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Abstract

Sequences of energy levels in nuclei are often plagued with missing levels whose number and position are unknown. It is also quite usual
that all the quantum numbers of certain levels cannot be experimentally determined, and thus levels of different symmetries are mixed in the
same sequence. The analysis of these imperfect spectra (from the point of view of spectral statistics) is unavoidable if one wants to extract some
statistical information. The power spectrum of the δq statistic has emerged in recent years as an important tool for the study of quantum chaos and
spectral statistics. We derive analytical expressions for the observed power spectrum in terms of the fraction of observed levels and the number of
mixed sequences. These expressions are tested with large shell model spectra simulating realistic experimental situations. A good estimation of
the number of mixed symmetries and the fraction of missing levels is obtained by means of a least-squares fit in a wide set of different situations.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Spectral statistical analysis has become the main tool for the
study of quantum chaos. It is now well established, through
numerical simulations, theoretical studies using the semiclas-
sical approximation, and the analysis of experimental data,
that the spectral statistics of systems whose classical analog is
chaotic follow the predictions of random matrix theory (RMT).
When the classical analog is regular, the statistical properties
of the spectra are identical to the properties of a sequence
of uncorrelated random numbers and follow Poisson statis-
tics [1]. Most effort has gone to study simple systems with a
few degrees of freedom like quantum billiards (and their ex-
perimental realizations), the hydrogen atom in a strong mag-

* Corresponding author.
E-mail address: molina@iem.cfmac.csic.es (R.A. Molina).
0370-2693/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2006.10.058
netic field, etc. However, it is not clear whether the underlying
classical regular or chaotic dynamics is the universal origin
of the observed spectral fluctuations, since there exist systems
without a classical analog that display RMT spectral statis-
tics.

Actually, RMT was originally devised for the analysis of
spectra of complex nuclei. Beyond the neutron emission thresh-
old, the statistical properties of compound nucleus resonances
with fixed quantum numbers were shown to follow the predic-
tions of the Gaussian orthogonal ensemble (GOE) [2]. How-
ever, in the region closer to the ground state the situation is still
unclear because of the experimental difficulty in obtaining com-
plete sequences of levels. Even if data coming from different
nuclei are properly studied, the results are less than conclusive
[3–5]. More work is needed to completely understand the sta-
tistical properties of low-energy nuclear spectra.

In traditional random matrix studies, the level sequences are
assumed to be complete and involving only one symmetry. Ran-
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dom matrix results apply only to cases where these conditions
are fulfilled. However, experimental data cannot always guar-
antee these conditions. The change in the spectral properties
due to the superposition of different level sequences or to the
existence of missing levels has been studied since long ago. In
[6] the authors give general expressions for the k-point cluster
functions, and results for the number variance statistic Σ2 were
already reported in [7]. Also, the next-neighbor spacing distri-
bution P(s) was studied when different symmetries are mixed
in the spectra [8,9]; the long-range correlations for this case
were derived by Guhr et al. in their review about RMT [10].
Very recently, Bohigas and Pato used the ideas of Ref. [6] to
study how the next-neighbor spacing distribution P(s) behaves
when only a fraction ϕ of the levels is detected: they were able
to give some interpolating formulas between the Wigner sur-
mise and the Poisson distribution as a function of ϕ [11]. It is
worth commenting that their expression was already proposed
as an ansatz in Ref. [12], and derived later by using information
theory in Ref. [13]. The expression derived in these papers has
been successfully applied in several cases [13,14].

A new approach to energy level fluctuations based on meth-
ods from time series analysis has been proposed recently [15].
The δq statistic is viewed as a time series with the index q , that
represents the order in energy, playing the role of a pseudo-
time. Analyzing the power spectrum of this statistic, it has been
shown that chaotic quantum systems are characterized by 1/f

noise and integrable quantum systems by 1/f 2 noise. The full
functional forms of the power spectrum were derived for the
RMT ensembles [16]. The analysis of this new statistic has been
shown to be extremely useful in different situations by a num-
ber of authors [17–23].

It is the purpose of this Letter to analyze the power spectrum
of the δq statistic for sequences with missing levels and mixed
symmetries. We will derive analytical formulas that will show
the transition between a RMT power spectrum and a Poisson
spectrum as a function of ϕ and the number l of mixed sym-
metries. We will show that through a fit to these formulas it is
possible to estimate a value of ϕ and l from experimental data.
To demonstrate the applicability of our results, we will study
realistic nuclear spectra simulated through shell model calcula-
tions.

2. Statistical analysis of spectra with missing levels and
mixed symmetries

The objective of every spectral statistical analysis is to char-
acterize the properties of the fluctuations of the spectra. In order
to extract the information contained in the spectral fluctuations,
we have to separate them from the secular behavior of the level
density. We assume that the density of states g(E) can be sepa-
rated into a smooth part and a fluctuating part,

(1)g(E) = ḡ(E) + g̃(E),

where ḡ(E) is the smooth part of the level density and g̃(E)

is the fluctuating part. The accumulated level density N(E)

measures the number of levels up to a certain energy E in the
system. Thus it is related to the level density through

(2)N(E) =
E∫

−∞
dE′ g(E′),

and obviously it can also be separated into a smooth and a fluc-
tuating part,

(3)N(E) = N̄(E) + Ñ(E).

The first step for doing the spectral statistical analysis is the
proper unfolding of the data with the smooth level density, in
order to be able to extract the fluctuations and compare them to
the results of RMT. Using the mean accumulated level density
N̄(E), the unfolded spectra {εi} can be obtained from the ex-
perimental spectra {Ei} as εi = N̄(Ei). