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Abstract

The continuum resonance spectrum of 5H (3H + n + n) is investigated by use of the complex scaled
hyperspherical adiabatic expansion method. The crucial 3H-neutron potential is obtained by switching off
the Coulomb part from successful fits to 3He-proton experimental data. These two-body potentials must be
expressed exclusively by operators conserving the nucleon–core mean field angular momentum quantum
numbers. The energies ER and widths ΓR of the 1/2+ ground-state resonance and the lowest two excited
5/2+- and 3/2+-resonances are found to be (1.6,1.5) MeV, (2.8,2.5) MeV and (3.2,3.9) MeV, respec-
tively. These results agree with most of the experimental data. The energy distributions of the fragments
after decay of the resonances are predicted.
© 2007 Elsevier B.V. All rights reserved.

PACS: 21.45.+v; 31.15.Ja; 25.70.Ef

1. Introduction

Recent advances in experimental techniques have opened the door to investigate superheavy
hydrogen isotopes, 5H and 7H. None of them, nor 4H, have bound states, while 3H is well bound
with the neutron separation energy of 6.26 MeV. At the neutron dripline, where one neutron
becomes unbound, the structure has been successfully described as an ordinary nuclear core
surrounded by weakly bound or unbound neutrons [1]. It is therefore natural to describe the AH
nuclei (A > 3) as a bound triton–core, denoted t or 3H, surrounded by A − 3 neutrons.

In the present work we focus on 5H (t + n + n), for which the experimental data are contro-
versial. A summary of the different experimental data and techniques can be found in [2]. In [3]
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the 5H ground state is found to be a 1/2+ state with energy ER = 1.7 ± 0.3 MeV and width
ΓR = 1.9 ± 0.4 MeV. Similar results were found in [4], where the authors quote an energy of
1.8 MeV and a width of 1.3 MeV, and in [5], where the 1/2+ ground state of 5H is located at
2 MeV with a width of 2.5 MeV. In [6,7] a broad structure is observed in the 5H energy distribu-
tion after proton knockout from 6He, that was interpreted as a 1/2+ resonance at around 3 MeV.
No evidence for a narrow resonance in the t + n + n system was obtained in contrast to [8],
where two rather narrow resonances were reported at 1.8 ± 0.1 MeV and 2.7 ± 0.1 MeV with
widths less than 0.5 MeV. In [9] even a higher energy of 5.5 ± 0.2 MeV and a larger width of
5.4 ± 0.6 MeV are given for the 5H ground state, which is consistent with the results presented
in [10].

The data obtained for the excited 3/2+ and 5/2+ states tend to agree that these resonances are
broad structures, almost degenerate, with energies varying between 2.5 MeV [4,5] and more than
10 MeV [9]. Different theoretical calculations concerning 5H are available [11–15]. In general
they agree in placing the 1/2+ ground state between 2 and 3 MeV except [11] where 6 MeV is
reported. The widths of these resonances are only rough estimates except for the more complete
computation in [15].

The first three-body calculation of 5H [12] used the hyperspheric harmonic expansion method
with a neutron–triton interaction obtained from fits to the scarce amount of experimental phase
shifts [16]. The interaction is not consistent with the available 3He-proton phase shifts. The
resonances are obtained from an analysis of the three-body phase shifts and the bumps observed
in the computed missing mass spectra. The authors find a ground state energy at around 2.5–
3.0 MeV. However extraction of the resonance properties from the missing mass spectra is not
unambiguous, since it requires a full description of the process used to populate the 5H-states
(initial state, reaction mechanism, final state interactions). This problem is discussed in detail
in [17], which shows how different descriptions of the reaction process can provide different
properties of the 5H ground state.

The origin of these uncertainties is often related to a mismatch between experimental and the-
oretical definitions of resonances. The experimental analyses of resonance energies and widths
are most often consistent with the definition of resonances as generalized eigenstates of a given
system, i.e. when they are defined as poles of the S-matrix in the fourth quadrant of the complex
energy plane. With this assumption the reaction mechanism used to populate the resonances be-
comes unimportant. The only essential ingredients in the calculation of three-body resonances
are then the different two-body interactions.

The main theoretical problem is that the resonance wave functions diverge asymptotically,
which makes them difficult to disentangle from ordinary non-resonant continuum wave func-
tions. Different methods are available to overcome this problem. For instance, the analytic
continuation of the coupling constant [18] is used in [13] to investigate 5H, and the ground state
is found at around 3 MeV with a width varying between 1 and 4 MeV.

An efficient method to obtain the S-matrix poles is the complex scaling method [19,20], where
all spatial coordinates are rotated into the complex plane by a judicially chosen angle θ . In this
way, provided that θ is larger than the argument of the resonance, the wave function of the res-
onance falls off exponentially exactly as for a bound state. In [15] the complex scaling method
together with the microscopic three-cluster model is used to investigate the 5H nucleus. An ef-
fective nucleon–nucleon interaction is used to construct the neutron–triton potential. The energy
and width of the 1/2+ ground state are then found to be 1.59 MeV and 2.48 MeV, respectively,
while the excited 3/2+ and 5/2+ states are found almost degenerate at 3.0 MeV, and with widths
above 4 MeV.
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In the last years it has been shown that the hyperspherical adiabatic expansion method [21]
is an efficient tool to obtain three-body bound states and resonances when combined with the
complex scaling method. The method has been applied successfully to investigate systems like
6He, 6Be, 6Li, 11Li, 12C, and 17Ne, [22–25], where the agreement with the available experimental
data is found to be remarkably good. We therefore believe that a similar investigation of the
properties of 5H can help to clarify the existing uncertainties.

The paper is organized as follows: In Section 2 we introduce the method and discuss in detail
the two-body neutron–triton interaction, that is the most crucial ingredient in the calculation.
In Section 3 the properties of 4H are discussed. The three-body results are shown in Section 4.
The energy distributions of the particles after decay of the three-body resonances are given in
Section 5. We then finish in Section 6 with the summary and the conclusions.

2. Crucial ingredients

The adiabatic expansion method with hyperspherical coordinates and the Faddeev decompo-
sition is described for three-body systems in [21]. The extension to compute resonances with
complex rotation for these systems is described in [23]. We shall here specify the details neces-
sary to understand the subsequent discussion. First we sketch the method and then we discuss in
detail the decisive neutron–triton interaction.

