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Abstract

We compute the energy distributions of charged particles and neutrons emerging from the three-body
decay of the 2+-resonances of 6Be and 6Li with isospin 1. These states are isobaric analogue states to
the 2+-resonance in 6He. We use hyperspherical adiabatic expansion combined with the complex scal-
ing method. We first investigate the adiabatic potentials and the related eigenfunctions where each has its
characteristic contribution to different energy distributions. The microscopic origin of the related decay
mechanisms is exhibited. The Coulomb interaction in general broadens the distributions due to long-range
couplings. The method is rather efficient in the present cases. Numerically stable distributions are found
at intermediate hyperradii where the basis size is sufficient to describe the asymptotic behavior. Different
decay mechanisms contribute with sequential α-emission as dominating but also with substantial fractions
of direct decay. Computations are consistent with available experiments.
 2006 Elsevier B.V. All rights reserved.

PACS: 21.45.+v; 31.15.Ja; 25.70.Ef

1. Introduction

Resonances decaying into three particles can be viewed as a direct generalization of α-particle
emission. Three observables characterize these processes, i.e. total energy, partial decay width
and energy distributions of the three particles appearing in the final state. The resonance energy
is in general determined by many particles interacting in a possibly complicated structure which
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can differ very much from a three-body state formed by the three particles in the final state.
The partial decay width is essentially determined by the effective barrier appearing at intermedi-
ate distances in the three-body fragmentation of the final state particles. The decay mechanisms
are closely related to the structures of the three-body resonances, and in particular to changes
from small to large distances. These properties were discussed in two preceding papers [1,2].

The energy distributions of three short-range interacting particles in the final state were dis-
cussed in a subsequent paper [3]. These observables reflect the large-distance properties of the
resonance wave function. Computations are numerically demanding because the resonance con-
ditions imply exponentially increasing wave functions. This is circumvented by the complex scal-
ing method where the coordinates are “rotated” by multiplication with a complex phase factor [4].
The large-distance asymptotic behavior then turns into exponentially decreasing functions, but
now the energy distributions are determined by ratios of these exponentially small tails [3]. For
short-range interactions the asymptotics is normally reached at moderate distances but narrow
two-body resonances or attractive s-waves may significantly increase this convergence distance.
Knowledge of these intermediate structures may be used to alleviate the numerical demands.

Another type of problem arises when more than one of the three particles is charged and the
long-range Coulomb interaction has to be treated. Most of the experimental activities deal with
such systems [5,6,8–19]. Energy distributions are measured with high accuracy in kinematically
complete experiments. The purpose of the present paper is therefore to extend the theoretical
descriptions to obtain reliable results with both short and long-range interactions. We shall use
the hyperspherical expansion method combined with complex scaling [20,21] and assume that
formation and decay of the resonances are independent processes. This method was used in
[4,22] to compute the energies and widths of the 2+-resonances in 6He (α + n + n), 6Li (α +
n + p) and 6Be (α + p + p). We shall use these cases as illustrative examples of results for
energy distributions of fragments after three-body decay. Resonance energies and widths are
also considered in several other previous publications [23–27], however no energy distributions
of fragments have been reported so far. Two-proton radioactivity for heavier systems has been
considered in [28].

The R-matrix theory based on decomposition into two-body subsystems is shown in [26]
to lack direct three-body decay to reproduce the correct widths. The most recent calculation
in [27] illustrates the difficulties inherent in any hyperspherical harmonic expansion method.
The general nature of these problems call for a comparison with the present method [4,22] which
differs decisively by the use of the three Faddeev components in the wave function.

In [27] hyperradii up to 1000 fm is needed because two particles can be close while the third
one is far away. An extrapolation procedure is then used to circumvent the problem. The need
for these large hyperradii is a signal of the frequently occurring sequential decay mode. Large
values of the maximum hyperspherical quantum number (hypermomentum) Kmax is necessary
with the hyperharmonic expansion. Both problems can be handled with inclusion of Faddeev
components and individual treatment of the different partial waves within each of these compo-
nents. Also explicit inclusion of the asymptotic behavior for direct or sequential decay may be
advantageous [3]. Then moderate hyperradii are sufficient and large Kmax only needed for a few
specific partial waves.

Another feature is the underbinding obtained by use of only two-body interactions although
they reproduce all (low-energy) two-body scattering data. In [27] this is handled by adding a
three-body interaction behaving as ρ−3 for large hyperradii. This is the same large-distance be-
havior as resulting from the two-body interactions and therefore only reflecting a correction to
these, either due to direct inaccuracy or due to lack of freedom in a limited basis. In this sense this
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is not a three-body interaction constructed to account for effects beyond the two-body level, i.e.
all three particles must participate and without Coulomb interaction only a short-range behavior
seems to be acceptable. This idea was first formulated and introduced in [29]. An alternative cor-
rection used in [27] is scaling of the nucleon-core interaction by a few per cent. This obviously
has the effect of reproducing the selected three-body properties but at the same time the measured
two-body continuum data are no longer reproduced. This is an obvious problem in computations
of three-body properties arising from sequential decay where one pair of particles remain close
and therefore sensitive to the two-body interaction.

A third problem is related to the treatment of couplings due to the Coulomb interaction.
Formally the hyperradial ρ−1-dependence is the same for diagonal and non-diagonal terms.
The couplings extent to very large distances which only can be handled with an ever increasing
basis reflected in the need for very large values of Kmax. A compromise must be reached with
convergence before the basis size becomes too large. This is possible with Faddeev components
[3] but impossible, or at least very difficult, with only one component.

In the present paper we use the same method and the same interaction parameters [4,22] to
compute resonance energies, widths and energy distributions. Previously also ground state prop-
erties were investigated. Computations of many observables are the only severe success criteria
for the model, because limitations to a few data points can too easily be reproduced by smaller
individual adjustments of various model parameters. The paper is organized as follows. After the
introduction in Section 1, we briefly sketch in Section 2 the theoretical framework including the
numerical information from previous computations of the 2+-resonances in 6He. In Sections 3
and 4 we discuss the angular potentials and the resonance wave functions obtained from realis-
tic computations of the decay of the analogue 2+-resonances in 6Li and 6Be. In Section 5 we
discuss the computed energy distributions. Finally, Section 6 contains a brief summary and the
conclusions.

2. Theoretical formulation

We first sketch the general theoretical framework which previously was demonstrated to work
for short-range interactions [3]. Then we specify the details needed for the new cases with the
Coulomb interaction.

2.1. Computational procedure

The three-body resonance wave function Ψ is calculated in coordinate space after complex
scaling by a finite angle θ . In the adiabatic hyperspherical expansion the wave function is ex-
panded in terms of a complete set of angular functions {Φn(ρ,Ω)},

Ψ (x,y) =
∑
n

fn(ρ)Φn(ρ,Ω), (1)

where (x,y) are the mass scaled Jacobi coordinates in one of the three possible sets and (ρ,Ω)
are the hyperradius and the five hyperangles associated to x and y. The angular functions are
expanded in terms of the hyperspherical harmonics and they are obtained as the eigenfunctions of
the angular part of the Faddeev equations. The corresponding radial coefficients (radial functions)
fn(ρ) are obtained from a coupled set of radial equations where the eigenvalues of the angular
part enter as effective adiabatic potentials [20].

When the complex scaling angle is larger than the argument of a given resonance, the corre-
sponding radial coefficients in the adiabatic expansion decrease exponentially as functions of the
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hyperradius [4]. For short-range potentials the asymptotic pre-exponential factors are constants.
The long-range Coulomb interaction modifies the pre-exponential factors but leaves intact the
dominating exponential decay. The functions which asymptotically vanish exponentially can be
easily found numerically by solving the radial equations with e.g. a simple box boundary con-
dition at larger distances. In fact exponentially vanishing functions are insensitive to the precise
formulation of the boundary condition, be it simply zero at some box length or matching to a
decaying exponent. Thus the radial functions fn(ρ) can be calculated numerically at a given ρ

with high precision even with approximate boundary conditions, e.g. box boundary, simply by
moving the boundary to distances larger than the required ρ by several decay-lengths.

We now assume that when particles reach some large distance ρmax the Coulomb interaction
further on can be neglected. In other words we cut off the Coulomb interaction at this distance.
The analytically unknown Coulombic pre-exponential factors become constants after the cut-off
and we effectively get the asymptotics for short-range potentials where the radial functions are
(complex scaled) free radial waves.

Hyperspherical harmonics with free radial waves transform into themselves after Fourier
transformation and the kinetic energy distribution of the fragments after decay of the resonance
is therefore, except for a phase-space factor, obtained as the absolute square of the total wave
function in coordinate space for the large value ρmax of the hyperradius, but where the five hy-
perangles are interpreted as in momentum space [3]. After integration over the four hyperangles
describing the directions of the two Jacobi momenta, kx and ky , conjugate to x and y, the proba-
bility distribution as function of k2

y ∝ cos2 α, where α is the fifth momentum hyperangle, is given
by

P
(
k2
y

) ∝ P
(
cos2 α

) ∝ sin(2α)

∫
dΩx dΩy

∣∣Ψ (ρmax, α,Ωx,Ωy)
∣∣2

. (2)

In the same way as y is proportional to cosα, ky is also proportional to cosα, but in momentum
space. Except for some mass factors ky is the momentum of the third particle from the three-
body center of mass. Therefore the kinetic energy of the third particle is proportional to k2

y (or

to cos2 α), and the energy distribution then is as given in Eq. (2). In particular, cos2 α gives the
energy of the particle relative to its maximum possible energy in the decay process.

We shall check numerically that the energy distribution of fragments we calculate is insensi-
tive to ρmax by calculating the distribution for different values of ρmax where we shall refer to
ρmax simply as ρ.

This procedure has formally the shortcoming that the hyperradius in Eq. (2) in principle should
be asymptotically large (since the detection takes place at large distance), and the larger values
of ρ the larger basis size is required for the hyperspherical expansion. For short-range potentials
the asymptotic limit is known to be the hyperspherical harmonics reflected in the corresponding
hyperharmonic spectrum of the Hamiltonian without interaction. It was shown in previous reports
[3] that the correct asymptotic limit is reached already at intermediate distances where the basis
size is still manageable in the numerical calculations. An increase of ρ then requires a larger
basis which then would reproduce the energy distribution found at the smaller distance with
the smaller basis size. This optimum region of hyperradii is determined as the region where the
observable is independent of ρ-variations; further increase of ρ is not productive. Clearly this is
a satisfactory procedure for short-range interactions.

