&ngle-crystallikelihood is obtained, two procedures for
improving the image by means of this informatiorvéndeen studied. The first method
computes the sinogram prior to the reconstructibnthe@ image, by weighting every
coincidence with the likelihood of it beirgingle-crystalin both single-events that form the
coincidence. Thus, the sinogram contains an enllacmaribution from single-crystal events
and a reduced contribution fromultiple-crystalevents. Using this procedure, images with
better spatial resolution are obtained but withremease of statistical noise, because counts
with low probability of beingsingle-crystalare effectively removed from the image. An
advantage of this procedure is that it can be eypeploby both FBP and iterative
reconstruction methods. However, in this chaptaty eesults obtained with fully iterative
EM 3D (3D-OSEM) methods will be shown.

In the second procedure, tr@ngle-crystal likelihood is fed into the iterative
reconstruction algorithm, so that all counts aréeatively taken into account. In our
implementation, four sinograms are built for eadygusition, each one formed from
coincidence events with a different combination sifigle-crystal likelihoods. The four
combinations are: a) Obtained from the contributbérthe probability that first and second
events aresingle-crystal(SC-SC). b) Coming from the probabilities thasfievent issingle-
crystaland second eventultiple-crystal(SC-MC). c) First eventnultiple-crystaland second
eventsingle-crysta(MC-SC). d) First and second eventsltiple-crystal(MC-MC).

The likelihood of having anultiple-crystalevent is computed as the complementary
probability to having &ingle-crystalevent. In this way, every coincidence contributethe
four sinograms with a different weight to each caefollows:

L =L.L

SC-SC ~ 7sqG SG,

Lse-me = qu LMc2 = qu @'_ Lsg)
Lyc-sc = LM(:l Lsg = @'_ qu )sg
L =L,.L

MC-MC MC, —MC,

(7.3)

And the total weight associated with each countemwthe four sinograms are considered, is
one.

Using this approach, a specific system responsexat each sinogram is employed
by the 3D-OSEM. These SRM are obtained from sinmarat weighting the simulated data
with similar factors as the experimental ones. BiRM for SC-SC events contains tubes of
response that are much narrower than those evdrgseevgamma ray hits in more than one
pixel crystal. This capability of projecting evetype of sinogram with a more accurate
system response matrix is what allows for imageh higher signal to noise ratio.

Complete system response matrices for each typgofirams have been computed
with PeneloPET (Esparfe al, 2009). As mentioned, the same single-crystaliibed maps
employed for the real data are used during theesyshatrix estimation. In Figure 7.9, the
transverse profiles of several CHOR for the fodifedent SRM are shown.

Three different image reconstructions were perfarwih the 3D-OSEM algorithm
(see table 7.2): standard, single-crystal and ingutoi) The standard reconstruction uses a
sinogram computed with the standard LUTSs. ii) Serglystal mode uses sinograms where
the single-crystallikelihood of both single-events of the coincideris employed to weight
the counts in the sinogram. iii) The improved mades four sinograms as explained before.
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maxima (top) and different shapes (bottom, wheké¢hal profiles are rescaled at the same peak vétuehe
different SRM. They are also compared to the peafilthe TOR of the standard SRM.
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Table 7.2. Different types of reconstructions tacbenpared.

Standard reconstruction Use standard LUT to conaptlte sinogram

Use sinograms including only single-crystal

Single-crystal reconstruction
events.

Use four sinograms with different combinations

Improved reconstruction .
of single and mulple-crystal events.
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Figure 7.10. Slice of the 3DOSEM reconstructed iesafpr a simulated acquisition of an 1Q phantom
(see appendix A) acquired with the VIPET scannesuRs with different number of subiterations anevsn.
The single-crystal reconstruction shows betteraatsglity for the smaller rod but with a considdemcrease
of the noise in the background, due to the losseimsitivity. The improved and standard methods ssiavilar
detectability for the smaller rod, with lower lex#Inoise for the first one.

In order to compare the images obtained with tffergint methods (see Figure 7.10),
NEMA protocols adapted for small animal studies KNE 2008) have been applied to
simulated acquisitions of VIPET scanner. First, theovery coefficient for different rod
diameters was studied. An image quality phantomMXE2008) filled with 100uCi of **F
was acquired during 20 minutes. This phantom ispmsad of a uniform region with a
diameter of 30 mm, axially followed by five rodstkvidiameters 1, 2, 3, 4, and 5 mm. The
noise was measured in the uniform region and thevexy coefficient was studied for the
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rod of 1 mm of diameter. Reconstructed images treed every five subsets in order to

evaluate the evolution of the recovery coefficiardrsus noise. Results of recovery
coefficient versus noise for the three methodswatad are shown in Figure 7.11. For the 1
mm rod, the recovery coefficient of the improvedamstruction is clearly better for all levels

of noise, while single-crystal reconstruction shaslightly better results than the standard
one until 10% of noise, from there on, the singlgstal results equals the standard one.
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Figure 7.11. Recovery coefficients versus noiseaf@D-OSEM reconstruction for the 1mm rod of a
simulated I1Q phantom acquired with a VrPET scanBach point corresponds to five subiterations.

The simulation of &Na point source placed at the center of a I eytinder of water
and acquired with the VrPET scanner was also paedrto compare the spatial resolution of
different methods. The point source was simulatediféerent radial positions, acquiring 20
prompt counts at each point. The radial, tangen&ial axial resolutions were measured
following NEMA protocols for small animal PET scara (NEMA, 2008). The data
acquired were reconstructed with 3D-OSEM (Heretial, 2006) using one iteration of 60
subsets. The results are shown in Figure 7.12.€Tiseno difference in axial resolution, but
the single-crystal reconstruction has better raalml tangential resolution (~10%) compared
to standard and improved methods.
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Figure 7.12. Spatial resolution variation with tteial position of the point source for the three
evaluated methods. Radial (solid lines), tangediashed lines) and axial (dotted lines) resoluimplotted.

Comparing the results of recovery coefficient (RDY spatial resolution, it can be
noticed that best resolution is obtained with timgle crystal method, while for the recovery
coefficient, best results are given by the improweethod. This may be due to the fact that
resolution is measured on a point source with grgd statistics and without presence of
scatter and random coincidences. The reductiohehtumber of counts implied by working
just with single-crystal events will not affect thesolution measure. On the other hand,
recovery coefficients are measured with the Imagaly phantom comparing counts of an
uniform region with counts in a thin capillary rodoise and background counts have an
effect in the RC results and thus keeping all adiexaces or neglecting some will be seen in
the RC values.

A measurement of a Derenzo-like phantom (see appeXdfilled with FDG was
performed with the VrPET scanner, in order to tin&t proposed method. The resulting
images are shown on Figure 7.13 with differences f&w percent in peak to valley ratio and
noise, but with slightly better images for the $&grystal and improved methods.
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Figure 7.13. Top: 3DOSEM reconstructed images @feaenzo-like phantom acquired with a real
VIPET scanner (Laget al, 2008). The phantom was initially filled with 3QCi of FDG and acquired during 5
hours. Bottom: line profiles across the lines dramvthe reconstructed images.

Additionally, we have performed some comparisomien images obtained with the
standard and single-crystal methods from data aeduwvith the rPET scanner (Vaquezb
al., 2005). Visual inspection of reconstructed imaigesa Micro Deluxe Resolution phantom
(see Figure 7.14) and the heart region of a mosee Figure 7.15) shows better resolution
and less background level for the single-crystathme. The main difference between the
results obtained with rPET and VrPET scanners ésdbntribution of pile-up events. The
integration time of the rPET scanner is about 28Qvhile for VrPET is reduced to 130 ns.
Thus, there is a higher contribution of pile-up rgefor the rPET scanner. As pile-up event
are smoothly distributed in the flood histogramook detector, reducing the contribution of
events with centroid in the inter-peak regions @écrease more pile-up than true events.
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Figure 7.14. This figure shows the results for amdiDeluxe Resolution phantom filled with FDG,
acquired with rPET and reconstructed with the 3CE®ISalgorithm using standard (top left) and singlgstal
(proposed in the figure, top right) methods. Im@nments in resolution and overall reduction of theel of

background are clearly seen.

7.3. Conclusions

A priori knowledge of the probability that detectedents are single-crystal has been
estimated using a combination of XY position infation and energy deposited in the
detector. Thisa priori information has been introduced in a 3D-OSEM tieea
reconstruction method. A more specific system respomatrix is used, accelerating the
convergence of the algorithm and obtaining imagésh Wwetter resolution and recovery
coefficients. If only single-crystal events are digkiring reconstruction, better resolution is
obtained at the expense of a moderate increaseisé fevel in uniform regions, due to the
fact that counts with less reliable pixel identiion are effectively removed from the
reconstruction. The recovery coefficient was evidaising a simulated acquisition of an 1Q
phantom acquired with a VIPET scanner. These geshibw how, keeping all the counts and
using specific SRM for each type of event, producgher values of recovery coefficient
and converge faster with a reasonable level ofendifie proposed methods show slight
improvement when evaluating images from real mesmsants taken with VrPET, but the
single-crystal method shows substantial improvemfent acquisitions taken with rPET
scanner, due to its capacity for reducing the doution of pile-up events on the acquired
data.
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7.3. Conclusions
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Figure 7.15. This figure shows the results from omause injected with FDG and acquired with the

rPET scanner. Both standard (top left) and singystal (proposed in the figure, top right) methcae
compared. Line activity profiles plot (bottom) shdle improvement achieved in the heart region usirg

single-crystal method.
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8. Considerations for the design of small animal PET
scanners

8.1. Introduction

Previous chapters have shown some applications ohté&l Carlo methods for
improving the quality of the images obtained wikisting PET scanners. All the experience
gained until this point will now be applied to tdesign of a new PET scanner. We will try to
determine the main bottlenecks that constrain pexdoce of scanners in order to assess
which configuration parameters need to be changedeloPET shows its usefulness again on
this chapter, allowing for exhaustive tests of searconfigurations in a short period of time.

Small animal PET scanners are in continuous devaop. New devices are produced
with higher sensitivity, spatial resolution, andunb rate capabilities (Wangt al, 2006;
McFarlandet al, 2007). The design of a new PET scanner is a gemplex process that
requires taking decisions of several kinds. Montarl€ simulations have become an
invaluable tool during this process, allowing fathaustive studies of all the components that
form the scanner (Heinrichet al, 2003). The purpose of this chapter is the stbgymeans
of Monte Carlo simulations, of how the configuratiparameters of a typical small animal
PET scanner have an effect on its performance.

Current PET scanners are composed of block dete¢Wianget al, 2006), of PS-
PMTs coupled to scintillation crystal arrays. Bladtectors are arranged in parallel rings that
usually achieve better transaxial than axial spatisolution. Different configurations have
been evaluated. Parameters such as ring diamet&ctdr size, pixel size, scintillator
material, and electronics have been exhaustivelyedein order to assess the response of the
scanner performance to variation of these paraseter

As a starting point, the desired values for théqvarance of the scanner were set. The
sensitivity at the center of the FOV for an enengydow from 250 keV to 700 keV should be
around 10%. The spatial resolution at the centgahefFOV should be better than 1.7 mm.
Finally, both axial and transaxial FOV should beusrd 10 cm. High count rate capability is
also a consideration of design. The methods emgldgeestimate these parameters are
described in what follows.