2.1. Notation and parameters

We define the hyperradius ρ by

m(m1 + m2 + m3)ρ
2 =

3∑
i<j

mimj (r i − rj )
2, (1)

where mi and r i are the mass and coordinate of particle number i. The mass m is arbitrary
and here chosen as the nucleon mass. All other relative coordinates are dimensionless angles
collectively denoted by Ω . The hyperradius is rotated by an angle θ into the complex plane by
multiplication with exp(iθ).

The total wave function Ψ (JM) with total angular momentum, J , and projection, M , is ex-
panded on the complete set Φ

(JM)
n of adiabatic angular wave functions obtained for a fixed

value ρ [21], i.e.

Ψ (JM) = 1

ρ5/2

∑
n

fn(ρ)Φ(JM)
n (ρ,Ω), (2)

Φ(JM)
n (ρ,Ω) =

3∑
i=1

φ(i)
n (ρ,Ωi), (3)

where φ
(i)
n is the Faddeev component related to the Jacobi system labeled by i. The expansion co-

efficients are the radial wave functions, fn(ρ), obeying a coupled set of radial equations obtained
by projecting the complex scaled Faddeev equations on the adiabatic angular wave functions.
They are exponentially decaying for resonances when the rotation angle θ of the hyperradius is
larger than that corresponding to the three-body resonance. Then both real and imaginary parts
of the resonance energy, E0 = ER − iEI , are determined by the boundary condition of fn, i.e.
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fn(κρeiθ ) → √
ρH

(1)
K+2

(|κ|ρei(θ−θR)
)

→ exp
(−|κ|ρ sin (θ − θR) + i

(|κ|ρ cos (θ − θR) − Kπ/2 + 3π/4
))

, (4)

where θR is the argument of the complex momentum, κ =
√

2mE0/h̄
2 = |κ| exp(−iθR), and

H
(1)
K+2 is the Hankel function of the first kind.
The two-body interaction is the all-decisive input. In general, the low-energy scattering prop-

erties of all pairs of particles should be reproduced. A smaller amount of data like scattering
length and effective range, or perhaps the low-lying two-body resonance energies and their
widths may also be sufficient.

The neutron–neutron interaction is well established. We use the nucleon–nucleon potential
given in [26] which reproduces the experimental s- and p-wave scattering lengths and effective
ranges. It contains central, spin–orbit (� · s), tensor (S12) and spin–spin (s1 · s2) interactions. As
indicated in [27] and supported by previous calculations with the hyperspheric adiabatic expan-
sion method, the particular radial shape is not essential in descriptions of weakly bound systems
like 6He or 11Li as long as the low energy scattering parameters are correct.

The interactions include an effective three-body force, V3b , which is necessary for fine-tuning
to experimental energies, since three-body states otherwise typically are underbound, and the pre-
cise energy is crucial for the size and width. Unfortunately, except for the short-range character,
the detailed properties of such interaction are unknown and therefore create a source of uncer-
tainties. However, precisely due to the short-range character of this interaction, we expect that
the more spatially extended the system is, the smaller is the effect of the three-body potential. We
choose a Gaussian dependence on hyperradius, V3b = S3b exp(−ρ2/b2

3b), where the strength and
the range are determined to fine-tune the results if necessary. When V3b is diagonal and the same
for all adiabatic potentials, the partial wave structure of the three-body states is maintained, but
the energy can be adjusted. We then expect that the effects of V3b on the three-body resonances
can be only marginal when we maintain the same three-body energy.

2.2. Neutron–triton potential

The neutron–triton interaction is an important source of uncertainties, since the amount of
experimental data concerning 4H are rather scarce.

In [28] four resonances in 4H are reported to have energies and widths (ER,ΓR) of
(3.19,5.42) MeV (2−), (3.50,6.73) MeV (1−), (5.27,8.92) MeV (0−), and (6.02,12.99) MeV
(1−). These energies are not well established, and more recent experimental analyses suggest
that they could be smaller, placing the ground state of 4H at around 2 MeV [9]. Data in both
[28] and [9] are obtained by a Breit–Wigner fit to experimental cross sections or missing mass
spectra.

The neutron–triton interaction should reproduce the experimental observables either directly
by computation or indirectly by comparing the same derived quantities. Matching computed
S-matrix poles to the experimental Breit–Wigner parameters from [28] or [9] is then not an ap-
propriate procedure. A better method is to construct the neutron–triton interaction by reproducing
the experimental phase shifts. Unfortunately only very few experimental phase shifts are avail-
able, and furthermore their error bars are large [29]. On the other hand, much more is known
about the mirror system, 3He-proton, where abundant and reliable data are available. Invoking
charge symmetry of the nuclear forces we can then construct a 3He-proton potential and subse-
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quently find the corresponding neutron–triton potential by switching off the Coulomb interaction.
This procedure was followed for instance in [13].

The experimental 3He-proton phase shifts [30,31] are usually quoted specifying their quantum
numbers {�, s, j}, where � is the 3He-proton relative orbital angular momentum, s = sN + sc is
the sum of the spins of the proton, sN , and 3He, sc , and j = � + s is the total two-body angular
momentum. It is then tempting to consider the two particles on equal footing like for the nucleon–
nucleon interaction. This leads to a 3He-proton interaction of the form:

VNc(r) = Vc(r) + Vss(r)sN · sc + Vso(r)� · (sN + sc) (5)

for which {�, s, j} are conserved quantum numbers. This kind of potential has for instance been
used in [12] for the neutron–triton potential.

The potential in Eq. (5) has the problem that s and j are not the mean-field quantum num-
bers of the nucleons within the 3He-core, where every nucleon moves in an orbit characterized
by the relative nucleon–core orbital angular momentum � and the total angular momentum of
that nucleon jN = � ± 1/2. For the neutron–core system jN couples to the core–spin, sc , to
give the total two-body angular momentum j . The problem arises because the nucleon angular
momentum jN is not conserved for the potential in Eq. (5). Therefore the mean-field spin–orbit
partners of the nucleons within the core with jN = � ± 1/2 are inevitably mixed. The motion
of the valence nucleon(s) outside the core is then in conflict with the (approximate) mean-field
motion of the identical nucleons within the core. This problem is discussed in detail in [32].
These inconsistencies are enhanced if one and only one of the mixed partners is occupied in the
core by valence nucleons. An example of such Pauli forbidden states is the p3/2 orbit in 10Li and
11Li [32].