An extension to include the long-range Coulomb interaction is not obvious. The Coulomb
interaction couples different adiabatic potentials to very large hyperradii by amounts similar to
corresponding diagonal contributions. This is not a problem as long as the basis size is large
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enough to describe the resulting variation in the radial wave functions. However, with couplings
extending to infinity the required basis size would at some point become too large to be handled
numerically. The problem to find numerically a compromise between the size of the basis and the
maximum value of ρ is similar to that for short-range interactions where the solution was to stop
at intermediate values of ρ and look for a stable region with energy distributions independent of
ρ. This is a practical approach which only can be tested by numerical investigations. A similar
method has been tried in atomic physics [30] where extrapolation to large distances in addition
was employed.

This procedure was also applied to the nuclear 2+-resonance in 6He where only short-range
interactions enter [3]. We found that the resonance structure changed substantially from small
to large distances. The α-neutron two-body p3/2-resonance dominates at small distance and the
neutron–neutron s-wave at large distance. The implication for the energy distributions is that
the maximum α-particle energy is preferred as correspondingly intermediate neutron energies.
The next step is to include the Coulomb interaction and study the effects.

2.2. Details of the calculations

The 2+ analogue states in 6Li and 6Be are, by definition, of the same structure as the 2+-
resonance in 6He, which recently was investigated in details [3]. The large-distance behavior seen
in the energy distributions should then reflect the influence of the Coulomb interaction. Thus we
know the resonance structure, the decay mechanism and the energy distributions for this similar
6He structure deviating from 6Li and 6Be only due to the absence of Coulomb interactions.
These analogue states are then ideally suited for studying the influence of the Coulomb potential.
The nuclear two-body potentials used in the calculations are specified in [31], and the three-body
interactions are from [22].

The calculations have been performed including relative orbital angular momenta between
the three possible pairs of particles up to � = 11, with a maximum value of the hypermomentum
K equal to 20 for all the components except for those found to dominate the three-body struc-
ture. These large components are described by Kmax-values individually adjusted to provide
the necessary accuracy. They are specified in Table 1. For 6Be and 6He only nucleon–nucleon
isospin equal to 1 is allowed or equivalently �x + sx has to be even for components in the first
Jacobi set. However, for 6Li an isospin 0 neutron–proton admixture into the isobaric analogue
state is allowed due to the isospin breaking Coulomb interaction. This interaction has been taken
from [32].

The scaling angles used in the calculations are 0.10 rad for 6Li and 0.15 rad for 6Be. They
are chosen to exceed the corresponding angles for the resonances by a sufficient amount to
provide unique bound state conditions at relatively small distances. The experimental ener-
gies and widths (ER,Γ ) for the analogue 2+ resonances in 6Li and 6Be are (1.67,0.54) MeV
and (3.04,1.16) MeV, respectively [33]. The energies computed with the two short-range
interactions supplemented by the appropriate Coulomb potentials are (1.92,0.87) MeV and
(3.10,1.89) MeV. The computed 6He state is bound by 0.15 MeV less than the measured value.
Thus attractive three-body interactions are necessary for fine tuning. If we choose a Gaussian
shape with a range of 3 fm in hyperradius and then adjust the strength to reproduce the energy
positions we get (1.64,0.53) MeV for 6Li and (3.02,1.65) MeV for 6Be, respectively the same
and about 50% too large compared to the experimental widths [22].
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Table 1
Components included in the three-body calculations have Kmax = 20 except those specified here. The left part refers to
the components in the first Jacobi set (x connecting the two nucleons), and the right part to the ones in the second and
third Jacobi sets (x connecting the alpha-particle and one of the nucleons)

1st Jacobi set 2nd and 3rd Jacobi sets

�x �y L sx sy Kmax �x �y L sx sy Kmax

0 2 2 0 0 180 0 2 2 1/2 0 44
2 0 2 0 0 180 0 2 2 1/2 1 44
1 1 1 1 1 180 2 0 2 1/2 0 70
1 1 2 1 1 64 2 0 2 1/2 1 44
2 2 2 0 0 90 1 1 1 1/2 1 240
1 3 2 1 1 42 1 1 2 1/2 0 240
3 1 2 1 1 42 1 1 2 1/2 1 44
2 4 2 0 0 54 2 2 1 1/2 1 32
4 2 2 0 0 54 2 2 2 1/2 0 50
4 4 2 0 0 68 2 2 2 1/2 1 42

1 3 2 1/2 0 42
1 3 2 1/2 1 42

3. Angular eigenvalues and eigenfunctions

The details of the calculated structure of the 2+ three-body wave functions are given in this
and the following section. As shown in Eq. (1), the adiabatic expansion separates the radial and
the angular coordinates. To obtain an accurate three-body wave function the crucial quantities
are then the adiabatic potentials and their related angular wave functions, i.e. the eigenvalues and
eigenfunctions of the angular part of the Faddeev equations.

3.1. Adiabatic potentials

The numerical solutions first provide the angular eigenvalues λn as functions of the hyper-
radius ρ. The adiabatic potentials Veff(ρ) are then essentially obtained by dividing with ρ2 and
adding the centrifugal terms proportional to ρ−2 [20]:

Veff(ρ) = h̄2

2m

λn(ρ) + 15/4

ρ2
. (3)

The results are shown in Figs. 1 and 2 for the 2+-resonances in 6Be and 6Li, respectively.
The usual features from only short-range interactions are clearly visible for the potentials, i.e.
an attractive region at small distance, barriers for the lowest potentials at intermediate distances,
and the decrease at large distance towards zero. Many levels are close-lying or crossing each
other at relatively small distances. For 6Li the lowest potential corresponds at large distances
essentially to a deuteron in the ground state and a non-interacting α-particle in a relative d-wave.
This configuration has symmetric neutron–proton relative wave function.
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Fig. 1. Real parts of the lowest 10 angular eigenvalues (left) and their corresponding adiabatic potentials (right) as
functions of ρ for the 2+-resonance in 6Be. The scaling angle is θ = 0.15. The dashed line is the estimated behavior at
large distances for the lowest angular eigenvalue according to Eq. (6). They are numbered from below at maximum ρ.