There are four characteristics of PET scannersiderexd here: spatial resolution,
sensitivity, FOV size and NEC Rate. Spatial resotytFOV size and sensitivity depend on
geometry and scintillator material, but not on &leaics. On the other hand, obtaining good
NEC Rate values depends on the geometry and, nssentally, on the electronics and the
scintillator shaping time, that in turns dependgfmscintillator decay constant. For instance,
with the same scanner geometry and materials bif¢reit electronic resources, very
different count rate capabilities can be achieved.

8.2. Spatial resolution and sensitivity

Spatial resolution and sensitivity are the mostangnt parameters in the performance
of a PET scanner. When designing PET scanners,rbédsdr thousands of configurations
must be exhaustively evaluated in order to obtdie best compromise between both
parameters. One powerful figure of merit that hesrbused in this study is the representation
of the spatial resolution as a function of sengijtifor each scanner configuration. However,
the evaluation of these two parameters by simudatie NEMA protocols is an extremely
tedious (and CPU-consuming) task when working witany configurations. In order to
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simplify this process, an alternative method tletuces considerably the computation time
has been employed to estimate both parameterspwtitperforming reconstructions on
simulated data.

Indeed, in this study we rely on the root mean sgRMS) (see eq. (8.1)) of the
positioning error, computed as an estimation ofsihetial resolution at any location inside the
FOV. The positioning error is computed as the RMBekknce between the sinogram
coordinates for the true line that joints the rgadown from the simulation) first interaction
point in each detector of the coincidence pair, #agdactual coordinates assigned to this same
coincidence event inside the sinogram by the scamweording to the simulation of Anger
logic and other positioning algorithms.

RMS= \/ﬁ > [(a0) +(a 28)] (8.1)

i=1,N

Actual coordinates registered by the scanner mayblered due to multiple
interactions in each detector, photon-pile-up, @oirrors in the Anger-like procedure or
crystal assignment, etc. Thietector-onlycontribution to the blurring will be combined with
other physical effects that contribute to the i blurring of PET, such as positron range.
RMS values obtained in this way are compared whith riadial spatial resolution obtained
from FBP-reconstructed images for some well knosansers (nanoPET (Wyss al, 2006)
and GE eXplore VISTA (Wangt al, 2006)) for which the simulations employed hergeha
been shown able of reproducing the experimental dath good accuracy (see chapter 5).
Thus, simulated acquisitions of@Na point source located at different radial posiiovhere
reconstructed using FORE+2D-FBP methods. The FHVEMes obtained (from experiment
as well as simulations) where represented as atifunof the RMS computed from the
simulations. The resulting curve indicated thatireedr fit can describe adequately the
dependence of the resolution on the RMS and thdtsesf this fit were employed to assess a
relation between resolution of the scanner and RMS8e simulations (see Figure 8.1).

We expect that this relationship holds valid foarswers with FOV of approximately
similar size. Indeed, in this case the contributimm non collinearity and positron range
would be equivalent, and the difference among éselution obtained with different scanner
configurations will be due to intrinsic detectouising. The validity of this relationship at the
+/- 15% level has not been contrasted only for\tista and NanoPET scanners employed to
obtain it. It has also been used to predict theluti®n of other commercial scanners (Inveon
(McFarlandet al, 2007), NanoPET (Wysst al, 2006)), obtaining good agreement with the
measurements from several groups. We have alsoarech@stimates of resolution obtained
from the linear fit, with results of simulations séveral configurations, where resolution was
obtained with more conventional procedures, i.teraeconstructing the images from the
simulated data with an FBP method and measurirgutsn from the FWHM of profiles in
the images. Results were consistent with the oeesatl from the RMS estimation within
15%.

With regard to scanner sensitivity, it is usualiyam at the center of the FOV. It was
evaluated simulating a line source filled wifff along the central axis of the scanner in order
to obtain the absolute central point sensitivityC&) (Wanget al, 2006). The ACS value is
calculated as two times the coincidence rate diviole the total activity that falls inside the
FOV. Simulated measurements have also been comparedal acquisitions, validating
PeneloPET ((Espafet al, 2009) and chapter 4).
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Figure 8.1. FWHM-RMS relation obtained from a lind# to experimental points from known
scanners. These scanners are NanoPET and VISTAg@{ah, 2006).

8.3. Field of view
The maximum axial FOV size achievable with a scansesery approximately the

axial length of the scanner. The maximum transax@V can be estimated from the LORs
density across the FOV. The radial bin of each Li®Rstimated in the same way that for
sinograms. The density of LORs contributing to diahbin decreases very sharply at the
edges of the FOV. The maximum useful achievablestrgial FOV can be considered as the
limit where the LOR density falls to 50% of the eage value. Figure 8.2 shows the LORs

density for a scanner made of rings of 10 detectorslar to the VrPET one (Laget al,
2008), with diameters varying from 14 to 17 cm.
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Figure 8.2. LORs density versus radial positiondoanners with different diameters, all of themhwit
10 detectors per ring, similar to the nanoPET sea(WWysset al, 2006).
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8.4. Pitch size

Pitch size is the distance between centers of adjacrystals. It is related to the
transverse size of the pixel crystal and the théslsnof the intercrystal reflector. Generally it
is better to use a reflector thickness as smajpassible, in order to increase the packing
fraction of the detectors and, as a result, thesigeity of the scanner (Phelps, 2004). A
reflector thickness of 0.7 mm was chosen in whides. Further, different crystal sizes were
tested to compare the spatial resolution and seitgiat the center of the FOV. For instance,
the impact of pitch size in the resolution and geity of a scanner composed of 2 rings of
10 detectors, like the rPET one, each one with LYS@stals and a diameter of 14 cm,
similar to the nanoPET scanner, has been studigdtal sizes from 1.2 to 1.9 mm were used
to complete a block detector with a total width4& x 45 mm. The results of Figure 8.3
show some improvement in spatial resolution wite #maller crystal sizes, of up to 8%.
Sensitivity keeps constant, as one would expecthaffect of pitch size, within the ranges
explored, is not very important, a fixed pitch sefel.3 mm will be chosen in the remaining
results of this chapter, unless noted otherwise.

8.5. Effect of the choice of scintillator crystal i n spatial
resolution and sensitivity

As mentioned before, block detectors are composads/olume of scintillator coupled
to a photosensor (typically photomultipliers or AQPBaileyet al, 2004). These blocks form
the basic elements of the scanner and their degijdetermine the sensitivity and spatial
resolution achieved with the whole scanner. In orte define block geometry and
composition, parameters such as scintillator matgpitch and crystal length were analyzed.
As part of the comparison and evaluation of thdgoerance achieved with different block
configurations, the spatial resolution at the CF®&5s studied as a function of the absolute
central point sensitivity (ACS) for different scamrconfigurations. The energy window was
fixed to 250-700 keV for all these studies. Thei@esaxial and transaxial FOV are 10 cm.
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Figure 8.3. Spatial resolution and sensitivity &3¥ for different pitch sizes for a two ring of detors
similar to VrPET with diameter of 14 cm, similarnanoPET scanner (Wyss al, 2006).
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Table 8.1. Properties of scintillator materialsigtd.

LYSO LSO LuAP BGO
Light output (photons/MeV) 25000 25000 10000 8000
Rise time (ns) 0.8 0.8 0.5 5
Fall time (ns) 40 40 17 300

Crystal length and scintillator material were cheshgn the simulations for different
block configurations. The transverse size of irdlinl crystal elements used during this study
was fixed to 1.3 x 1.3 mfrand a 0.07 mm thick reflector was placed amonmtHgach block
has 34 x 34 crystals for scanners with two or thinegs, each with 10 blocks and a diameter
of 14 cm. Note that coincidences among all ringsewalowed. BGO, LSO, LYSO, and
LUAP scintillator materials were simulated for dgtslengths from 8 to 11 mm. Figure 8.4
shows the results for all these combinations. déasitivity of 10% is pursued, it can be seen
that the variation in spatial resolution is abo&#® depending on the block configuration.
This figure should be very useful when deciding theal block design. It will be
complemented with information on the count rateatdiiies, to accomplish a better block
detector definition.

From the Figure 8.4 the following points can beatoded:

e LYSO results show a worsening of resolution by ab®@06-0.1 mm and of
sensitivity by 15% percent with respect to equimtl€SO crystals. This
implies for instance a total sensitivity reductioom 10% to 8.5% when using
LYSO instead of LSO.

* LUAP results are better than LSO ones in termsniivity. As this also is a
faster crystal, it will be possible to obtain alketter NEC rates with this
material.

* The best scintillator in terms of resolution andsstvity, for a given crystal
size, is BGO. It yields 20% more sensitivity tha®@ and improves resolution
by 0.2 mm. But it has a very slow decay time, wigalises trouble with NEC,
and a low light yield, that causes (small) problemth crystal identification
(Jennifer and Simon, 2005; Smith, 2002).

8.6. Identification of the crystal of interaction

As mentioned before, BGO light output is much lowemn the one of LSO and LYSO
crystals. This lower photon yield will cause notlyoa loss of energy resolution, but also
poorer crystal identification in the flood histogra A simulation of the light collection
process was performed for low and high count naterder to evaluate the degradation on the
flood field image for LSO and BGO crystals (MurpB@y€onnor, 2006; Cal-Gonzalez, 2008).
A 13 x 13 crystal array with a pitch size of 1.55ngoupled to a Hamamatsu R7600 PMT
was used for this study. Integration time of 600uas employed for BGO and 80 ns for LSO.
Results of Figure 8.5 shows that crystal identif@mais not worsened very much but, at high
count rate, the BGO detector has a higher backgréermed mainly by pile-up events due to
the longer fall time of this scintillator.
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Figure 8.4. Spatial resolution at CFOV versus AGB different block configurations. L represents
the values given to the crystal length. Differengstal length of same materials are representeld pagints
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8.7. Considerations about the thickness of the scin tillator

Annihilation photons have larger probability to engo Compton scatter than
photoelectric effect when passing through scintdla materials (Knoll, 2000). This gives rise
to degradation in spatial resolution with the timeks of active material, independent of
whether one or more layers of scintillator are eget (Baileyet al, 2004). Figure 8.6
shows the dependence on the length of the sciotilaystals of the singles sensitivity for a
34 x 34 block of crystals with transverse size & £ 1.3 mr, irradiated with a®F point
source placed at 8 cm of the front face of the aete Results for BGO and LaBr
scintillation materials, for three different energyndows, are shown. These curves saturate
when all the photons that go through the detectockbare stopped. The thickness where
saturation occurs represents the crystal lengthvibald produce the maximum sensitivity in
the scanner. For instance, using BGO crystals withtal length higher that 3 cm does not
change sensitivity much. Comparing BGO and LaBsults, it can be seen that 1 cm of BGO
can stop more than twice photons than 1 cm of t.aBr
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Figure 8.6. The sensitivity of the singles to thedth of scintillator crystal for a 34 x 34 blodafne as
described before) irradiated with'% point sourced placed at 8 cm from the front fat¢he detector. BGO
(top) and LaBr (bottom) scintillator results are@wim.
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LaBr (bottom) scintillation materials. Differentystal lengths results are joined with lines for Haene energy
window.
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The singles sensitivity versus the percentage of@is that interacts just once in the
detector is plotted in Figure 8.7. This figure altoto study how Compton scatter influences
the detection properties depending on block thiskné.SO, BGO and LaBrscintillation
materials were studied with three different enenggdows. It can be noticed that, for the
thickest crystal, the percentage of photons thaeract only once almost equals the
photoelectric fraction obtained (than, thus, repmés a lower bound for the single hit
percentage), due to the fact that photons whichergad Compton scatter will produce
additional hits inside the block and thus for iitensize crystals, (or very large ones), this
fraction of single-interaction photons is just three of the photons that only interact once and
disappear. Higher single hit percentage translat®esa better identification of the crystal of
first interaction, and thus improves the resolutioh the scanner. Due to its larger
photoelectric fraction, BGO has the higher singiiiaction photons fraction, followed by
LSO and LaBr.