This particular violation of the Pauli principle is not present in systems like 3H and 3He, but
certainly the nucleons outside the core should preferably occupy the p3/2 states instead of the
p1/2 levels (or the d5/2 instead of the d3/2). This is not possible with the potential in Eq. (5),
but we can achieve full consistency with the mean-field description by replacing the potential in
Eq. (5) by [26]:

VNc(r) = Vc(r) + Vjs(r)(� + sN) · sc + Vso(r)� · sN, (6)

which has {�, jN , j} as conserved quantum numbers, where jN = �+ sN and j = jN + sc . This
choice of the 3He-proton interaction in Eq. (6) is also supported by the experimental data. In [30],
and especially in the more recent data [31], a singlet-triplet mixing in the 3He-proton p-states
was found experimentally. Such mixing can be achieved with the potential in Eq. (6), but not
with Eq. (5). In fact, in [31] it is proposed that the mixing can be explained by the spin–orbit
operator, � · sN , precisely as suggested in [32] and expressed in Eq. (6).

For � �= 0 this spin–orbit operator in Eq. (6) gives rise to two sets of degenerate states
{�(j=�−1)

jN=�−1/2, �
(j=�)

jN=�−1/2} and {�(j=�)

jN=�+1/2, �
(j=�+1)

jN=�+1/2}. This degeneracy is broken by the term,

jN · sc, of the potential. For instance, for p-waves in 4H the spin–spin term of the potential

breaks the degeneracy between the {p(j=1)

3/2 ,p
(j=2)

3/2 } and the {p(j=0)

1/2 ,p
(j=1)

1/2 } states. Therefore,

one should find in 4H two relatively close-lying 1− and 2− states, separated by a relatively large
energy gap from another couple of close-lying 0− and 1− states. This structure is precisely the
one observed in [28] for the resonances in 4H. This also supports potential (6) over potential (5)
where the latter instead would produce two sets of p-states in 4H with rather similar energy
separation [32].

Therefore we have constructed a nuclear 3He-proton interaction of the form in Eq. (6). We
have taken the central, Vc(r), js, Vjs(r), and spin–orbit, Vso(r), radial form factors as a sum
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of two Gaussians. The strengths and ranges of each Gaussian have been adjusted such that after
adding the Coulomb potential the experimental phase shifts for s-, p-, and d-waves from [31] are
reproduced. As shown in [31,33] the assignment between the δ

j

�,s phase shifts given experimen-
tally in terms of the quantum numbers associated to the potential (5) and the ones associated to
potential (6) are the following: p

(j=1)

3/2 → δ1
1,1, p

(j=2)

3/2 → δ2
1,1, p

(j=1)

1/2 → δ1
1,0, and p

(j=0)

1/2 → δ0
1,1

for p-waves, and d
(j=3)

5/2 → δ3
2,1, d

(j=2)

5/2 → δ2
2,1, d

(j=2)

3/2 → δ2
2,0, and d

(j=1)

3/2 → δ1
2,1 for d-waves.

For s-waves both potentials (5) and (6) are obviously equivalent.
Using a gradient minimization method we have found the strengths and ranges of the Gaussian

potentials given in Table 1. In Fig. 1 we plot the corresponding 3H-neutron potentials for the
different �

(j)
jN

states. The s-wave potentials are repulsive, which is consistent with population by

Table 1
Strengths Si and ranges bi of the two Gaussians for the central (V (�)

c ), js-term (V (�)
js

), and spin–orbit (V (�)
so ) potentials

in Eq. (6)

V
(�)
c V

(�)
js

V
(�)
so

� 0 1 2 0 1 2 0 1 2

S1 (MeV) 20.17 −400.01 10.04 −1.45 −237.77 2.80 − −135.98 −2.15
b1 (fm) 3.59 2.62 3.62 7.39 1.44 3.38 − 2.09 3.68
S2 (MeV) − 400.81 − − 108.87 − − 197.56 −
b2 (fm) − 2.55 − − 1.70 − − 1.82 −

Fig. 1. Neutron-3H potentials for the different �
(j)
jN

waves corresponding to the parameters in Table 1. The external
panel shows the two s-wave potentials, and the internal panels show the four p-wave (left), and the four d-wave (right)
neutron-3H potentials, respectively.
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two protons or neutrons of the two s1/2 states in 3He or 3H, respectively. As a consequence the
third proton in 4Li, or the third neutron in 4H, cannot populate these s-states due to the Pauli
principle. The potentials for the d-states are also repulsive, pushing up the energies of the d5/2
and d3/2 states. This is also expected but for a different reason, i.e. the d-states should be higher
in energy than the states in the p shell, and therefore with a smaller probability of being populated
by the valence nucleon.

In Fig. 2 we show the computed phase shifts (solid lines) for the different s-, p- and d-wave
3He-proton potentials. The agreement with the experimentally derived phase shifts in [31] (black
circles) is very good. For comparison we also show (open circles) the experimental phase shifts
given in [30]. To guide the eye we have connected these data with dashed curves. These data
[30] are not fully consistent with the ones given in [31], although the global behaviour is similar.
Also, in [30] the d-wave phases are assumed to be degenerate (denoted δ2,0 and δ2,1 in the right
part of Fig. 2) with a resulting erratic dependence on the energy.

The present numerical fit for d-waves only used the experimental δ1
2,1, δ2

2,1, and δ3
2,1 phase

shifts, since the numerical method was unable to find a potential matching simultaneously all
four sets of d-wave shifts in [31]. As seen in the right part of Fig. 2 the match of the three sets of
experimental phase shifts used for the numerical fit (black circles) is excellent. The lowest solid
line shows the δ2

2,0 phase shifts obtained with the potential parameters fitting the other three sets.
It is puzzling that these phase shifts are in almost perfect agreement with those in [31], provided
the sign is reversed (black points). In any case these computed δ2

2,0 phase shifts exhibit the same
global behaviour (negative and decreasing with a similar rate) as those of [30] (open circles).