Fig. 2. The same as Fig. 1 for the 2+-resonance in 6Li. The scaling angle is 0.10. The states are numbered to correspond
to Fig. 1, i.e. the lowest bound deuteron state can naturally be labeled by 0. The thick dashed line in the left part is the
estimate from Eq. (6).

The detailed behavior is exhibited by the large-distance linear dependence of the angular
eigenvalues. This simply reflects ρ2 multiplied on the ρ−1 form of the Coulomb potential VC

given by

VC =
∑
j<k

ZjZke
2

rjk

=
∑
j<k

µi

ZjZke
2

ρ sinαi

, µi ≡
√

mjmk

(mj + mk)m
, (4)

where eZj and mj are the charge and mass of particle j , and |xi | = ρ sinαi = µirjk is the mass
scaled distance between particles j and k. The sizes of the slopes of the angular eigenvalues in
Figs. 1 and 2 can then be estimated by use of perturbation theory and the free wave functions,
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i.e. by the expectation value of the Coulomb operator for the hyperspherical harmonics. These
kinetic energy eigenfunctions are characterized by a hyperspherical quantum number K and a
set of angular momentum quantum numbers (�x, �y). Each term in Eq. (4) is expressed in one
set of Jacobi coordinates, and the slopes of λn are therefore easily estimated by

∂λ

∂ρ
= 2m

h̄2
µiZjZke

2

∫ π/2
0 sin2�x+1 α cos2�y+2 α dα∫ π/2
0 sin2�x+2 α cos2�y+2 α dα

= 2m

h̄2
µiZjZke

2 2

π

(2�x)!!(2�x + 2�y + 4)!!
(2�x + 1)!!(2�x + 2�y + 3)!!

= 2m

h̄2
µiZjZke

2 24�x+2�y+5

π

(�x !(�x + �y + 2)!)2

(2�x + 1)!(2�x + 2�y + 4)! , (5)

where we assumed zero nodes in the Jacobi polynomial (then a constant) related to the α-
coordinate. We use the notation !! for the product of every other integer number down to 1 or
2. The (�x, �y) components transform into different linear combinations of angular momenta in
another set of Jacobi coordinates. The (�x, �y) = (0,0) wave functions transform only into itself
and we get in this case [34]

∂λ

∂ρ
= 2m

h̄2

16

3π

∑
j<k

µiZjZke
2, (6)

which is about 0.50 fm−1 for 6Be and 0.21 fm−1 for 6Li roughly in agreement with Figs. 1 and 2.
The angular momentum dependence can only be estimated easily for each term. However, for

6Li there is only one such term, which also is the largest of the (two identical) 6Be-terms, arising
from the two α-proton interactions. From Stirling’s formula we immediately derive from Eq. (5)
that one of the Coulomb terms changes from the value in Eq. (6) to

∂λ

∂ρ
≈ 2m

h̄2
µiZjZke

22

√
�y

π
(7)

in the limit when �y � 1 and �x remains zero. This term increases for 6Li from the value
0.21 fm−1 for (�x, �y) = (0,0) as 0.140

√
�y fm−1 for �x = 0 and �y � 1. For �x � 1, and

independent of �y , the behavior derived from Eq. (5) is

∂λ

∂ρ
≈ 2m

h̄2
µiZjZke

2
√

1 + �y/�x, (8)

which provides the limits of 0.124 fm−1 for �y = 0 and �x � 1, and 0.175 fm−1 for �x = �y � 1,
and 0.124

√
�y/�x fm−1 for �y � �x � 1. The term with large �y increases as

√
�y for �x = 0,

and as
√

�y/�x for �x > 0.
The relevant comparison to the numerical values is most likely for roughly equal values of

�x and �y and both sum and difference less than the total angular momentum of the resonance.
Then an estimate of a weighted average would be the value for (�x, �y) = (0,0) since the other
limit of very large and equal angular momenta only is 17% smaller. The strong variation in the
slopes occurs in the rather unlikely cases when �y becomes much larger than �x . However, the
Coulomb interaction dominates at large distance over centrifugal barrier terms. The dependence
on angular momentum quantum numbers can then be expected to decrease with ρ implying that
all slopes should be of the same magnitude. This is confirmed by the estimates shown by the
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Fig. 3. The fraction of the dominating components in the angular eigenfunction (the sum, normalized to unity, of the
three Faddeev components, rotated into the given Jacobi set of coordinates) for the three lowest adiabatic potentials as
function of ρ for 6Be (2+), see Fig. 1. The quantum numbers are as given in Table 1. Thick lines: Jacobi coordinates
where x refers to the two-proton system and y to its center of mass motion relative to the α-particle. Thin lines: Jacobi
coordinates where x refers to the proton-α system and y to its center of mass motion relative to the other proton.

dashed lines in the left parts of Figs. 1 and 2. It is remarkable that the asymptotic slope only
is attained by bending the angular eigenvalues around 20–30 fm. This bending is therefore not
an artifact of the numerical procedure. This is confirmed by increasing both basis size and the
number of partial waves in the computation.