8.8. Improvement of spatial resolution of PET scann  ers

The spatial resolution of PET scanners can be inggtosacrificing sensitivity if a
method based on the results presented in previvaster is employed. This method consists
in applying an estimation of the likelihood for Iy single-crystalevents, to filter the
detected events (see chapter 7). In order to ewtith@ improvement that can be obtained
with this method, a ring of ten detectors, 16 cemtgter, with arrays of 34 x 34 crystals with
transversal size of 1.3 x 1.3 rfinvas simulated storing only the events for whiok pihoton
interacts only once (1 hit crystal) or, rather, ffi®otons that interact only in one crystal.
Conventional acquisitions were compared to the ltesaf the improved one. Resolution
versus sensitivity figures were obtained for thsemtillator materials, BGO, LSO and LaBr,
and different crystal lengths (from 0.1 to 5 cmipeTresults are shown in Figure 8.8. Larger
crystal lengths appear to the rightmost part of ¢heves. The resolution and sensitivity
obtained with BGO is always better than the onewinbd with LSO, both for normal
acquisitions as well as for the ones that includéy single-hit events. Single-hit results
represent the ideal limit of maximum resolutiontla expense of much reduced sensitivity,
that can be obtained with these improved acquisstioNote that BGO results with
conventional acquisitions are better to both reped. SO ones and also better than single-
hit LSO results, for crystal lengths longer thacni.

8.9. DOI and radial resolution

As it is well known, spatial resolution worsens svflam the (transaxial) center of the
FOV of scanners, due to depth of interaction (Dé¥gcts (Chien-Minet al, 2000), caused
by the finite length of the scintillator crystaiBhis degradation of resolution can be reduced
using detectors with two or more layers of sciatdr crystals (Kitamurat al, 2004) or
phoswich detectors (Seidet al, 1999). Multilayer detectors would be needed tantain
resolution across FOV and would be particularlyfuisg the scanner is made with small
detector modules. To illustrate this effect andmifia it for small animal PET scanners, the
variation of the resolution with the radial positiof the source has been computed for a
scanner formed of 2 rings of 10 detectors of 34 >ci¥stals with transverse size of 1.3 x 1.3
mn? and a diameter of 14 cm. Several detector cordiipms were tested in order to try
different crystal lengths in phoswich configurasofsee Figure 8.9). The purpose of this
study is to evaluate differences in spatial resotytthus sensitivity is not considered in this
section. One must recall that the resolution atcir@er of the FOV cannot be improved with
multi-layer scintillators, compared to detectorshathe same total crystal length. It is only the
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variation (degradation) of resolution across the/K€@rther away from the scanner axis) that
is more favourable for multi-layer detectors (gréie) compared to single layer ones (red
line), for a given crystal thickness. Indeed, tlestbresolution that can be obtained with a
given multi-layer arrangement would be the one ioleth by keeping only the counts coming
from the front layer (blue line). That is, the sarasolution of a single layer arrangement with
the length of the first layer of the multilayer eéetor (dark blue line) is recovered. It is

interesting to note that resolution across the F&¥Y also be improved for one (or multi)

layer detectors by means of the single-hit acqaisi{pink line) explained in the previous

chapter, but DOI effects would be similar to tho$eonventional acquisitions, in the sense
that resolution will not be very uniform across #@V.
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Figure 8.8. Spatial resolution versus sensitivitga@nventional and single-hit acquisitions. A riwith
16 cm of diameter and 10 block detectors with 384xcrystals with a transversal size of 1.3 x 1.3°mms
employed for this measurements.
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8.10. Count rate and NEC capabilities

The count rate capability of several scanner caméitjons was evaluated, using noise
equivalent count (NEC) rate as indicator. NEC rateomputed for acquisitions of the same
phantom at different activity levels. These NECuesl obtained are represented as a function
of the activity. The peak values of the NEC cunae used to compare count rate
performance of different scanner configurations.

The maximum useful count rate obtained from a PE&nser depends on the
geometry and material that compose the scanneraksadin a very important way on the
configuration of its electronics, that is, on theegration time, coincidence time window,
dead time, etc. Random and scatter coincidencetgveead time and pulse pile-up are the
main contributions to effective count rate degramat The images with the best signal to
noise ratio are obtained, at a given activity vaJugsually when they are acquired at the
maximum of the noise equivalent count (NEC) rateveuBaileyet al, 2004). A scanner
with high sensitivity will not be useful if the dgdime is high, or if it is formed with large
scintillator blocks with a very slow decay componeo that, at moderate rates, a high
percentage of pulses suffered from detector pilé&Ggrmano and Hoffman, 1988, 1990).

In this section, NEC rates for several configunagiof the electronics and acquisition
system are presented in order to evaluate thetdffateach ingredient of the electronics has
on the count rate capabilities of the scanner. &s@siulations were performed with a large
size cylindrical phantom (10 cm diameter and 15length) acquired with three different
energy windows (100-700, 250-700, and 400-700 kéNBC curves were estimated from
simulations of a scanner composed of two ringsh @ae with 10 PMTs of 34 34 crystals
with a size of 1.3x 1.3 x 14 mn? and a diameter of 14 cm. Each PMT is connected in
coincidence with the 5 opposite detectors of eay, thus 10 PMT in total. In the next
figures the NEC curves and coincidence rates, usdgeral assumptions, are presented.
Different integration and conversion times are coradl and the effect of pile up rejection is
also tested. In Table 8.2 typical values for theyles and coincidence rates expected in total
and per detector for this setup, for activitieshef order of 2 mCi, are listed.

When pile-up rejection is applied, singles with tihéial trigger less separated of
another trigger than a specified time are not aeckfor coincidences.

Table 8.2. Rates measured for a scanner with tagsrieach one with 10 PMTs. Acquisitions of a large
cylinder phantom filled with 2 mCi 0ofF, with energy window of 250-700 keV, 75 ns of gr&tion time, 100
ns of conversion time, and 10 ns of pile up regactime.

Total Per detector
Singles rate 38 -10 19-16
Coincidence rate 1.02-%90 5.1-10
Trues rate 75-%0 3.7-10
Randoms rate 27-10 13-10
Rate of accepted pile up 4.0 - 18 2.0-16

events

First, the effect of conversion time is reviewed kigure 8.10 and Figure 8.11,
considering that a pile up rejection mechanismvigilable, and using 75 ns of integration
time for both 100 ns or 1200 ns conversion timegrMadation in performance due to the
worse conversion time is of the order of 50%. Thsifon of the maximum of the NEC shifts
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from 1.5 to 0.7 mCi and the rate of the maximunuealof the NEC decreases from 160 kcps
to 100 kcps (250-700 keV energy window) due to erswn time.

One important conclusion of these figures is thatnarrowest energy window is the
one with larger NEC values, showing that the larggrction of scatter implied in the narrow
energy window, compensates the loss of sensitivity.
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Figure 8.10. (Top) NEC rate measured for a bigncldr using different energy windows. (Bottom)
Total, partial and NEC rates for an energy winddw%0 to 700 keV. The integration time was fixed7® ns,
conversion time to 100 ns and pile-up rejectiof@ms.

The following test shows the effect of pile-up i#jen (see Figure 8.12). For the same
integration and conversion time as in Figure 8ftbl the 75+1200 case, pile up rejection is
now switched off. We notice that the NEC peak isvrfound at less activity (0.6 mCi), and
reaches merely 80 kcps, 20% less than when pilesjegtion was on but, more importantly,
the rates that the machine should sustain are 808, kersus 400 kcps when pile-up rejection
is in effect. These larger singles rates produceiramease of randoms contribution.
Furthermore, counts accepted without pile-up reectill suffer from pile-up (and thus
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wrong crystal identification) in a percentage of/@@t the peak of the NEC, while with pile-

up rejection in place, there are virtually (< 5% counts accepted with pile-up. If pile-up

events are not rejected prior to conversion, btheraafter it, because they fall out of the
energy window, the main bottleneck or contributiorthe dead time of the scanner would be
conversion time.
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Figure 8.11. (Top) NEC rate measured with a bignddr using different energy windows. (Bottom)
Total, partial and NEC rates for an energy winddw®%s0 to 700 keV. The integration time was fixed7t® ns,
conversion time to 1200 ns, and pile-up rejectmft@ ns.

Figure 8.13 shows the effect of reducing the iraggn time from 75 to 50 ns. Near a
20% increase in the NEC rate and activity at thekpaf the NEC is obtained. Coincidence
rate is increased to 1200 kcps.

8.11. Acquisition protocols

Some PET scanner have a reduced number of detedteggsto the high cost of the
detection elements, at the expense of some satysitgs (Vaquercet al, 2005). Complete
angular sampling is achieved by rotating the detsctaround the field of view. The
widespread use of iterative statistical methodsegbnstruction, together with the fact that
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these iterative reconstruction methods are morerant to incomplete angular sampling,
allows to explore the possibility of using diffetenotation schemes (i.e. continuous vs. step
and shoot) of the detectors, in order to obtainktest image resolution with the minimum
acquisition and reconstruction times.
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Figure 8.12. (Top) NEC rate measured for a bignchdr using different energy windows. (Bottom)
Total, partial and NEC rates for an energy winddw%0 to 700 keV. The integration time was fixed7® ns,
conversion time to 1200 ns and no pile-up rejectias employed.

Organizing the data in LOR histograms (Kadrmas,420Geeps the spatial but not
temporal resolution of the PET measurements. Coatisly rotating scanners make
extremely difficult the use of LOR histogramming feconstruction. An alternative option is
LIST mode reconstruction (Barredt al, 1997) which keeps both spatial and temporal
resolution. The computational cost of LIST modeorestructions is highly dependent on the
number of detected eventS{unid. A further alternative is to reconstruct dataasmged in
sinograms. This causes a loss of spatial resolutiento the rebinning of the data acquired
(Kadrmas, 2004). If the number of counts is mucphbr than the number of sinogram
elements Nping, the best option for continuously rotating configtions would be
reconstruction from sinograms. However, if step ahdot rotation schemes are used during
acquisition of PET data, LOR histogramming would pessible. Step a shoot rotation
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consists in acquiring data only while the scannetectors are placed in a fixed angular
position. Different fixed angular positions are dise order to complete angular sampling.
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Figure 8.13. (Top) NEC rate measured for a bigncldr using different energy windows. (Bottom)
Total, partial and NEC rates for an energy winddw®%s0 to 700 keV. The integration time was fixed5® ns,
conversion time to 100 ns, and pile-up rejectiohQms.