We have also tried to fit the experimental 3He-proton phase shifts [31] with the potential
in Eq. (5), even though the conserved quantum numbers then are inappropriate. The numerical
procedure fails dramatically in determining the potential parameters for the p- and d-waves in

Fig. 2. Computed phase shifts δ
j
�,s

(solid lines) for the s-wave (left), p-wave (center), and d-wave (right) 3He-proton
potentials using the parameters given in Table 1. The solid circles show the experimental phase shifts in [31], and the
open circles (connected with dashed curves) are the experimental data from [30]. In the right part of the figure the solid
circles correspond to δ2

2,0 from [31] but with opposite sign.
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this case. The same failure appears with other analytical expressions for the radial form factors.
It is certainly very difficult (if not impossible) to construct a potential like Eq. (5) reproducing
the experimental 3He-proton phase shifts. In total, this demonstrates that the experimental phase
shifts are inconsistent with Eq. (5), but consistent with Eq. (6).

3. 4H properties

The structure of 4H is obtained from the neutron-3H potentials given in Table 1 and plotted
in Fig. 1. Only the potentials in the p3/2 and p1/2 states exhibit attractive pockets with barriers.
These states are therefore the only ones which might support two-body resonances. The cen-
tral p-wave potential contains two Gaussians with slightly different ranges and almost identical
strengths of opposite sign, which is an attractive surface central potential. We test the dependency
on two choices of the Coulomb interaction corresponding to Gaussian and point-like 3He-charge
distributions. The result in Table 1 for the point-like Coulomb potential is almost identical to that
of a Gaussian charge distribution. The fits to the data are equally good. With artificially small
errors of 0.1 degrees on all phase shift data points the χ2 per data is around 8. This means that
an error of 1 degree would give a χ2 per data point equal to about 0.08.

The p-wave potentials give rise to four resonant states in 4H, whose energies and widths are
given in the second column of Table 2. These states have been obtained as poles of the S-matrix
and agree rather well with the ones found in [15] (third column), where resonances are also
computed as poles of the S-matrix, and where a different procedure (resonating group method)
is used to build the neutron–triton interaction.

There is a clear disagreement between the theoretical energies and widths given in columns
2 and 3, and the experimental ones in column 5 [28]. However, the experimental data [28] have
been obtained from a charge symmetric reflection of the R-matrix parameters for 4Li. It is well
known, as explicitly written in [28], that the structure given by the S-matrix poles is quite differ-
ent, giving rise to p-wave resonances occurring even in a different order. This fact is illustrated
in [34], where large variations for the resonance parameters in 5He and 5Li are found depending
on what procedure is used to extract them. In all cases the resonance energies obtained as poles
of the S-matrix are clearly lower than the ones obtained using a conventional R-matrix analysis.
This is particularly important for broad resonances.

A recent Breit–Wigner fit [9] of the experimental missing-mass spectra suggests that the
ground state energy of 4H is a factor of two lower than in [28] (last column in Table 2). The

Table 2
Resonance energies and widths (ER,ΓR), in MeV, in 4H. The 2nd and 3rd columns are the results obtained as poles
of the S-matrix in this work and in [15]. The 4th column gives the results from this work assuming that the resonances
energies correspond to a maximum of dδ

dE
(and ΓR = 2/( dδ

dE
)max). The last two columns are the experimental values

from [28] and [9], where an R-matrix fit or a Breit–Wigner fit to the peak of the experimental cross sections is made. In
[9] the energies are given without spin-parity assignment

Jπ This work
S-matrix poles

[15]
S-matrix poles

This work
(dδ/dE)max

[28], exp.
R-matrix

[9], exp.
Breit–Wigner

(ER,ΓR) (ER,ΓR) (ER,ΓR) (ER,ΓR) (ER,ΓR)

2− (1.22, 3.34) (1.52, 4.11) (1.80, 6.21) (3.19, 5.42) (1.6, ∼0.8)
1− (1.15, 3.49) (1.23, 5.80) (1.70, 6.84) (3.50, 6.73) (3.4, ∼0.8)
0− (0.77, 6.72) (1.19, 6.17) (1.92, 19.1) (5.27, 8.92) (6.0, ∼1.0)
1− (1.15, 6.38) (1.32, 4.72) (2.25, 14.6) (6.02, 12.99) –
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widths of all the states are also much smaller than the ones given in [28]. In [9] only the energies
and widths are given, without the spin and parity assignment.

It is quite obvious that a direct comparison of the resonance energies for 4H obtained in this
work as poles of the S-matrix with the ones obtained from the R-matrix or Breit–Wigner analy-
ses (given in the last two columns of Table 2) is not appropriate. This comparison cannot be used
to test the validity of the neutron–triton interaction. A more efficient way is to compare directly to
the very few available experimental neutron–triton phase-shifts [29]. In Fig. 3 we show the com-
puted neutron–triton phase shifts (δj

�,s ) for the p-potentials in Fig. 1. The solid, dashed, dotted,

and dot-dashed curves correspond to the δ1
1,1, δ2

1,1, δ0
1,1, and δ1

1,0 phase shifts, respectively. The
corresponding experimental data [29] are given by the solid circles, open circles, solid squares,
and open squares, respectively. As seen in the figure, the error bars of the data are large. The
δ0

1,1 data are only available without error bars, which presumably should be large. For δ0
1,1 and

δ1
1,0 the experimental data have been connected with the same kind of curve as for the computed

ones.
Using the parameters in Table 1 to compute (not fit) the very few and uncertain neutron–triton

phase shifts we arrive at a χ2 per data point equal to about 8, which is comparable to the 3He-
proton fit. The neutron–triton phase shifts could easily be precisely reproduced with potentials of
the form in Eq. (6). However, the few and inaccurate points do not make that worthwhile. Instead
we rely on the very precise fits of the 3He-proton phase shifts and the charge independence of
the strong interaction.