The imaginary parts of the angular eigenvalues are not shown in Figs. 1 and 2 to avoid clut-
tering the figures. They are much smaller than the real parts, increasing linearly with a relatively
small slope [4].

3.2. Adiabatic wave functions

The angular wave functions related to the adiabatic potentials are functions of ρ, see Eq. (1).
As a consequence, the contributions from different partial wave components can also vary with ρ.
Furthermore, the partial wave expansion is different in the three different sets of Jacobi co-
ordinates. In Fig. 3 we show the details of the variation of the weights of the most relevant
angular momentum components for the three first angular eigenvalues for the 2+-resonance in
6Be. The second and third Jacobi sets are identical (x coordinate between the core and one of the
protons). The numbering of these λ’s is made from bottom to top at the maximum value of ρ in
Fig. 1. Therefore, the lowest three λ’s are the expected three most decisive ones at large values
of ρ, i.e. in the region of ρ-values where the energy distributions after decay of the resonance
are determined. In the figure only the most contributing partial wave components at large ρ are
shown.

The first eigenfunction (left part of Fig. 3) is at small ρ essentially an s-wave in the rel-
ative motion of the two protons and a d-wave in their common motion relative to the α-
particle (the solid thick curve dominates). This implies that the two proton spins couple to
zero to achieve an antisymmetric wave function. This contribution is maximum (more than
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Fig. 4. The same as in Fig. 3 for the corresponding 2+-resonance in 6Li, except that we omitted the almost decoupled
lowest eigenfunction of deuteron-α character. In the second Jacobi set (thin lines) the x refers to the proton-α system
and y to its center of mass motion relative to the neutron. In the third Jacobi set (thin + circle lines) the x refers to the
neutron-α system and y to its center of mass motion relative to the proton.

90%) at distances between 20 and 40 fm, starting afterwards a quick reduction to about 40%
at ρ = 100 fm. At this distance the main contribution (almost the remaining 60%) is given
by the component where d- and s-waves are interchanged (thick dashed curve). This struc-
ture is equivalent to equal amounts of the different α-proton p-waves consistent with the Pauli
principle and parity and angular momentum conservation. The α-proton motion (second and
third Jacobi system) is dominated by the p-wave contributions, specially for large ρ (thin solid
line).

The second eigenfunction in Fig. 3 (central panel) has already at relatively small distances
changed to about 100% proton–proton and α-proton p-waves which correspond to partial wave
components with total spin S = 1. The third eigenfunction (right part) is dominated at interme-
diate distances by a d-wave proton–proton relative motion (thick solid line), but for large values
of ρ its contribution reduces to 40%, while more than 50% is given by the relative proton–proton
s-wave. For this eigenfunction the α-proton motion is dominated by relative s- and d-waves at
large distances (thin solid and thin dashed lines) although the contribution of these components
almost vanishes at very small values of ρ.

The angular wave functions for the corresponding 2+-resonance in 6Li are shown in Fig. 4.
Eigenfunction number 1 (left panel) is, as in the 6Be case, for ρ-values around 20–100 fm clearly
dominated by a relative s-wave between the two nucleons (solid thick line). However, when ρ

increases this component decreases less than for 6Be, still being around 70% at ρ = 100 fm.
The remaining 30% is mostly found in a relative p-wave between the two nucleons (dashed
thick line) with total spin zero, i.e. with isospin zero. This combination of quantum numbers is,
due to parity, strictly forbidden in the description of the deuteron wave function. At large ρ we
also observe a significant contribution of a relative d-wave between proton and α (solid thin line)
and an s-wave between the neutron and the α (solid thin line with black circles). This differs
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Fig. 5. The absolute values of the coupling potentials between the three lowest adiabatic levels for the 2+-resonance in
6Be (thick curves θ = 0.15 rad) as functions of ρ, and the corresponding isobaric analogue states in 6Li (thin curves
θ = 0.10 rad).

from the first eigenfunction in 6Be, where a proton–proton relative p-wave was dominating at
large distances.

The structure of eigenfunction number 2 (central panel) is very similar to the second in 6Be,
where the relative neutron–proton, α-neutron, and α-proton p-waves clearly dominate for ρ

values above 20 fm. We can see that in this case the weight of the p-wave neutron–proton con-
tribution (solid thick curve) slightly decreases at large ρ, and the remaining contribution, small
in any case, is given by a relative d-wave between neutron and proton with S = 1, and therefore
also with neutron–proton isospin equal to 0.

The contributions from the zero isospin components in the neutron–proton system are spe-
cially significant in eigenfunction number 3 (right panel in Fig. 4). While an isospin 1 compo-
nent with a p-wave neutron–proton motion (solid thick line) contributes around 10% at large
distances, the isospin 0 components (thick dashed and thick dot-dashed curves) contribute all
together with the remaining 90%.

4. Radial resonance wave functions

The diagonal potentials in the radial equations must be supplemented by the coupling terms.
Their sizes and general behavior as function of ρ determine the total radial wave function, in
particular at large ρ where the observable energy distributions are measured. In Fig. 5 we show
the non-diagonal potentials involving the lowest level in 6Be and its isobaric analogue in 6Li, and
the two following ones for the 2+-resonance in 6Be (thick lines) and 6Li (thin lines). To show
the first (P ) and second (Q) order coupling potentials in the same units (fm−1) we multiply Q

by ρ. (The energy unit is restored in the coupling potentials by including the omitted factors, i.e.
h̄2Q/(2m), h̄2P/(2m)∂/∂ρ [20].)