LOR histograming (Kadrmas, 2004) of data may betebesuited for iterative
reconstructions, because the physical characterisfi the scanner are related to the nature
and placement of the detectors that define everR L@ther than by their corresponding
position inside the sinogram. This is why, in gehethe best way to reconstruct using
iterative methods is LOR histograming, which allofes optimal evaluation of the system
response matrix (Herraet al, 2006).
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Figure 8.14. Events assigned to the same sinogeamtinates may have been acquired with different

detector orientations, which implies a differenspense matrix (or detector configuration) that,gemneral,
depends on the actual angular position of the t®éor each count.

Sinogram histogramming involves the combinationseferal LORs into the same
radial bin, depending on their radial position ($@gures 8.14 and 8.15). This causes for
instance that central radial positions have largenber of LORs per bin than those in the
radial edge, as shown in Figure 8.15. This fact tnhes corrected by a normalization
procedure that generally spoils or mask the stedishature of the acquired data and thus
prevents iterative methods to work at their besir(eizet al, 2006; Kadrmas, 2004).
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Figure 8.15. The number of LORs per radial bin aejgeon the radial position (blue line). Green and
pink lines show the number of LORs that contribtdetwo different radial positions. Grey lines deiliate
detector crystals.

Further, each radial bin receives counts from s#VeDRs, so that the information
about the physical position of the scanner for @adividual coincidence event is lost in the
sinogramming process. Figure 8.16 shows the migsgdanse shapes and their corresponding
radial bin response. It shows how the responseal@rof LORs has more information about
each coincidence event and that the sinogram lgiosive contributions from many LORSs
with different detector response, which blurs theonstructed image.
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(right).

PeneloPET Monte Carlo code (Espaal, 2009) has been used to simulate rotating
PET scanners, producing simulated data which weenstructed with a 3D-OSEM
algorithm (Herraizet al, 2006). The spatial resolution achieved for dédferrotation schemes
was compared. The first rotation scheme consideoedists in acquiring data in a continuous
rotating mode, arranged in sinograms, that is bhb#he method most often employed
(Vaqueroet al, 2005). The other rotation schemes studied arerakstep and shoot schemes,
with data sorted in LOR histograms. The resultsastitat resolution can be improved by up
to 30 % just by modifying the configuration of thatation scheme and the prescription for
histogramming the data.

A two detector block scanner, each block made3 & 30 array of LYSO crystals of
1.6 mm in pitch and 12 mm in length, is employeétaluate the improvement achieved with
step and shoot acquisitions versus continuous ioatafThe transaxial FOV is 4.8 cm
diameter. This scanner is similar to the SuinsalrPEaqueroet al, 2005) scanner, with two
detectors instead of four. The number of sinograms lised in this scanner is about 6;10
and a typical acquisition has about’ unts, so that LIST mode reconstructions are not
recommended.



132 8 CONSIDERATIONS FOR THE DESIGN OF SMALL ANIMAIPET SCANNERS

For this study, a Derenzo-Like (Adaet al, 2007) (see appendix A) phantom was
used in the acquisitions simulated. The same Iratitvity of the source, as well as any other
acquisition parameters, was used for all the adgpisschemes.

Derenzo-Like Phantom
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Figure 8.17. Derenzo-like phantom (Adagh al, 2007) used for evaluation of the improvement
achieved with step and shoot acquisitions.

Different numbers of steps that complete the amggdanpling can be defined. From
close examination of Figure 8.18, it can be exeéddhat if only 4 steps are employed, the
images obtained are deformed due to incomplete langampling, while for 6 steps that
deformation disappears and thus we can consideatigalar coverage is good enough.
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Figure 8.18. Reconstructed images obtained fronuisitipns simulated of a Derenzo-like phantom,
with different number of steps. Angular coveragedmplete if five or more steps are chosen.
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A comparison of the resolution obtained from thatowous rotating scheme and the
step and shoot one with 6 steps, is shown in Figut@ and Table 8.3. These results show
how the resolution is improved in step and shoajuasitions, which make it possible to

distinguish the smaller rods.
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Figure 8.19. Comparison of images reconstructedn freimulated acquisitions of a derenzo-like
phantom, with continuous rotation (top-left) andpsand shoot (top-right) modes. Line profiles altimgyellow

and blue lines of the image (top) are shown inpidueel at the bottom of the figure.

Table 8.3. Spatial resolution measured over theg&wareconstructed for step and shoot versus
continuous mode acquisitions. These resolutionsre@sured profiles as FWHM in mm.

7 STEPS CONTINUOUS

Radial -Tangential (mm) 5 STEPS 6 STEPS
3 lterations 50 Subsets  0.90.62 0.73-0.85 0.79 -0.83 1.06 -1.27
2 lterations 75 Subsets  1.04.42 0.75-0.87 0.82-0.88 1.07 -1.30
1.09-1.32

1 Iterations 150 Subsets 1.06.15 0.92 -1.00 0.94 -1.13

We can conclude that step and shoot acquisitiomsaaradvantageous alternative to
continuous rotating PET acquisitions, for scanneith incomplete angular sampling. The
most accurate response of the system for each idudiv event that step and shoot
acquisitions allow for, improves image resolutiop 10 30%, and the computational cost

would be comparable, or less, than the one of éiméruous rotation.
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8.12. Conclusions

The design of a high resolution, small animal, FE€&nner is a complex process. By
means of Monte Carlo simulations, we have shownreffect of many design parameters of
the scanner performance. Simulations emerge thu a&ssential tool in scanner design. A
few conclusions extracted from the results pregemtehis chapter are summarized here:

The spatial resolution depends more on crystaltketigahn on pitch size, for usual high
resolution scanner configurations. The best reswmuwwould be achieved with shorter crystals
and larger scanner diameters, but this would deeregnsitivity and would require more
detector modules.

Assuming ideal electronics, pulse pile-up in théed®mr, due to photons arriving
during scintillator light decay, along with randamounts in the coincidence window, become
the limiting factor of NEC rate. This bottleneckncanly be solved with faster scintillator
materials, that will allow for faster scintillatatecay and narrower coincidence window,
and/or with smaller volumes of crystal being regddach readout element (PMT, ADC,
SiPM). Thus, for detector material of similar spgdede and decay times) smaller detector
arrays are superior with respect to NEC, if thetetaics is good enough.

For rotating scanners, the step and shoot rotgtiotocols can achieve resolution up
to 30% better than scanners with continuous ratatio
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Conclusions of this thesis
In this thesis, Monte Carlo simulations have beseduto improve the PET technique.

Full advantage of realistic simulations has bederato improve the quality of the images
obtained with existing scanners, and for desigmeg PET scanner prototypes. The main
contributions and conclusions of this work are swarired below:

A PET Monte Carlo simulation tool (PeneloPET) haerbdeveloped. It allows for
realistic simulations, including high detail in @gs and electronics processing of
detector pulses. We achieved fast simulations witHoss of simulation detail.
Thanks to the reduction of simulation tintiee user can include more realism into
the simulation as well as conduct studies in greatepth. Being capable of
obtaining results in various formats, whether lgsamns or sinograms as well as list
mode files,helps to reduce the analysis time and to increaseossibilities A
simple script, written in python language, allows $plitting simulations into many
parallel processes suitable for clusters of compute multi-core processors, with
minimum effort.

Exhaustive validations of our simulation packageehbeen performed by means of
comparisons to both results from other simulatiackages as well as to real data
taken by commercial small animal PET scanners. \g@gd agreement was found
between real and simulated data, establishing diability of the code.These
extensive validations garantee PeneloPET to beablgt for improving PET
scanners

Several system response matrices (SRM), employedtdiystical reconstruction
methods have been computed by means of Monte Gemlolations. These SRMs
include a realistic description of physical proessssuch as photon emission and
detection, which yield images with high quality. Mover, compression strategies
used to store the SRM in RAM memory has made itsiptes to optimize the
reconstruction process, getting the most out of puaer resources, in order to
obtain images in the shortest possible tiifige reduced size of the SRM also solves
the problem of storing the huge SRI¥imodern high-resolution PET scannéfge
can conclude that PeneloPET is suitable for thémesion of the SRM of small
animal PET scanners.

A method to improve the quality of the images héaeen developed based an
priori knowledge of the probability of a detected evemt €¢oming to photon
interactions in a single crystal of the detectaayrWe have confirmed that the
introduction of a priori knowledge of single-crystvents during the reconstruction
(obtained from a comparison of simulations withl rdata), yields images with
better signal to noise ratio and converging in lessmber of iterations than the
standard methadHigher recovery coefficients are obtained usihg improved
method, for reasonable noise levels. Results freal data were also compared,
showing that keeping only single crystal eventsiicantly reduces the background
level for scanners with high contribution of pilp-aventsWe can conclude that by
using PeneloPET to obtain a priori information albahe data acquired, it is
possible to improve the quality of the reconstrdéteages

Several configuration parameters involved in theigie of small animal PET

scanners have been studied. As a result of thdysituhas been established what
the most important configuration parameters thatsmie considered when
designing a PET scanner ane order to obtain better spatial resolution, skvisy
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and counting rate capabilities. PeneloPET allowsestimate resolution versus
sensitivity profiles for different values of one wore parameters. Crystal size and
material can be chosen after extensive PeneloPHillaiions. PeneloPET can
simulate scanners with different block detectoresjztime response, and timing
resolution in order to assess the configuratiort tiiges the optimal count rate
capabilities for the scanner. PeneloPET was alsol@rad in a comparison of step
and shoot rotation protocols versus continuoushyating schemes, yieldingn
spatial resolution about 30% higher for the stepdashoot caseThus, we can
conclude that PeneloPET is a powerful tool for design of new small animal PET
scanners
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Figure 5.3. Profiles of coincidence counts for taisin the same axial row, from a 50Gi
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Figure 5.4. Axial sensitivity profile of the ARGUSanner measured with a 18F point source
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Figure 6.1. Schematic drawing of a Vista small aliET scanner detector pair, showing
the (exact) translation and reflection symmetriepleyed in this work. All the elements
of the SRM belonging to parallel LORs are, by syrtrpneequivalent. .......................... 85

Figure 6.2. Schematic representation of severakliof response (LOR) considered for the
discussion on quasi-symmetries. Three LORs (nundb&& from top to bottom) with a
small relative LOR-crystal angle and three (numbeke6, also from top to bottom) with
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direction and normal to it, reSpectively. ..o 86

Figure 6.3. Longitudinal profiles of the probabkjilielements for the LORs shown in Figure
6.2. The probability of detection of a coincidermmeint in LORs 1-6 per every positron
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small crystal-LOR angle (1-3) profiles are very iimamong them, but rather different
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Figure 6.4. Transverse profiles of LORs 1-6 of Feg6.2. Data points and curves as in
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Figure 6.5. Reconstructions with different degrégumasi-symmetry assumptions. Transaxial
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ACHIVILY VAIUBS. ..ottt e e e e e e e e e e aaaeeeeaaeeeeeeenesenannes 91
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Figure 6.7. (a) Spiral phantom and (b) 3D represtéont of a transverse section of the original
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Figure 6.8. Profiles across the spiral phantom ssimbyving the activity distribution: phantom
(solid line), OSEM reconstruction (dots) (1 itecatil00 subsets). Voxel size is 0.38 (X)
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Figure 6.9. Single bed study of the head of a 18&.¢85 min intake of 1 mCi of FDG and 60
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30 LYSO array with pixel dimensions of 1.5 x 1.8.& mn? coupled to a Hamamatsu
H8500 PS-PMT. The block is illuminated uniformlytivia low activity'®F radioactive
source. Contribution of pile up events is negligibbr the low activity employed. Total
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Appendix A. Description of the phantoms

In what follows we roughly describe the phantom®layed in this work.