As seen in Fig. 3, the computed phase shifts agree reasonably well with the experiment. We
can observe that neither the computed phase shifts nor the experimental ones cross the value
π/2. The definition of resonances as the energy at which δ(E) = π/2 is then not applicable here.
This fact contradicts the results shown in [13], where the neutron–triton phase shifts do cross the
value π/2. In fact, in [13] resonances are precisely defined as the energies where δ(E) = π/2.
This seems to disagree with the experimental data. The phase shifts in Fig. 3 are consistent with

Fig. 3. Computed phase shifts δ
j
�,s

for the p-wave neutron-3H potential using the parameters given in Table 1. The

experimental data (solid circles for δ1
1,1, open circles for δ2

1,1, solid squares for δ0
1,1, and open squares for δ1

1,0) are
from [29].
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the existence of broad resonances defined as the energies where dδ/dE has a maximum, and
ΓR = 2/( dδ

dE
)max [35]. Following this prescription we obtain the energies and widths given in

the fourth column of Table 2. The different states are now reordered, and the new energies and
widths are significantly larger than the ones obtained as poles of the S-matrix.

The R-matrix analysis of these experimental phase shifts [29] leads to a 2− ground state en-
ergy for 4H of 3.4 MeV with a width of 5.5 MeV. Therefore, since our neutron–triton interaction
agrees reasonably well with the experimental phase shifts [29], the resonance energies and widths
obtained as poles of the S-matrix and given in the second column of Table 2, are consistent with
the R-matrix analysis which gives the ground state energy slightly above 3 MeV.

The s-wave potential given in Table 1 gives rise to singlet and triplet scattering lengths equal
to 5.32 fm and 3.01 fm, respectively, in agreement with the experimental values of 4.98±0.29 fm
and 3.13±0.11 fm, respectively [36]. Thus mirror symmetry seems to be rather well fulfilled.

4. Results for 5H

Once the two-body interactions are fixed, we investigate the low-energy spectrum of 5H. As
discussed above only the attractive p-waves can be responsible for low-lying states. The resulting
angular momentum and parity, Jπ , of these three-body states are then expected to be 1/2+, 3/2+,
and 5/2+ states. The Pauli principle prohibits larger J -values with positive parity. Negative parity
states must involve one neutron–triton p-level and one of either s- or d-character. These three-
body states are necessarily then situated at higher energies if they appear at all. For each Jπ ,
we first solve the angular part of the (complex rotated) Faddeev equations, which provide the
effective potentials in the radial equations. As a second step we solve the radial equations that
give the radial wave functions and the energies for each of the states.

4.1. Angular part

To solve the angular part of the Faddeev equations, the angular eigenfunctions φ
(i)
n in Eq. (2)

are expanded in terms of the complete basis {[YKL
�x�y

⊗ χsx,sy ]J }, where the hyperspherical har-

monics YKL
�x�y

are the free solutions with only the kinetic energy operator and χsx,sy is the spin
wave function. For each Jacobi set �x and �y are the orbital angular momenta associated to the
Jacobi coordinates x and y, sx is the coupling of the spins of the two particles connected by x,
L and S are the total orbital angular momentum and spin, respectively, and J is the total angular
momentum of the three-body system. In this expansion convergence is required at two different
levels. First, the basis containing all contributing partial wave components {�x, �y,L, sx, S} must
be included in the expansion, and second, for each component, the maximum value, Kmax, of the
hypermomentum K must be large enough to ensure convergence for all necessary distances.

The 1/2+, 3/2+, and 5/2+ states in 5H have been calculated including all the possible com-
ponents involving s-, p-, and d-waves. A Kmax value of at least 60 has been used, except for
the largest components where Kmax has been increased to guarantee convergence of the effective
potentials. In Tables 3, 4, and 5 we specify the quantum numbers, including the Kmax values, of
the largest components for each of the states computed.

Solving now the angular eigenvalue equation we obtain the eigenvalues, λn(ρ), needed to con-
struct the effective potentials in the radial equations. In particular, it turns out that it is sufficient
to use a scaling angle of θ = 0.35 rads for the 1/2+ and 3/2+ states, and 0.30 rads for the 5/2+
state, respectively.
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Table 3
The largest partial wave components included in the calculation for the 1/2+ state of 5H. The left and right parts refer to
the Jacobi sets where x connects the two neutrons, or the core and one of the neutrons, respectively. The sixth row gives
the maximum value of the hypermomentum K used for each of these components. The last row gives the contribution of
the component to the total norm of the (complex rotated) wave function. Only those components contributing more than
1% are given

lx 0 1 1 2 0 0 1 1 1 1
ly 0 1 1 2 0 0 1 1 1 1
L 0 1 1 0 0 0 0 0 1 1
sx 0 1 1 0 0 1 0 1 0 1
S 0.5 0.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 1.5
Kmax 180 82 102 84 80 100 182 182 82 82
W ( 5H) 92.2 2.0 3.7 1.9 2.6 8.3 21.0 62.4 1.6 3.8

Table 4
The same as Table 3 for the 3/2+ state of 5H

lx 0 1 1 2 1 1 1 1 1 2
ly 2 1 1 0 1 1 1 1 1 0
L 2 1 1 2 1 1 1 2 2 2
sx 0 1 1 0 0 1 1 0 1 1
S 0.5 0.5 1.5 0.5 0.5 0.5 1.5 0.5 0.5 0.5
Kmax 182 82 122 122 82 82 122 122 182 82
W (5H) 43.8 5.0 20.1 30.6 3.8 1.3 19.6 18.2 52.6 4.0

Table 5
The same as Table 3 for the 5/2+ state of 5H

lx 0 1 2 1 1 1 2 2
ly 2 1 0 1 1 1 0 0
L 2 1 2 1 2 2 2 2
sx 0 1 0 1 0 1 0 1
S 0.5 1.5 0.5 1.5 0.5 0.5 0.5 0.5
Kmax 182 82 122 82 122 182 82 82
W (5H) 55.1 13.1 31.4 12.7 19.9 60.1 1.8 5.2

In Fig. 4 we show the three most contributing eigenvalues λ(ρ) for each of the 1/2+, 3/2+
and 5/2+ states in 5H. For the sake of clarity, we only show the real parts, which for short-range
interactions must reproduce the hyperspherical spectrum (K(K + 4)) at ρ = 0 and ρ = ∞ [23].
The most attractive pocket appears for the 1/2+ state, which therefore is expected to be the
ground state, in agreement with the experimental results. This is seen more clearly in the insets,
which show the real parts of the effective radial potentials, Veff = (λ + 15/4)/ρ2. Together with
the attractive pockets one can observe a series of potential barriers that might be able to hold
three-body resonances.