In both cases, 6Be and 6Li, the behavior of the coupling potentials is similar. The strong varia-
tions at relatively small ρ are due to the rapidly changing structure of the angular eigenfunctions
near the crossings between the λ-eigenvalues (see Figs. 1 and 2). The bump in the coupling
potentials at around 50 fm is due to avoided crossing of the corresponding angular eigenvalues.
The couplings are fortunately rather small at larger distances, although for intermediate distances
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Fig. 6. Left: radial wave functions corresponding to the three first adiabatic potentials for the 2+-resonance in 6Be.
The real and imaginary parts are shown by the thick and thin curves, respectively. Right: absolute values (thick curves)
and the real parts (thin curves) of the ratios between the radial wave functions. The probability distribution has for each
ρ been normalized to 1 as function of α.

Fig. 7. The same as Fig. 6 for the corresponding 2+-resonance in 6Li.

the couplings in the 6Be case are clearly larger than the ones for 6Li. This behavior is reassuring
for the numerical computations because the radial wave functions can then be expected to be
stable for distances larger than about 50 fm.

The solution to the coupled set of radial equations provides the radial resonance wave func-
tions as function of ρ. The radial wave functions associated to the first three adiabatic potentials
for the isobaric analogue 2+-resonances in 6Be and 6Li are shown in the left parts of Figs. 6 and 7,
respectively. Under resonance conditions the amplitudes fall off exponentially with ρ in the com-
plex scaled coordinates. However, each component still oscillates sinusoidally around zero while
the amplitudes simultaneously decrease. Each component then vanishes and their asymptotic ra-
tios determine the relative weights of the different adiabatic terms in the observables. Once the
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Fig. 8. The probability distribution for the 2+-resonance in 6Be including the lowest 10 adiabatic potentials as function
of the hyperradius ρ and hyperangle α related to the distance by rik ∝ ρ sinα, i.e. the distance between either the one
proton and core rpc (right) or the two protons rpp (left).

correct asymptotics is reached the different radial wave functions have the same analytical form,
and the asymptotic ratios should then be constant. To reach this constant value is a numerically
delicate task, especially if a long-range interaction (as the Coulomb potential) is present. This
is because first the analytical form of this asymptotics is not known in the three-body case, and
second because the radial wave functions could still be coupled at very large distances, requiring
heavy numerical calculations in order to get accurate results for these large values of ρ.

To investigate this point we show in the right-hand side of Figs. 6 and 7 the absolute ratios
(thick curves) involving the first three adiabatic terms entering the diagonal contributions to the
energy distributions. In addition we show their corresponding real parts (thin curves), which enter
in some of the non-diagonal contributions. Although they are not purely constant, in most of the
cases they are relatively stable as functions of ρ for distances above 40–50 fm.

However, these variations are not in themselves a problem since the decreasing tendencies for
some ratios are matched by increasing ratios of other radial wave functions, providing a rather
stable total three-body wave function. This can be seen in Figs. 8 and 9, where we show the
probability distributions (square of the three-body wave function integrated over the directions
of the Jacobi coordinates x and y) for the isobaric analogue 2+-resonances in 6Be and 6Li,
respectively. These distributions are functions of the hyperradius ρ and the hyperangle α which
are related to the distances between the pairs of particle by rik ∝ ρ sinα, where rij refers to the
distance between particles i and j .

In Fig. 8 it is seen that when ρ is above 50 fm the probability function stabilizes with a ridge
at around α ≈ π/4 for which x ≈ y. The same stabilization is found for 6Li, see Fig. 9, except
perhaps the proton–neutron distribution (lower part). However, all these distributions arise from
the same wave function expressed in different coordinate systems. The apparent variation can be
related to inaccuracy in the coordinate transformations.

5. Energy distributions after three-body decay

As one can see from Eq. (2), the energy distributions are observables closely related to the
probability distributions at asymptotically large distances. The only modification is due to the
volume element corresponding to energy instead of momentum [3]. Therefore, from the prob-
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Fig. 9. The same as Fig. 8 for the corresponding 2+-resonance in 6Li. The distance rik ∝ ρ sinα refers to rcp core–proton
distance in the upper-left part, to the rcn core–neutron distance in the upper-right part, and to the rpn proton–neutron
distance in the lower part.

ability distributions shown in Figs. 8 and 9 we obtain immediately the corresponding kinetic
energy distributions for given ρ. For 6Be we see in Fig. 10 the development from small to large
distances as ρ increases. In the proton energy distribution (right), for small ρ two peaks are seen
at small and large energies, that correspond to one proton populating a low-lying 5Li (α + p)
resonance and the second proton taking most of the available energy. A wide central peak is also
observed, that represent the contributions from structures where the α particle takes most of the
energy. This structure changes into the asymptotic distribution of one broad peak at intermediate
energy when ρ increases. This is the signature of a combination of direct decay [1] to get a broad
peak and sequential decay by emission of the α-particle in opposite direction to the two protons.