Derenzo-like phantom

This phantom consists of five sectors, each on#gaiing radioactive rods with
various diameters (1.2, 1.5, 2.0, 2.5, and 3.0 ntihe),distance between sources being twice
their diameter. The sources were distributed withidisk of diameter 36 mm. This phanton
description must be considered as a referencemlanty other variations have been used in
this thesis.
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Image quality phantom

The main phantom body is composed of a fillablandyical chamber with 30 mm
diameterand 30 mm length. The remaining 20 mm mytle of the phantom body are solid
with 5 fillable rods drilled through (at 7 mm frothe center) with diameters of 1, 2, 3, 4, and
5 mm, respectively. This phantom is used to obtiaénrecovery coefficients for studying the
resolution and noise properties of the images, taedspill over ratios, in order to study the
efficiency of scatter correction methods.
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Micro-Defrise phantom

This phantom if formed by equidistant disks, axiadlistributed and with contains
holes at different angular position. It is used tloe evaluation of the uniformity of the slice
profile, along the longitudinal axis of the scanner

Specifications:
e Cylinder outer diameter: 5 cm
e Cylinder inside diameter: 4.5 cm
* Cylinder inner height: 6.3 cm
» Disk diameter: 4.3 cm
» Disk thickness: 4.3 mm

* Gap thickness: 4.3 mm
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Resumen en castellano

Introduccion

Desde la aparicion de los primeros escaneres PHdseanos 70 del siglo pasado, el
empleo de la tomografia por emision de positroeesasextendido de manera continuada en
oncologia, cardiologia y neurologia. La utilizacfm esta técnica en investigacion preclinica
ha supuesto un gran desafio durante la Ultima @eacharante la que se han desarrollado
escaneres PET de muy alta resolucion para anirdalésboratorio como ratones y ratas. En
la actualidad se consiguen imagenes PET con ur@ucg®n submilimétrica y algunos
escaneres PET tienen una sensibilidad superiorO%. EEsto ha sido posible gracias al
desarrollo tecnologico de los equipos de detecd@rfotones gamma y la electrénica de
procesado. Asi mismo, la apariciéon de ordenadasasgcan capacidad de célculo, unido al
perfeccionamiento de los algoritmos de reconstéucyi al uso generalizado de los métodos
de simulacién Monte Carlo en todas las etapasekrdollo de escaneres, han proporcionado
un impulso muy importante en el desarrollo de taiga PET.

La investigacion en PET abarca varias areas debobmiento y requiere equipos
multidisciplinares de bidlogos, médicos, farmaca#sgj ingenieros, informaticos y también
fisicos, entre otros. Los principios basicos deTl RiStan regidos por la Fisica Nuclear. Por
ello, el Grupo de Fisica Nuclear (GFN) de la Umsidsd Complutense de Madrid ha
resultado un lugar idoneo para el desarrollo dekgmte trabajo. EI GFN ha aportado los
conocimientos tedricos y experimentales de Fisioalédr necesarios para comprender la
técnica PET en profundidad y poder asi contribusuadesarrollo. La colaboracion con el
Laboratorio de Imagen Médica del Hospital Genenaiversitario Gregorio Marafién nos ha
aportado su experiencia en imagen médica y nosalda dcceso a los datos de varios
escaneres PET.

La simulacién realista de escaneres PET permiteorarejtodas las fases de la
produccion de la imagen, desde el disefio del esgdne detectores a el célculo de la matriz
de respuesta del sistema (MRS) empleada duramp®etso de reconstruccion, pasando por
la adquisicién, procesado y correccion de los da@mmo resultado se pueden obtener
imagenes de mejor calidad. Es decir, imagenes aormesolucion espacial y relacion sefal
ruido y con unos resultados de cuantificacion nréasigpos y reproducibles. La disponibilidad
hoy en dia de ordenadores con gran capacidad dputdrg con programas de simulacién
Monte Carlo con resultados muy precisos, permiteorporar en la simulacion la fisica de
emisién y deteccién y los procesos electronicolmsiescaneres PET.

En esta tesis doctoral se ha tratado de mejoraralidad de las imagenes PET
reconstruidas. Para ello se han utilizado de maimgeswsiva los métodos de simulacion
Monte Carlo para comprender a fondo los procesestgumen lugar en la adquisicion de
datos PET. Hemos centrado este trabajo en los e@®salPET de alta resolucion para
animales pequefios. Estos escaneres requieren ééusétodos de reconstruccion avanzados
para conseguir una solucion espacial de alredegldr chm. De hecho, para conseguir esta
resolucion, la MRS utilizada en los métodos de metroccion estadisticos debe ser muy
precisa (Herraiz et al., 2006).
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Los objetivos de esta tesis pueden resumirse gigiesite modo:

* Desarrollo de una aplicacion Monte Carlo (PeneloPgdra su uso en PET
(capitulo 4).

» Validacion de PeneloPET para demostrar la fialdlide sus resultados
(capitulo 5).

e Usar PeneloPET para la mejora de la calidad démagenes obtenidas con
escéneres existentes (capitulos 6 y 7).

* Estudiar el uso de PeneloPET para el disefio deosuescaneres PET de
animales pequenfios (capitulo 8).

La estructura de esta tesis puede resumirse deéstg modo:

* Marco tedrico

o Capitulo 1. Introduccion a los principios fisicos k& técnica PET, el
funcionamiento de los distintos componentes de agdrer PET y la
descripcion de los parametros mas relevantes ésaéner PET.

o0 Capitulo 2. Introduccion de los principios basidesla reconstruccion
de imagen.

o0 Capitulo 3. Introduccion a las técnicas de simaladvionte Carlo y a
varios paquetes de simulacion.

* Desarrollo de PeneloPET.

o0 Capitulo 4. Descripcion de PeneloPET, una herrami&fonte Carlo
para las simulaciones PET.

o Capitulo 5. Validacion de PeneloPET. Comparaciéradguisiciones
simuladas con datos reales y con resultados des qaguetes de
simulacion.

* Aplicaciones de PeneloPET.

o Capitulo 6. Calculo de la MRS utlizada en los mdéwm de
reconstruccién 3D-OSEM.

o Capitulo 7. Estimacion a priori de la fiabilidad des eventos
detectados con el objetivo de mejorar la calidadlade imagenes
reconstruidas.

o Capitulo 8. Consideraciones a tener en cuenta tumndisefio de
escéaneres PET de animales pequefios.

A continuacion se da una descripcion mas completardbajo presentado en esta
tesis.

El primer objetivo de esta tesis ha sido el dedlarde una herramienta Monte Carlo
(PeneloPET (Espafa et al., 2009)) capaz de reaizanaciones realistas de escaneres PET.
Existen varios cédigos muy completos para la sioidkade la interaccion entre radiacion y
materia. Nosotros hemos partido de uno de elloSNEROPE (Bar6 et al., 1995)) como
primera capa sobre la que hemos construido laamentas necesarias para reproducir todos
los aspectos especificos de la técnica PET. PeaéleR descrito en el capitulo 4 y validado
en el capitulo 5. Varios ejemplos del uso que spwar a una herramienta de simulacion
avanzada son mostrados en los restantes capitikstaltesis.

En el capitulo 6 se muestra cdmo el disponer dehaenemienta capaz de generar
simulaciones realistas ha hecho posible obtenegemes de mejor calidad, mediante el
calculo de la matriz de respuesta del sistema (MitS)etector o escaner lo mas cercana
posible a la realidad para ser utilizada en métatibseconstruccién estadistico-iterativos.
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Ademas, al tener un conocimiento detallado de tosgsos que ocurren en un escaner PET,
es mas simple el desarrollo y comprobacién de raievetodos de eliminacion coincidencias
no deseadas, como son las de dispersion y aleat®a ello, el segundo objetivo de este
trabajo ha consistido en calcular de manera Optimanatriz de respuesta del sistema,
eliminando todas las redundancias y aprovechandetdas y cuasi-simetrias, con el fin de
obtener una MRS suficientemente pequefia como paar cen la memoria RAM de
ordenadores personales. Este calculo ha sido dpli@da reconstruccion de imagenes de un
escaner PET de animales pequefios mediante el me®EM (Herraiz et al., 2006) en modo
3D.

Los dispositivos de deteccidon introducen incertibtenen los datos medidos. Esta
incertidumbre puede reducirse con informacion arprsobre la calidad de cada dato
adquirido. Dicha informacion se obtiene de las s$ationes realistas. Se analiza la
informacion obtenida durante la adquisicion, tainooenergia depositada en los detectores,
tasa de llegada de los fotones, posicion de int@macetc. Al disponer de mas informacion
sobre cada evento, las imagenes obtenidas sonjde cakdad en términos generales. Como
altimo objetivo de éste trabajo, En el capitulo émles tratado de introducir un complejo
proceso de analisis de los eventos detectados equ@tp, como hemos dicho, diferenciar la
calidad de los mismos y hemos adaptado el métodeadastruccion de imagen con el fin de
introducir toda esta informacién en el procesoad®mnstruccion.

El disefio de escaneres modernos pasa hoy en dé gesarrollo de herramientas de
simulacién Monte Carlo, las cuales desempefargrapel importante para la definicién de la
proxima generacion de escaneres PET. En el caBtg® muestran los resultados del uso
intensivo de las simulaciones Monte Carlo parardeter los parametros con mayor impacto
en las prestaciones de los escaneres PET.



R-4 RESUMEN EN CASTELLANO

PeneloPET, una herramienta Monte Carlo para PET bas ada en
PENELOPE

La tomografia por emisiéon de positrones (PET) es wtécnica en constante
crecimiento para su uso en imagen clinica y prieelinLas simulaciones Monte Carlo
desempefian un papel muy importante en PET, tanta fase de investigacion y desarrollo
de nuevos escéneres (Braem et al 2004, Heinrichls2€03) como en las técnicas avanzadas
de reconstruccion de imagen (Herraiz et al 2006¢n&pleo de cddigos de simulacion para
PET se ha visto incrementado en los ultimos afdsddea la disponibilidad de potente
ordenadores (Zaidi 2000, Ay and Zaidi 2006, Ortefi@l 2003, Ortufio et al 2006, Torres-
Espallardo et al 2008).

Hemos desarrollado PeneloPET, una nueva herramgmtaimulacion para PET
basada en PENELOPE (Bar6 et al 1995, Savat etd&)20a aplicacién has sido escrita en el
lenguaje de programacion FORTRAN 77. El objetivoapdesarrollar un nuevo simulador
PET fue la optimizacién del disefio de escaneres [pd animales pequefos. Este objetivo
requiere una herramienta lo mas rapida posible,posibilidad de ejecutarse en paralelo en
distintos ordenadores y que permita la simulaciénditintas configuraciones de manera
sencilla.