4.2. Energies and wave functions

As a final step, we now solve the coupled set of differential radial equations for states with
1/2+, 3/2+, and 5/2+. Five adiabatic effective potentials are included in the calculations. Res-
onances are then found searching for radial solutions behaving asymptotically as the outgoing
waves specified in Eq. (4). To impose this analytically known asymptotic behaviour is not strictly
necessary. The complex rotated resonance wave functions are actually falling off exponentially,
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Fig. 4. Real parts of the three lowest angular eigenvalues λ(ρ) (external plots) and the effective hyperradial potentials
Veff = h̄2(λ + 15/4)/(2mρ2) (insets) for the 1/2+ , 3/2+ and 5/2+ states of 5H as a function of ρ.

and a simple box boundary condition would then be sufficient to obtain the correct solutions.
However this boundary condition is numerically much more delicate, since the effective poten-
tials have to be computed accurately at much larger distances than those required by the analytic
boundary condition.

We estimate the range, b3b , of the effective Gaussian three-body potential, V3b = S3be
−ρ2/b2

3b ,
to be around 3.0 fm which is the hyperradius corresponding to a configuration where all the three
particles are touching each other. In Table 6 we give the corresponding computed resonances in
5H for different strengths varying around the value −30 MeV which places the lowest resonance
energy close to the measured values. The main effect of decreasing the three-body attraction is
to increase the width of the resonances, while the energies only increase moderately. A further
decrease of attraction produce 3/2+ and 5/2+ resonances too broad to appear for the scaling
angles used in the calculation.

Similar effects are observed when the range of the three-body potential is changed. The results
shown in Table 7 correspond to a three-body force with a fixed strength S3b = −30 MeV and
four different values of the three-body range b3b . Again the main effects are observed in the
width of the resonances. A decrease of b3b gives rise to larger resonance energies and widths,
but a change of 0.2 fm in the range modifies the energies by at most 0.27 MeV, while the widths
change between 0.7 MeV and 1 MeV for all cases. Smaller values of b3b produce 3/2+ and 5/2+
resonances too broad to be obtained with the complex scaling angles used in the calculation.
From Tables 6 and 7 we conclude that the ground state of 5H is a 1/2+ resonance. If the energy
is adjusted to be around 1.6 MeV, the two excited states, 3/2+ and 5/2+, appear about 1.65 MeV
and 1.25 MeV higher, respectively.

To test the role played by the d-waves, we show in the last column of Table 6 the energies
and widths of the resonances when the two-body d-wave potentials vanish. A strength S3b =
−30 MeV has been used for the three-body force in this case. Inclusion of the d-wave interactions
only marginally changes the structures. The variation in the energies and widths is certainly
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Table 6
Resonance energies and widths (ER,ΓR), in MeV, for the 1/2+ , 3/2+ , and 5/2+ states in 5H for the Gaussian three-
body effective potential with the range b3b = 3 fm and three different strengths S3b given in MeV in the first row. The
last column shows the results with S3b = −30 MeV when only s- and p-waves are included

S3b −25 −30 −35 −30(s,p)

1/2+ (1.69, 1.95) (1.57, 1.53) (1.40, 1.11) (1.55, 1.35)
3/2+ (3.24, 4.31) (3.25, 3.89) (3.23, 3.44) (3.05, 3.46)
5/2+ (2.85, 3.13) (2.82, 2.51) (2.68, 1.83) (2.65, 2.00)
5/2+ (3.70, 4.31)

Table 7
Resonance energies and widths (ER,ΓR), in MeV, for the 1/2+ , 3/2+ , and 5/2+ states in 5H for the Gaussian three-
body effective potential with strength S3b = −30 MeV and four different ranges b3b given in fm in the first row

b3b 2.95 3.00 3.05 3.15

1/2+ (1.63, 1.70) (1.57, 1.53) (1.51, 1.37) (1.36, 1.05)
3/2+ (3.26, 4.09) (3.25, 3.89) (3.23, 3.69) (3.17, 3.26)
5/2+ (2.86, 2.75) (2.82, 2.51) (2.76, 2.26) (2.62, 1.79)

Fig. 5. Real parts of the rotated radial wave functions for the 1/2+ state (left), the 3/2+ state (middle) and the 5/2+
state (right) in 5H with a rotation angle θ . We show the computed wave functions that contribute most (thick lines) and

the asymptotic functions
√

ρH
(1)
K+2(|κ|ρei(θ−θR)) (thin lines), see Eq. (4).

visible, and especially the widths increase by including the d-waves. In fact, when the d-wave
interactions are zero a second 5/2+ resonance appears at about 3.70 MeV. With d-waves this
resonance is too broad to be obtained with the scaling angle θ = 0.30 rads used in this calculation.

For the three resonances, the radial wave functions associated with the three lowest effective
potentials given in Fig. 4 are shown by the thick curves in Fig. 5. The wave functions have been
obtained with a three-body force with Gaussian parameters S3b = −30 MeV and b3b = 3.0 fm.
To keep the figure cleaner only the real parts are shown. As expected, after complex scaling,
the resonance radial wave functions are approaching zero according to the asymptotics given in
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Eq. (4), which is shown in the figure by the thin curves. In all cases the computed wave functions
have reached the expected asymptotic behavior already at about 40 fm.

Since the complex rotated three-body wave functions can be normalized, we compute the
relative weights of the different components given in the last rows of Tables 3, 4, and 5. When
the three-body wave functions are written in the first Jacobi set (x between the two neutrons)
the 1/2+ ground state is clearly dominated by the �x = �y = L = 0 component (more than
90% of the norm), while the sd interferences (L = 2) are the dominating components for the
excited 3/2+ and 5/2+ states (75% and 85% of the norm, respectively). In the second and third
Jacobi sets (x from 3H to one of the neutrons) the �x = �y = 1 components dominate in all the
three cases, whereas the coupling to the total L must produce the same distribution in all Jacobi
systems, i.e. L = 0 and L = 2 for ground and excited states, respectively. Also the total spin S is
conserved in transformations between Jacobi systems.