The same signatures are found in the energy distribution of the α-particle, where the pop-
ulation for small ρ of a low-lying 5Li-resonance produces a prominent central peak, while a
structure where the α-particle takes most of the energy produces a shoulder at large energies.
When ρ increases towards the relevant asymptotic distances the kinetic energy distributions have
a clean tendency towards emission of high energy α-particles. However, the broad distribution
indicates that a substantial part of the decay proceeds consistent with the direct decay mechanism
where all distances between pairs of particles increase proportionally.
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Fig. 10. Kinetic energy distributions of protons (right) and α-particles (left) after decay of the 2+-resonance in 6Be.
The three-dimensional plots show the dependence on ρ with inclusion of 10 adiabatic wave functions as function of

cos2 α, i.e. the kinetic energies Eα,p are in units of their maximum values E
(max)
α,p given by (mα +mp)/(mα + 2mp)ER

and 2mp/(mα + 2mp)ER for the proton and the α-particle, respectively, where ER is the energy of the decaying reso-
nance.

Fig. 11. Projections of kinetic energy distributions for 6Be-decay. Thick curves: Projection of the α (left panel) and proton

(right panel) kinetic energy distributions (Fig. 10) on the Eα,p/E
(max)
α,p = 1 plane. They are then the profile originating

from the maximum values of the energy distribution for each value of ρ. The thin curves are the same profile but when
respectively only the first adiabatic term (solid), only the second adiabatic term (dashed), or only the third adiabatic term
(dot-dashed) is included in the calculation.

As seen in Fig. 10, for ρ values above 40–50 fm the surface of the kinetic energy distribu-
tions is rather smooth and stable, indicating numerical convergence. However, this stability is
the result of all the contributions coming from the 10 adiabatic potentials included in the cal-
culations, although the individual contributions for some of them may be less stable. This is
illustrated in Fig. 11, where the thick lines show the profile of the energy distributions in Fig. 10,
i.e., the projection of the kinetic energy distributions on the plane defined by Eα,p/E

(max)
α,p = 1.

The first and third adiabatic potentials in Fig. 11 are not quite stable as function of ρ (specially
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Fig. 12. Kinetic energy distributions of protons (upper-right panel), neutrons (upper-left panel), and α-particles
(lower panel) after decay of the 2+-resonance in 6Li corresponding to that of Fig. 10. The three-dimensional plot

show the dependence on ρ with inclusion of 10 adiabatic wave functions. The maximum energies E
(max)
n,p,α are

(mα + mp)/(mα + mn + mp)ER , (mα + mn)/(mα + mn + mp)ER and (mn + mp)/(mα + mn + mp)ER for the
neutron, the proton, and the α-particle, respectively, where ER is the energy of the decaying resonance.

for the α-particle energy distribution shown in the left side). Nevertheless these variations are
compensated by the contribution from higher potentials and the total distribution (thick curve)
becomes stable. Also the important contribution from the very stable second adiabatic poten-
tial (as seen from the right side of Fig. 6, where |f2/f1| ≈ 0.9) contributes to stabilize the total
distribution.

The kinetic energy distributions of the particles arising from the decay of the corresponding
2+-resonance in 6Li are shown in Fig. 12. The distributions as well as their variations with
ρ are mutually very different and in addition different from the distributions appearing from
decay of 6Be. For small values of ρ the three-body structure is consistent with a mixture of two
configurations, one where the low-lying p-resonance in 5He is populated (peak at small energies
for the neutron distribution, for large energies for the proton distribution, and at intermediate
energies for the α distribution), and a second one where the α-particle takes most of the energy
(peaks at intermediate energies for the neutron and proton distributions and shoulder at high
energies for the α-particle energy distribution).
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Fig. 13. Projections of kinetic energy distributions as functions of ρ for 6Li (2+). Thick curves: projection of the α (left

panel) and proton (right panel) kinetic energy distributions (Fig. 10) on the Eα,p/E
(max)
α,p = 1 plane. They are then the

profile originated by the maximum values of the energy distribution for each value of ρ. The thin curves are the same
profile but when only the first adiabatic term (solid), only the second adiabatic term (dashed), or only the third adiabatic
term (dot-dashed) is included in the calculation.

In the lower part of the figure (α energy distribution) one can see that when ρ increases
the α-particle emerges in a high-energy peak with a broad tail extending down to intermediate
energies. While the high-energy peak reveals a decay through α-particle emission, the shoulder
seen at intermediate and small energies can be a combination of direct decay and sequential decay
through proton emission (the remaining α-neutron system populates the 5He resonance). For
large ρ the proton distribution resembles that of 6Be with a peak moved a little towards the high-
energy, while the neutron distribution exhibits a rather broad peak at low energy. This is again
consistent with a contribution from sequential decay through proton emission, or equivalently
through the 5He resonance, but also with contributions from α-particle emission.

From Fig. 12 we observe that the neutron and proton kinetic energy distributions are again
stable for large values of ρ, while for the α-particle energy distribution this stability is less clean.
The details are shown in Fig. 13, where again we show the profile of the projection of the kinetic
energy distributions on the Eα,p/E

(max)
α,p = 1 plane. In the left panel we see how the profile of the

α-particle kinetic energy distribution has a tendency to grow with ρ. In any case this tendency
is not dramatic, and remarkably small if we compare to the behavior obtained including only
the lowest adiabatic potential (solid thin curve) where we observe a strong decrease with ρ.
Fortunately, the remaining adiabatic terms compensate to a great extent this behavior producing
a total distribution we can consider acceptably stable.