Los elementos que conforman una simulacion en BBEdl son la geometria y
materiales de los detectores y otros materialedemgcomo maniquies y blindajes), las
fuentes de actividad y la electronica de detecci@uos estos pardmetros son definidos en
una serie de ficheros de entrada escritos en f@atm. Los resultados pueden ser obtenidos
tanto en sinogramas e histogramas de LOR comocharfis en modo lista. Los ficheros en
modo lista incluyen informacion detallada de lasacteristicas del proceso de deteccion,
llegando a especificar por ejemplo en el caso sledancidencias, si se trata de coincidencias
aleatorias, de dispersion, etc., la energia degumsitla diferencia de tiempos entre singles
entre otros pardmetros. Los ficheros en modo figeden ser obtenidos con tres niveles de
procesado. En el nivel mas basico se obtienen iineicte las coordenadas donde se producen
las interacciones de cada particula. En un segoivéd se obtienen todos los eventos singles
detectados y en el nivel mas elaborado se obtiginectamente las coincidencias medidas.

Figura 1. Visualizacion grafica del escaner drTusrgon un maniqui de la normalizacion en el interio
del FOV. La figura de la derecha incluye los maies que constituyen el blindaje representadokem wjo.
Estas figuras han sido obtenidas mediante la aplicgview3d que se incluye dentro de PENELOPE.

El codigo de PeneloPET consite en dos modulos ipates. El primero se encarga de
la interaccion con la rutinas de PENELOPE vy el alemamiento de toda la informacién
resultante para su posterior procesado. Un segunddinilo se encarga del post-procesado de
los datos de las interacciones. Este procesade ¢iercuenta por ejemplo, la logica de Anger
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para el posicionamiento de la interaccién dentroladenatriz de cristales, apilamiento,
resolucién en energia y otros elementos de laréléca como la ventana de coincidencias, el
tiempo muerto, la resolucion temporal y el tiempdrttegracion.

Se ha desarrollado un script de python que es cdeadividir una simulacién en
tantos procesos paralelos como el usuario desescript divide la simulacion completa en
subconjuntos en los que se simula el mismo numerdedintegraciones en cada uno. Para
ello se ajustan la actividad inicial y el tiempoatiyuisicibn de modo que se consiguen sub-
simulaciones consecutivas y que conllevan el migemopo de cémputo.

Para comenzar una simulacién se deben definir pooss ficheros (ver Tabla 1). Un
fichero (Ilamado main.inp) contiene algunas opcsopara definir los parametros generales de
la simulacién. Es posible simular la misma adqigsiccon distinto detalle de la fisica
empleada y con distinto nivel de post-procesado.efamplo, algunas opciones importantes
son la que restringe la simulacién Unicamente dotmses de aniquilacion y la inclusiéon o no
del rango del positron y la no-colineridad medidataitilizaciéon de funciones predefinidas.
Con esta segunda opcion el tiempo de simulaci@tedado drasticamente.

Otros ficheros contienen los parametros que defmeonfiguracion de la simulacién.

Las propiedades del escaner y otros objetos corblinelaje o los maniquies son definidos de
manera independiente en los ficheros scanner.inpjgct.inp respectivamente. Es posible
simular escaneres con varios anillos de detectooes detectores con varias capas de cristal
centelleador. Los principales materiales utilizadosPET estdn ya predefinidos dentro de
PeneloPET, pero PENELOPE permite crear facilmetrtes muevos materiales. PENELOPE
incluye herramientas de visualizaciéon (gview2d,ew8d) que permiten visualizar las
geometrias definidas. Estas herramientas estaardidps también con PeneloPET.

Las fuentes de actividad son definidas aparte diclero source.inp, indicando la
geometria, actividad inicial e isétopo de cada deeellas. Cuando se simulan Unicamente
fotones de aniquilacion, la direcciones de emigideden ser restringidas para aumentar la
eficiencia de la simulacién siempre que las condies del estudio lo permitan. PeneloPET
tiene en cuenta la variacion temporal de la adiidurante la adquisicion.

En la tabla 1 se muestran todos los ficheros dedmtnecesarios para la simulacion
de una fuente puntual en el escaner rPET (Vaquezio, 005).
Tabla 1. Ficheros de entrada necesarios para lalaimn de una fuente puntual en el escaner rPET

usando PeneloPET. Una definicion detallada de pasones que pueden ser introducidas en estos distss
encuentra en el manual de usuario de PeneloPE&fi&gi al., 2007a).

--- GENERAL PARAMETERS --- (main.inp)
12345 54321 IRandom number generator seeds

90001 F IAcquisition time (sec); Nuenlof Frames; Read Frame List File

1000 ILimit number of interact®for each particle

FTT ISecondary Particles Sirtiolg Positron Range; Non-Collinearity

0180 3000 40 !Init & Final angular posit (delgum. of Steps per cycle; time per cycle (sec)
0. ILower Level Energy Teheld (eV)

1000000. IUpper Level Energy Thresheld)

5 ICoincidence Time Wind¢we)

0.1 ITrigger's Dead Time (ns)

150 lintegration Time (ns)

1200 ICoincidence’s Dead Time) (ns
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FFT IHits LIST; Singles LIST; @aidences LIST

F IWrite LOR Histogram

T 117 190 4.49684 Write Sinogram; radial biasgular bins; maximum radio

F 99 99 55 4.48 4.2 Write Emission Image; X YaXels, Transaxial & Axial FOV (cm)

F IHits checking

T IVerbose

F INeglecting events if siigles in coincidence
--- SCANNER PARAMETERS --- (scanner.inp)

4 INumber of Detectors per Ring

1 INumber of Detectors in Coiraride in the same Ring
1 INumber of Rings

0. IGap Between Rings (cm)

30 INumber of transaxial crystads gdetector (columns)
30 INumber of axial crystals petedtor (rows)

1 INumber of crystal layers petettor

1.2130.261400.01 !'LAYER: Length (cm) ; MBhergy Resol.; Rise & Fall Time (ns) ; Timing
Error (ns)

0.16 0.16 IPitch: Distance between centradphcent crystals (cm)
8. IRadius: Centre FOV - Centrerft of Detector (cm)

--- SOURCE PARAMETERS --- (source.inp)

P1E6F1051.2.0.0.0.0.0.0.0.0. 180Shape Act Units Isot X Y ZR1 R2 H PH TH TH1
TH2

--- BODY PARAMETERS --- (object.inp)
C10.0 0.0. 162 5.0 0. 0.!Shape Kt Z R1 R2 HEIGHT (cm) PH TH (deg)

En éste capitulo hemos presentado PeneloPET, wefgade simulaciones Monte
Calor para PET. Es una herramienta facil de utilizarsatil, rapida y con resultados sencillos
de analizar. PeneloPET es una herramienta Util @ladésefio de escaneres, el célculo de la
respuesta del sistema y el desarrollo de métodosrtdeccion, entre otras aplicaciones.

Validacion de PeneloPET

En este capitulo se presenta una comparacion kstreimulaciones obtenidas con
PeneloPET y datos medidos con escaneres realesotros paquetes de simulacion.

La validacion del cédigo debe realizarse con elde evaluar la fiabilidad de la
simulacion para cada uno de los escaneres. Lagewation de la simulacion debe adecuarse
para cada escaner hasta conseguir un buen acudrdolas datos reales y simulados. Una
vez que el cédigo ha sido validado para un esc@nede ser utilizado con ese escaner para la
investigacion y desarrollo con el fin de mejorarsadimiento.

Para comenzar con la validacion, se ha realizadacamparacion entre los resultados
obtenidos con PeneloPET y con la herramienta GAEEsimnulacion PET basada en
GEANT4. Con este objetivo se ha utilizado una gpnficion sencilla basada en el escéner
rPET (Vaquero et al 2005) para determinar el pédilsensibilidad axial. Para continuar con
la validaciéon de PeneloPET, se ha realizado unapaomion de los resultados de las
simulaciones con las mediciones reales para ceatr@neres PET comerciales. Los escaneres
utilizados son el rPET (Vaquero et al 2005), ARGW&nNg et al 2006), Raytest CLEARPET
(Heinrichs et al 2003) y el Siemens INVEON (McFadat al 2007), todos ellos dedicados a
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estudios con los animales pequefios. Las medicidael®s tres ultimos escaneres se han
obtenido a partir de Wang et al (2006), Semperai&tokt al (2007) y Blake et al (2006)
respectivamente. Se ha intentado realizar simulasi@on la mayor precision posible de la
geometria y los materiales mencionados en lasamfers.

En la Tabla 2 se muestran los resultados de veldai cOmputo para los distintos
escaneres simulados usando PeneloPET.

Tabla 2. La velocidad de simulacion depende en gradida de la geometria del escaner y el blindaje
incluidos en la simulacién. Se ha realizado la fegign de una adquisicién de una fuente puntual&fe
situada en el centro del FOV para los distintogieses estudiados en este trabajo. Sdlo se sinagdatones
de aniquilacién. Esta tabla presenta los resultatddsnidos con un solo nuicleo de un procesadol X&en
X5472 3,00 GHz quad-core.

Escaner Tasa de simulacion
rPET 75000 #s
ARGUS 12000 s
CLEARPET 11000 #&s
INVEON 17000 é/s

Aunque una comparacion detallada de GATE y PendlaiREera el objetivo de este
trabajo, hemos comparado PeneloPET frente a GATUhes pocos casos con el propdsito de
la validacion de esta nueva herramienta de simidapara PET, lo que demuestra que
PeneloPET es mas rapido que GATE, mientras queskgtados se desvian por debajo del
5% en las predicciones. También hemos comparadaitasglaciones de PeneloPET con
mediciones de cuatro escaneres PET de animalesefpesjudiferentes comparando las
mediciones de la sensibilidad, perfiles de sinogignresolucion espacial, perfil axial de
cuentas, fraccidon de dispersion, tasas NEC. Errgese ha conseguido un acuerdo bastante
bueno entre simulacion y datos reales.

Estimacién de la matriz de respuesta del sistema

Los escaneres PET para pequefios animales reqaikaeresolucion espacial y una
buena sensibilidad. Para reconstruir imagenes taerasolucion en 3D-PET, los métodos
iterativos, como OSEM, son superiores a los algar#t analiticos de reconstruccion, aunque
su alto coste computacional sigue siendo un gras@iveniente. El mayor rendimiento de los
ordenadores modernos podria hacer la reconstruiter@tiva lo suficientemente rapida como
para manejar el gran nimero de coeficientes deapilidad de la matriz de respuesta del
sistema (MRS) en los escaneres PET de alta reéalubeniendo en cuenta todas las posibles
simetrias axiales y transaxiales, asi como algeoasi-simetrias, hemos sido capaces de
reducir los requisitos de memoria para almacendMR& en mucho menos de 1 GB, lo que
nos permite mantener toda la MRS en la memoria Rde¥ sistema, de modo que el
algoritmo de reconstruccion pueda alcanzar su n@emdimiento. Los elementos de la
MRS se almacenan como esplines cubicos y son atteptd tamafio del voxel durante la
reconstruccion. De esta manera se combinan lagjasntlel calculo en tiempo real y de
almacenar la MRS completa. El célculo en tiempol regaaptacion de los perfiles
precalculados a los voxeles de la imagen) de la M&®a entre un 10% y 30% del tiempo
de reconstruccion, en funcion del nimero de voxelegido. Esta técnica ha sido probada
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con datos reales de un escaner PET de animalesfpexjaomercial. Los resultados (calidad
de imagen y tiempo de reconstruccion) muestranlguécnica propuesta es una soluciéon
viable.