4.3. Comparison with other computed and measured results

We compare our results in the first row of Table 8 to different theoretical an experimental val-
ues extracted from the literature. The results given in the third row correspond to the resonances
obtained by following the same method as described in this work, but using the 3H-neutron in-
teraction given in Ref. [16]. This potential is used in [12] to obtain the 5H-resonances (fourth
row) after solving the Schrödinger equation by means of a hyperspherical harmonics expansion
of the wave function. It is not clear whether d-wave interactions are included in the calculations
in Ref. [12]. For this reason the results in the second and third rows of Table 8 omitted d-waves.
We then observe that the results given in the third and fourth rows are distinctly different, even if
similar two-body potentials are used in both cases. This is due to the fact that in [12] resonances
are determined from the observed rapid variations in the phase shifts as a function of the energy,
while we obtain them as poles of the S-matrix. The definition as S-matrix poles usually gives

Table 8
Theoretical and experimental energies (ER ) and widths (ΓR ) for the 1/2+ , 3/2+ and 5/2+ resonances in 5H. The results
correspond to the references quoted in the first column. The first, second and third rows show our results, respectively for
our full interaction (with S3b = −30 MeV b3b = 3 fm), when the d-wave interactions are zero, and with the 3H-neutron
potential given in [16]

(ER,ΓR) (MeV)

Jπ 1/2+ 3/2+ 5/2+
5H (full) (1.57, 1.53) (3.25, 3.89) (2.82, 2.51)
5H (d = 0) (1.55, 1.35) (3.05, 3.46) (2.65, 2.00)

(3.70, 4.31)
Theor. [16] (2.26, 2.93) (4.41, 6.22) (2.58, 1.78)

(3.81, 4.70)
Theor. [12] (2.5–3.0, 3–4) (6.4–6.9, 8) (4.6–5.0, 5)
Theor. [13] (3.0–3.2, 1–4) (–, –) (–, –)
Theor. [15] (1.59, 2.48) (3.0, 4.8) (2.9, 4.1)
Exp. [3] (1.7 ± 0.3, 1.9 ± 0.4) (–, –) (–, –)
Exp. [8] (1.8 ± 0.1, < 0.5) (–, –) (2.7 ± 0.1, < 0.5)
Exp. [4] (1.8, 1.3) (> 2.5, –) (> 2.5, –)
Exp. [5] (2, 2.5) (> 2.5, –) (> 2.5, –)
Exp. [6] (3, 6) (–, –) (–, –)
Exp. [9] (5.5 ± 0.2, 5.4 ± 0.6) (> 10, > 2) (> 10, > 2)
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lower energies and smaller widths. In any case the potential used in [12] is producing a ground
state at an energy significantly higher than with the potential used in this work, and in fact not
very far from the energy of the 5/2+ state. We emphasize that the potential in [16] has the form
in Eq. (5), that we have found to be inconsistent with the available 3H-neutron and 3He-proton
experimental data.

In [13] also a phase shift analysis is employed to get the three-body resonances, and again the
energy obtained for the ground state is roughly a factor of two higher than obtained in the present
work. It is remarkable that our energies agree very well with those of [15], where a microscopic
model combined with complex scaling is used to obtain resonances as poles of the S-matrix.
However, our widths are systematically smaller than those of [15]. This has to be attributed to
either different interactions or contributions from the triton–core. Among the different available
experimental data, only [9] clearly disagree with our results. On the other hand, for most of the
cases, the agreement between our theoretical energies and widths and the experimental values is
quite good [3–5,8].

5. Energy distributions

Recently we presented a method to compute the energy distributions of particles emerging
from a three-body decay of a many-body resonance [37,38]. The method exploits the fact that
hyperspherical harmonics transform into themselves after Fourier transformation. Therefore the
kinetic energy distribution of the fragments after decay of the resonance is, except for a phase-
space factor, obtained as the absolute square of the total wave function in coordinate space for
a large value of the hyperradius, but where the five hyperangles are interpreted as in momentum
space [38].

After integration over the four hyperangles describing the directions of the two Jacobi mo-
menta, kx and ky , conjugate to x and y, the probability distribution as function of k2

y (k2
y ∝

cos2 α, where α is the fifth momentum hyperangle) is given by

P
(
k2
y

) ∝ P
(
cos2 α

) ∝ sin(2α)

∫
dΩx dΩy

∣∣Ψ (ρmax, α,Ωx,Ωy)
∣∣2

, (7)

where ρmax refers to a large value of the hyperradius where the asymptotic behaviour of the
three-body wave function has been reached. Except for mass factors, ky is the momentum of the
third particle relative to the three-body center of mass. Therefore the kinetic energy of the third
particle is proportional to k2

y (or to cos2 α), and its energy distribution is then as given in Eq. (7).

In particular, cos2 α gives the energy of the particle relative to its maximum possible energy in
the decay process.

This procedure has formally the shortcoming that the hyperradius ρmax in principle should be
asymptotically large (since the detection takes place at large distance), and the larger the value
of ρmax the larger the size of the required basis for the hyperspherical expansion. For short-
range potentials the asymptotic limit is known to be the hyperspherical harmonics, reflected
in the corresponding hyperharmonic spectrum of the Hamiltonian without interaction. It was
shown in previous reports [38] that the correct asymptotic limit is reached already at intermediate
distances where the basis size is still manageable in the numerical calculations. An increase of
ρmax requires a larger basis which then would reproduce the energy distribution found at the
smaller distance with the smaller basis size. This optimum region of hyperradii is determined as
the region where the observable is independent of ρmax-variations; further increase of ρmax is not
productive. Clearly this is a satisfactory procedure for short-range interactions.
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Fig. 6. Energy distributions of the 3H-core and the neutrons after decay of the 1/2+ (left), 3/2+ (center), and 5/2+
(right) three-body resonances in 5H. The convergence of the results is illustrated by the different (almost overlapping)
curves, which correspond to calculations with ρmax values of 65 fm (thin solid), 75 fm (thick solid), and 85 fm (dashed).