The particular behavior of the α-particle kinetic energy distribution when only the first adi-
abatic potential is included can be understood from the left part of Fig. 4, where we see that in
the first adiabatic potential, and the first Jacobi set (x from neutron to proton) the clearly domi-
nating component at large distances (solid thick curve) corresponds to �x = 0. The existence of
a very low lying virtual s-state in the neutron–proton interaction makes the contribution of this
adiabatic term specially sensitive to α emission at high energy, while the two nucleons populate
the virtual s-state.
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Fig. 14. The kinetic energy distribution of the α-particle (left) and the proton (right) after decay of the 2+-resonance in
6Be. The scaling angle is θ = 0.15 and the two sets of curves are for ρ = 75,95 fm. The points are from [7]. Contributions
from the lowest adiabatic potentials are shown individually.

The three-dimensional plots of the kinetic energy distributions are not very useful in accurate
descriptions. Furthermore, the numerical convergence and the microscopic origin of the differ-
ent parts of the distributions cannot be seen in these plots. Therefore we show in Fig. 14 the
distributions arising from angular wave functions for two different ρ-values for the 6Be-decay.
We first notice that the curves for the total distributions are almost identical demonstrating that
the basis size is sufficiently large. The distributions are stable and the computed observables can
meaningfully be compared with measurements. The α-particle distribution is within error bars
in agreement with measurements. The total distributions are obtained by adding two fairly large
contributions from the two lowest, and several smaller parts from the higher lying angular eigen-
functions, see also Fig. 6. The contribution from the lowest eigenfunction falls into two pieces for
the α-particle, i.e. one peaked at low and one peaked at high energy. The second eigenfunction is
more peaked in the middle at an intermediate energy. In total a broad distribution arises. For the
protons the two contributions are both peaked at intermediate energies.

For the decay of 6Li we show the corresponding results in Fig. 15. Again we observe that the
total distributions are very similar for the two values of ρ. The two lowest angular eigenfunctions
dominate the distributions. For the α-particle the first and second eigenfunctions peak at high
and intermediate energies, respectively. For the neutron the peaks are at low and intermediate
energies whereas the two proton contributions both peak at intermediate energies. The peaks of
the proton and neutron distributions in Fig. 15 are moving in opposite directions compared to the
6Be-decay in Fig. 14. The α-particle energy distribution is, at least qualitatively, in agreement
with the measurements. Closer comparison is difficult since the experimental distribution only is
available in the laboratory system.

6. Summary and conclusions

Three-body resonance decays with charged particles in the final state obviously on some level
involve the three-body Coulomb problem in the continuum. We employ precisely the same nu-
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Fig. 15. The kinetic energy distribution of the α-particle (left), the neutron (middle) and the proton (right) after decay of
the isobaric analogue 2+-resonance in 6Li. The scaling angle is θ = 0.10 and the two sets of curves are for ρ = 75,95 fm.
Contributions from the lowest adiabatic potentials are shown individually.

merical method as used successfully for short-range interactions. We only add the Coulomb
potentials. We choose the 2+-resonances in 6Be and 6Li as the specific examples. They are
isobaric analogue states of a corresponding state 6He where only short-range interactions are
necessary. The discussions should be general and applicable as explanations for other similar
systems.

We first calculate the adiabatic potentials and the hyper-angular wave functions by using
hyperspherical coordinates and the complex scaling method. The asymptotic large-distance be-
havior of these potentials must be as the Coulomb potentials, i.e. ρ−1 where ρ is the hyperradius.
However, the proportionality factor depends on the quantum numbers of the specific level as well
as on the charges of the particles. We estimate these factors using the free wave functions with the
proper angular momentum quantum numbers and without nodes in the remaining hyper-angle.
The numerical results are consistent with the estimates, indicating convergence in the crucial
region of intermediate distances.

The structures of the angular wave functions are seen in their partial wave expansion. We find
strong variation of the non-diagonal coupling potentials up to distances of about 30 fm. This
indicates that the large-distance asymptotic behavior is reached at these distances even in the
presence of the Coulomb interaction. We investigate the dependence on ρ and find a strong
variation of the individual components where a constant large-distance behavior not necessarily
is reached although a smooth behavior in general essentially is established at 60–70 fm.

The radial wave functions are the ρ-dependent amplitudes on each of the angular eigenfunc-
tions. Under resonance conditions the large-distance behavior must be oscillating, after complex
scaling, and exponentially decreasing. The observable kinetic energy distributions are determined
by the ratios of these individually vanishing radial wave functions. The precision of the numerical
procedure is then delicate and must then be carefully checked. The kinetic energy distributions
must be stable in an intermediate region of hyperradii, i.e. ρ must exceed the values where the
rapid changes occur, but it should be small enough to allow a complete description in terms of
the basis used. Such a region is found for each resonance decay between 60 and 90 fm.

For 6Be only α-particle and protons emerge after the decay. Their distributions are consistent
with components of different decay mechanisms, i.e. α-particle emission as the dominating part
with significant contributions from both direct decay and sequential proton emission. The com-
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putations are consistent with the measured distributions. For 6Li the α-particle emission is even
more dominating and proton emission also contributes substantially via the 5He-resonance while
neutron emission is much more suppressed compared to the decay of 6Be.

In conclusion, three-body decay of many-body resonance can be rather reliably com-
puted by combining the adiabatic hyperspherical expansion and the complex scaling methods.
The Coulomb interaction demands careful treatment of the convergence properties as functions
of hyperradius and basis size. If the hyperradius is chosen too large the basis cannot describe the
distributions, and if the hyperradius is chosen too small the asymptotic large-distance distribution
is not reached.
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