Aparte de las tradicionales simetrias utilizadagapavitar almacenar datos
redundantes de la MRS, proponemos el uso adicidaakimetrias no exactas o cuasi-
simetrias, con el fin de obtener una reducciéniait de la MRS. Los LORS cuya respuesta
difiere relativamente poco son agrupados en coogupertenecientes a una misma clase de
cuasi-simetria. Las diferencias entre los elemet¢da MRS para LORSs pertenecientes a una
determinada clase deberia ser mucho menor que lEDRs de diferentes clases. Las clases
de cuasi-simetria pueden obtenerse, por ejemplojpagdo LORs de cristales con
orientaciones LOR-cristal similares (ver Figura 2Fijgura 3). Las diferencias entre los
elementos de la misma clase de cuasi-simetria maxinadamente 5-10%, dependiendo de
la cantidad de compresion (reduccion de tamafiokguiesee aplicar.

25 T T T

2k chords 1-3 =

Axial [cm]

_25 | | | | | | |
-6 -4 -2 0 2 4 6

Transaxial [cm]

Figura 2. Representacion esquematica de variaaslide respuesta (LOR) consideradas para construir
las clases de cuasi-simetria. Se representan @&SL(1-3 numerados de arriba a abajo) con un asgulo
relativos LOR-cristal pequefios y tres (los nimerds también de arriba a abajo) con angulos relathOR-
cristal grandes. L y S son las coordenadas a Igolatel LOR y la direccion transversal al mismo
respectivamente.
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Figura 3. Perfil longitudinal de los elementos debabilidad para los LORs que se muestran en la
Figura 2. La probabilidad de detectar una coinadern los LORs 1-6 disminuye en funcién de laagista al
centro del mismo. Los puntos representan los wdodt de la simulacion MC y las barras de error la
incertidumbre estadistica. También se muestranpéofiles calculados por medio de esplines cubitas
perfiles de los LORs con angulo LOR-cristal pequéfi@) son muy similares entre ellos y diferenteslas
LORs con angulo LOR-cristal grande (4-6).

Nuestro software de reconstruccion ha sido probzmo datos reales de ratones.
Ratones a los que se les habia inyectado 18F y flaB®n adquiridos con un escaner PET
explore Vista (GE) drT (Vaquero et al., 2004). Ligyfa 4 muestra las imagenes obtenidas
utilizando el algoritmo de reconstruccion 3D-OSEdM @ iteraciones de 25 + 25 + 50 subsets
respectivamente. El nimero de voxels es de 17%x 1168 (tres camas). El tamafio de voxel
es 0,38 x 0,38 x 0,78 mm3. La adquisicion con fldarestra claramente los pequefios
detalles, como las costillas y huesos de la coluwamtebral, y los pequefios huesos en las
patas delanteras. La adquisicion con FDG muestaueulacion habitual de la actividad del
raton en la vejiga urinaria, pero no se producefartos en sus alrededores.

La flexibilidad, la reduccién de tiempo de recounstion, la exactitud y la resolucion
de las imagenes resultantes demuestran que lagoiegaas utilizadas para la reconstruccion
pueden ser aplicadas a estudios reales de escdPErflesle animales pequefios de alta
resolucion. El uso de cuasi-simetrias para redgomprimir) el tamafio de la MRS parece
ser una manera adecuada de tratar con el problemalndacenar la enorme MRS que
requieren los escaneres PET de la alta resolucion.
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Figura 4. Imagenes reconstruidas adquisicionesndatdn de 25 g. al que se le ha inyectado 250 uCi
de (izquierda) 18F y (derecha) FDG realizadas t@s@ner PET explore Vista (GE) drT. Cada estuditsta
de 3 camas de 5 minutos de duracién cada una.lgaron 3 iteraciones 3D-OSEM de 25 + 25 + 50 stbs
respectivamente para la reconstruccion de ambayeimes.

Mejora de la calidad de imagen usando una estimacié  n a priori
de los eventos single-pixel

La mayoria de los escaneres PET de animales pegjssfilbasan en matrices de
cristales centelleadores. Disponer de electronara feer de cada uno de los cristales es
demasiado caro y, por tanto, la identificacion denteraccion de cristal suele realizarse
mediante el calculo del centroide pesado por eagogimo por ejemplo la I6gica de Anger.
Esto proporciona unas coordenadas XY que se empjeasm el posicionamiento de la
interaccion de cada evento. A partir de estas evadlas se construye una tabla de
correspondencia que asigna un cristal a cada caibim de coordenadas (Dongming et al.,
2006). En ocasiones el fotdn interacciona en vamistales o se producen dos interacciones
de fotones distintos dentro del tiempo de integmaciLa informacion obtenida en estos casos
de las coordenadas XY con los métodos tradicior@ieduce una identificacion erronea del
cristal de la primera interaccién, y un deterioedal calidad de imagen obtenida.

Hay varios factores que contribuyen a la degradad@la resolucion espacial cuando
se utilizan detectores pixelados. Por ejemplo, dasntas procedentes de las lineas de
respuesta oblicuas, presentan una mayor incerticurab el posicionamiento de fotones
debido a los efectos de la penetracion en el tristasituacion ideal, donde la degradacion de
la resolucion espacial debido a la dispersion atetlctor es la menor posible, se corresponde
con el caso de que un foton interacciona sélo earistal, ya sea porque interactia sélo una
vez o0 porque todas las interacciones ocurren emdmo pixel de la matriz. Nos referimos a
esos eventos como single-crystal (Espafia et @790 Cuando un fotén pasa por un cristal
centellador, puede suceder una absorcién fotoslé@airuna interaccion Compton. Si ocurre
una absorcion fotoeléctrica, toda la energia seogigp en el mismo cristal, pero la
probabilidad de que esto ocurra es menor del 50%a pEs materiales centelleadores
utilizados en PET (van Eijk, 2002). Si el fotobndispersado por efecto Compton, su vuelo
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continla con menos energia y existen tres alteamtiEl foton puede escapar del detector
con menos de 511 keV de energia, y por lo tantbetmteraccionado en un sélo cristal.
También puede sufrir otra interaccion Compton @dt#ctrica. En estos ultimos casos, el
fotdn puede interactuar en el mismo cristal derimgra interaccién o en uno diferente. Al
interaccionar en un cristal diferente se contribaya degradacion de la resolucién espacial.
Los multiples puntos de interaccion pueden darrlagarrores en la asignacion de cristal en el
que ocurrié la primera interaccion. Estos eventaslrign ser identificado, al menos
parcialmente, a partir de un estudio detalladontéiegenes de llenado de campo construidas a
partir de los centroides de interaccion (ver Fig@ja De hecho, los eventos cuyas
coordenadas de interaccidn se encuentre en lasnesgicercanas al pico maximo de cada
cristal, se corresponden con mayor probabilidadex@mtos single-crystal. Los eventos cuyes
coordenadas de interaccion se encuentran en ltesvahtre picos serian procedentes con
mayor probabilidad de fotones que interaccionamés de un cristal (multiple-crystal).

En la mayoria de los casos, los métodos de asignate cristal son totalmente
deterministas, en el sentido de que a cada everaribuye a un solo cristal con un 100%
de certeza. Los criterios de aceptacion de evgnteden ser mas estrictos y reducir mas las
contribuciones de eventos multiple-crystal, pormgj utilizando unas tablas de asignacion
(LUT, del inglés Look Up Table) mas restrictivasiegno aceptan eventos que se encuentren
fuera de un rango bastante estrecho en torno alddccada cristal. Estas LUT restringidas
pueden producir imagenes con mejor resolucion, aengpensas de reducir la sensibilidad.

En este trabajo (Espafa et al., 2007b) se propanmétodo alternativo, a fin de
mejorar la calidad de las imagenes reconstruidas, ltace pleno uso de la informacién
obtenida por el escaner para cada coincidencialopgeneral, las estimaciones de posicion
XY y energia depositada en el detector. Este métisdouna especie de logica borrosa, en el
que cada coincidencia no es soOlo aceptada o rethad@ acuerdo al cumplimiento de
determinadas condiciones de energia y XY utilizamug I6gica binaria, sino mas bien, con la
ayuda de comparaciones entre datos reales y siogjlad utiliza una combinacién de ambos
(energia y posicién) para estimar la probabilidadcdda evento de ser single-crystal. Esta
estimacion de probabilidad es ajustada teniendouenta la tasa de conteo, para lo cual se
comparan mediciones reales con simulaciones (Espladil, 2006, Espafa et al., 2007a). A
los eventos que son identificados con una altagiitidad de ser single-crystal se les da una
fiabilidad por encima de la media, mientras quesson considerados como menos fiables.
La asignacion es por tanto, no sélo 0 6 1, sindqouer valor entre medias, en funcion de la
probabilidad de ser un evento single-crystal. lgotasis de este trabajo es que la calidad de
imagen obtenida con escaneres PET de animales fpexjge puede mejorar utilizando una
estimacion a priori de los eventos single-crystal.

Una vez que se obtiene la estimacion de la prababilde que un evento sea single-
crystal, dos procedimientos para la mejora de lida de imagen han sido estudiados. En el
primer método se calcula el sinograma antes dedanstruccion de la imagen mediante la
ponderacién de cada coincidencia con la probabilda que los dos eventos que forman la
coincidencia sean single-crystal. Por lo tantosiebgrama contiene mayor contribucion de
eventos single-crystal y una reduccién de la cbatibn de eventos multiple-crystal. El uso
de este procedimiento proporciona imagenes coormegolucion espacial, pero se produce
también un aumento del ruido estadistico. Una y&ul@ este procedimiento es que puede ser
empleado por métodos de reconstruccion tanto axwalitomo estadistico-iterativos. En este
trabajo, s6lo se muestran resultados obtenidoglcotodo iterativo 3D-OSEM.
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Figura 5. Imagenes de los llenados de campo olmeni@ simulaciones con PeneloPET para un
detector formado por 30 x 30 cristales de LYSO donensiones de 1,5 x 1,5 x 12 mm3 acoplados a un
fotomultiplicador Hamamatsu H8500. El bloque emiltado de manera uniforme con una fuente de 18fag@e
actividad. Arriba se muestran las imagenes de dierde campo con los eventos totales (izquierdaylesi
crystal (centro) y multiple-crystal (derecha). Erfigure inferior se muestran los perfiles de lingaavés de la
zona rectangular marcada arriba en las imagent#sndelo de campo. Como era de esperar, las regimnbss
picos estan en su mayor parte compuestas de ew@nghs-crystal, mientras que las regiones valt#ben una
notable contribucién de eventos multiple-crystal.

En el segundo procedimiento, la probabilidad de gjuevento sea single-crystal se
introduce dentro del procedimiento iterativo, dedmgue todos los eventos son utilizados en
la reconstruccion. A partir de cada adquisiciéncemstruyen cuatro sinogramas, cada uno
formado a partir de las coincidencias con una coatidn diferente de probabilidades single-
crystal. Las cuatro combinaciones son las siguseraeObtenidos a partir de la contribucion
de la probabilidad de que el primer y segundo @gsean single-crystal (SC-SC), b) el
primer evento sea single-crystal y el segundo sehlipte-crystal (SC-MC), c) el primer
evento sea multiple-crystal y el segundo eventglsiarystal (MC-SC) y d) el primer y
segundo eventos sean multiple-crystal (MC-MC).