Following this procedure we have computed the energy distributions of the fragments after
decay of the 5H-resonances. The results for the 1/2+, 3/2+, and 5/2+ states are shown in the
left, central, and right parts of Fig. 6. Neutron and triton energy distributions are shown as a
function of the corresponding particle energy relative to its maximum energy. Convergence has
been tested by comparing calculations for three different values of ρmax (65 fm, 75 fm, and
85 fm) in Eq. (7). As seen in the figure all three calculations provide almost overlapping curves.

For the 1/2+ resonance (left part of Fig. 6), the neutron energy distribution has an irregular
broad peak at intermediate energies. The triton energy distribution has one peak very close to the
maximum energy and a broader peak at low energies. This pattern corresponds to two types of
decay mechanisms. The first is emission of 3H followed by decay of an intermediate two-neutron
structure. This sequential decay amounts to a two-body process where the 3H-core receives max-
imum energy and the two neutrons move together in the opposite direction relative to the core.
In the subsequent decay each neutron then must share the remaining energy which leads to an
intermediate energy between zero and the maximum value. The existence of a low-lying neutron–
neutron virtual s-state appears to be decisive in the decay process, even if a stable intermediate
configuration of two neutrons does not exist, neither as bound states nor as resonances.

The second decay structure with the small triton energy corresponds to emission of two neu-
trons in opposite directions while the triton essentially remains at rest in the center. The two
neutrons then share the available energy leading to intermediate energies for each of them. Com-
bining these two mechanisms produces the computed irregular broad single-neutron peak.

For the 3/2+ and 5/2+ states (central and right parts of Fig. 6) similar distributions are found
for the neutrons except that they tend to be slightly more narrow. In contrast the triton energy
distribution only has the high energy peak corresponding to the sequential decay of triton emis-
sion. The low-energy triton peak is not present because it is unfavorable for two neutrons to be
far apart with a d-wave describing their center of mass motion.
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Fig. 7. Contribution from the three adiabatic potentials in Fig. 4 to the triton energy distributions after decay of the 1/2+
(left), 3/2+ (center), and 5/2+ (right) three-body resonances in 5H. The thick solid curve gives the total distributions,
while the thin solid, thin dashed and thin dot-dashed curves give the individual contributions from the first, second, and
third adiabatic potentials, respectively. In the right part of the figure the contribution from the third adiabatic potential is
not visible.

In Fig. 7 we show, for the three computed 5H resonances, the individual contributions to the
triton energy distributions from the three adiabatic potentials shown in Fig. 4. In the 5/2+ case
the contribution from the third potential is not visible. The results in the figure correspond to
ρmax = 75 fm. In all the three cases the main features of the total distribution (thick solid line)
are produced by a single adiabatic potential (the second one for 1/2+, and the first one for 3/2+
and 5/2+). In particular these potentials are responsible for the two peaks at high and small
triton energies in the 1/2+ case (left), and for the high energy peaks in the 3/2+ (center) and
5/2+ cases (right).

In the three cases, at ρ = 75 fm, the angular eigenfunctions associated to this adiabatic po-
tential is almost 100% given by the components in the second columns of Tables 3, 4, and 5,
respectively. These components correspond to a relative s-wave between the two neutrons. How-
ever, while in the 1/2+ case the triton is also in a relative s-wave relative to the two-neutron
center of mass, in the 3/2+ and 5/2+ cases the triton is in a relative d-wave. This fact inhibits the
appearance of the low energy peak in the triton energy distribution in the 3/2+ and 5/2+ cases.
For the next most relevant adiabatic potential (the first one for 1/2+, and the second one for
3/2+ and 5/2+), the contribution comes also from the {�x = �y = L = 0, S = 1/2} component
in the 1/2+ case, but for the 3/2+ and 5/2+ states it comes from the {�x = �y = L = 1, S = 3/2}
component (x between the neutrons).

6. Summary and conclusions

The hyperspheric adiabatic expansion method is used to investigate 5H in a three-body model
where the 3H-core is surrounded by two neutrons. Three-body resonances are computed as poles
of the S-matrix. We use the complex scaling method, which provides resonances as solutions of
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the Faddeev equations with complex energy and wave functions falling off exponentially at large
distances.

The two-body 3H-neutron interaction is built with central, spin–orbit, and spin–spin terms,
where each of the radial form factors is a sum of two Gaussians. The strengths and ranges of
the Gaussians are adjusted to fit the available 3He-proton experimental data. These data are more
reliable and abundant than the 3H-neutron data, and should lead to an appropriate 3H-neutron
potential simply by switching off the Coulomb interaction. We have found that the experimental
3He-proton phase shifts can be reproduced only when the spin operators in the two-body poten-
tial are such that the mean field angular momentum quantum numbers are conserved quantum
numbers for the valence nucleon. Use of such proper spin operators appears to be essential in a
reliable description.

The ground state of 5H is found to have spin and parity 1/2+, and for an energy of around
1.6 MeV the width is about 1.5 MeV. Two excited states are then found at 2.8 MeV and 3.2 MeV,
with spin and parity 5/2+ and 3/2+, respectively. Thus these states are broad and overlapping.
The effective three-body force has a range corresponding to three touching particles. Then it
modifies mainly the width of the resonances, keeping the energies rather stable. The agreement
of these results with most of the available experimental data is remarkable.

For all the three states the dominating components correspond to a relative s-wave between
the two neutrons. In the ground state this s-wave combines with another relative s-wave between
the core and the center of mass of the two neutrons, while for the excited states it combines with
a d-wave. In the second and third Jacobi sets the dominating components correspond to relative
p-waves between the core and one of the neutrons as well as between the second neutron and
the center of mass of 4H. Finally, we have found that the 1/2+ resonance decays with roughly
equal probabilities through two-body sequential decay by 3H-emission and three-body decay by
emission of the two neutrons in opposite directions. The 3/2+ and 5/2+ resonances only decay
by triton emission. Both neutron and triton energy distributions are needed simultaneously to
interpret these decay modes.

In conclusion, the three-body model describes efficiently the cluster structure of 5H as two
neutrons and a triton. The resonances found are consistent with the experimental data. To get a
good agreement with the experimental values in both 5H and 4H, the two-body neutron–triton
interaction must have the spin dependence consistent with the mean field angular momentum
quantum numbers of the triton. The decay leads to relatively broad energy distributions domi-
nated by triton emission.
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