Se ha calculado una matriz de respuesta del sigpanaacada tipo de sinograma. El
mismo procedimiento de estimacion de probabilidgdga eventos single-crystal es utilizado
para el célculo de la matriz del sistema mediamelaciones. En la Figura 6, se muestran las
diferencias de los perfiles transversales de laimdé respuesta para los diferentes tipos de
sinogramas.
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Figura 6. Perfil transversal de probabilidad ad@bd de un tubo de la respuesta de un LOR mostrando
los distintos valores en el maximo (arriba) y laferéntes formas (abajo, donde todos los perfilgsire
reescalados al mismo valor del maximo) para larelites matrices de respuesta. También se muégpiesib
del procedimiento estandar de calculo de la md&irespuesta.

La evaluacion de la mejora conseguida en la caliadmagen ha sido realizada
mediante la simulacion de la adquisicion, segupretocolo NEMA de animales pequefios
(NEMA, 2008), para la obtencién de los coeficiendesrecuperacion en la imagen. Dicha
adquisicion consiste en el empleo de un maniquiglfg consta de una region con
concentracién de actividad uniforme y otra con leaps de distintos diametros y la misma
concentracién de actividad que la zona uniformelaERigura 7 se muestran los resultados
obtenidos midiendo los coeficientes de recuperasire el capilar de 1 mm de diametro
frente al ruido en la zona uniforme.
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Figura 7. Coeficientes de recuperacion frente @orpara reconstruccién 3D-OSEM del capilar de 1
mm de una simulacién de maniqui 1Q adquirido conesnaner VrPET. Cada punto corresponde a cinco
subiteraciones. Si fijamos un 8% como el limitepsalle de ruido se observa como el método propuesto
(improved) consigue un coeficiente de recuperadéh20% en 40 subiteraciones mientras que los &®os
guedan en un 15% (single-crystal) en 30 subitenasiy 10% (standard) en 20 subiteraciones. Si vhs®s el
ruido y las subiteraciones en las que los otroodu&t consiguen un 20% de coeficiente de recuperassd
obtiene 10% de ruido y 35 subiteraciones para s single-crystal y 10% de rudio y 45 subiteraciopara el
caso standard.

Consideraciones para el disefio de un escaner PET de
animales pequefios

Los escaneres PET de animales pequefios se enocuent@ntinuo desarrollo. Los
nuevos dispositivos disponen de mayor sensibilidadplucién espacial, y capacidad de
conteo (Wang et al., 2006, McFarland et al., 20BYHisefio de un nuevo escaner PET es un
proceso muy complicado que exige la toma de dewside varios tipos. Las simulaciones de
Monte Carlo se han convertido en una herramientaadier incalculable en este proceso,
permitiendo estudios exhaustivos de todos los compes que forman el escaner (Heinrichs
et al., 2003). El proposito de este capitulo esstldio, por medio de simulaciones de Monte
Carlo, de la influencia que tiene la configuracitinlos parametros tipicos de escaneres PET
de animales pequefios en sus prestaciones.

En la actualidad, los escaneres PET se componélodaes detectores (Wang et al.,
2006), formados por fotomultiplicadores sensiblda posicion (PS-PMT) acoplados a una
matriz de cristales de centelleo. Los bloques tietes estan dispuestos en anillos paralelos
para lograr una mejor resolucion transaxial. Diiege configuraciones han sido evaluadas.
Parametros tales como el diametro del anillo, tam@éi los detectores, tamafio de pixel,
material centelleador y la electronica han sidoaestivamente probados a fin de evaluar
cémo se ven modificadas las prestaciones del eiscane

Como punto de partida, se han establecido losivbgete configuracion que debe
cumplir el escaner. La sensibilidad en el centdioF@®V para una ventana de energia de 250
keV a 700 keV debe ser alrededor del 10%. La regmuespacial en el centro de la FOV
debe ser mejor que 1,7 mm. Por ultimo, tanto el F&&\al como el transaxial deben ser
alrededor de 10 cm. El escaner debe tener tambigmlta capacidad de conteo.
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Hay cuatro caracteristicas de funcionamiento desasineres PET considerados aqui:
la resolucién espacial, la sensibilidad, tamafoFd&V y la tasa en el pico de la curva NEC.
La resolucion espacial, el tamafio del FOV vy la ibdidad dependen de la geometria y del
material centelleador empleado, pero no de la réleica. Por otro lado, la obtencién de
buenos valores para el pico de la curva NEC depdada geometria y, mas esencialmente,
de la electrénica y de la respuesta temporal dgktieador. Por ejemplo, utilizando escaneres
con la misma geometria y materiales, pero difereaefiguracion de la electrénica, se
obtienen capacidades de conteo muy diferentes.

Algunas conclusiones extraidas de los resultadeseptados en este capitulo se
resumen a continuacion. La resolucion espacialrienas de la longitud del cristal que de
Su seccidn para escaneres de alta resolucion. joa mesolucion se lograria con cristales mas
cortos y mayor diametro del escaner, pero estoidigsm la sensibilidad e incrementaria el
namero modulos detectores requeridos.

Suponiendo una electrénica ideal, los factorestdimés de la tasa en el pico de la
curva NEC son el apilamiento de pulsos en el detegtlas coincidencias aleatorias que
entran dentro de la ventana de coincidencia. Eptoblemas solo puede ser resueltos
mediante la utilizacion de materiales centelleaslaréds rapidos que permitan reducir el
tiempo de integracion y estrechar la ventana decaencias y/o la lectura de menor volumen
de cristal por cada elemento detector (PMT, AD@GM;, de manera que se reduce el nimero
de eventos que llegan a cada uno de ellos.

Por otro lado, el elevado coste de los elementosialeccion que componen los
escaneres PET ha llevado al disefio de escaneresazmr nimero de detectores, a expensas
de una reduccion de la sensibilidad (Vaquero ¢t28l05). EI muestreo angular se logra
mediante la rotacion de los detectores alrededocaiepo de vision. El uso generalizado de
métodos de reconstruccion estadistico iteratiumstoj con el hecho de que estos métodos
iterativos de reconstrucciéon son mas tolerantes anuestreo angular incompleto, permite
explorar la posibilidad de utilizar diferentes esopas de rotacion (es decir, rotacién continua
y adquisicién en parada) de los detectores engiaemer la mejor resolucién de imagen con
el minimo tiempo de adquisicién y reconstruccion.

Tabla 3. Resolucién espacial medida en imagenemstuidas de adquisiciones simuladas de un

maniqui Derenzo adquiridas tanto en modo de ratacahtinua como de adquisicion en parada con thstin
namero de pasos.

Radial -Tangencial(mm) 5 pasos 6 pasos 7 pasos Rotacién Continua
3 lterations 50 Subsets  0.90.02 0.73-0.85 0.79-0.83 1.06 -1.27
2 Iterations 75 Subsets ~ 1.04.42 0.75-0.87 0.82-0.88 1.07 -1.30
1 lterations 150 Subsets  1.06.15 0.92-1.00 0.94-1.13 1.09-1.32

Se puede concluir que las adquisiciones de rotaoidnparadas son una ventajosa
alternativa a la rotacién continua para los es@nBET con un muestreo angular incompleto.
El calculo de una matriz de respuesta del sistedms emacto para el caso de adquisiciones
con paradas, permite obtener una mejora en lau@éalde la imagen de hasta un 30%.
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Conclusiones

En esta tesis doctoral se han utilizado las tésnisasimulacion Monte Carlo en la
mejora de la técnica PET. De este modo se han egiado al maximo los conocimientos en
Fisica Nuclear tanto en la mejora de la calidadrgen de escaneres existentes como en el
disefio de nuevos prototipos. A continuacion semesulas principales aportaciones del
trabajo realizado y las conclusiones obtenidas:

. Se ha desarrollado una herramienta de simuladidnte Carlo adaptada a la
técnica PET (PeneloPET) que permite realizar de emaarsencilla simulaciones que
incorporan toda la fisica y la electrOnica necesgdra conseguir resultados realistas. La
herramienta ha sido desarrollada para realizarlaoimnes complejas con el minimo esfuerzo
del usuario y poder ejecutarlas en un tiempo 6ptésheeducir el tiempo de preparacion y el
de simulacién, el usuario puede incluir mayor sab en las simulaciones a la vez que
realizar estudios en mayor profundidad con la misiedicacion. La posibilidad de obtener
los resultados en diversos formatos, ya sea enafaden histogramas o0 sinogramas como
ficheros en modo lista, reduce también el tiempart#isis de los mismos. Un sencillo script
escrito en lenguaje python permite ejecutar lasuksioiones en clusters de ordenadores o
procesadores con multiples nucleos con el miniriugeeso.

. Se ha realizado una validacion exhaustiva deligododde simulacion
desarrollado, comparandolo con otros simuladoresnyresultados obtenidos de datos reales
de diferentes escaneres PET comerciales de anipedeiios. La similitud encontrada entre
los datos reales y los simulados garantiza el biugrionamiento de la herramienta
desarrollada y la convierten en idonea para la raeje la técnica PET.

. Se ha calculado la matriz de respuesta del sssteradiante simulaciones
Monte Carlo para varios escaneres comerciales. BEstaiz de respuesta incluye una
descripcion realista de los procesos fisicos desiémiy deteccién, permitiendo la obtencion
de imagenes PET de alta calidad y resolucion medielnuso de técnicas de reconstruccion
estadistico iterativas. Ademas, las estrategiasodgresion utilizadas para almacenar dicha
matriz, han permitido optimizar el proceso de retartcion, consiguiendo aprovechar al
méximo los recursos informéticos con el fin de obtéamagenes en el menor tiempo posible.

. Se ha desarrollado un método de mejora de ldazhlie imagen basado en el
conocimiento a priori de la probabilidad de que ewento detectado provenga de la
interaccion de un fotén en un Unico cristal de krim del detector. La incorporacion de este
conocimiento a priori en el proceso de reconstarcgobtenido de la comparacion de
simulaciones y datos reales), permite obtener imégeon mejor relacion sefial-ruido y con
un ritmo de convergencia superior al de los métadadicionales. El método mejorado
permite obtener valores mas altos de los coefiesede recuperacion para niveles de ruido
razonables. La evaluacion de los métodos propussture estudios realizados con escaneres
reales no ha mostrado el el método single-crystaijte reducir el fondo de ruido que se
produce en escédneres con una alta contribuciorvel@as con pile-up. Podemos concluir
que, mediante uso de PeneloPET para obtener inécdma priori de los datos adquiridos, es
posible mejorar la calidad de las imagenes recoidsis.

. Se ha realizado un estudio sobre los princippfgametros de configuracion
que intervienen en el disefio de un escaner PETedaefos animales. Como resultado de
este estudio se han determinado los parametro®omfggeracion Optimos que deben ser
tenidos en cuenta a la hora de disefiar un esc&iErcBn las maximas prestaciones de
resolucion espacial, sensibilidad y tasa de corBameloPET permite estimar perfiles de
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resolucion frente a sensibilidad para distintoered de uno o mas parametros. El tamafio del
cristal y el materia puede ser elegidos despuésndeso intensivo de las simulaciones de
PeneloPET. PeneloPET puede simular escaneres PiTistntos tamafios de detector,
respuesta temporal y resolucién temporal con atigj de establecer la configuracion con la
que se obtiene una tasa de conteo 6ptima paracéhers Hemos utilizado también
PeneloPET para comparar los protocolos de adgdisicon rotacion con paradas y con
rotacion continua, obteniendo una resolucion espaon 30% superior para el caso de
rotacion con paradas. Podemos concluir que Pen&l@3Hina herramienta potente para el
disefio de nuevos escaneres PET de animales pequefios



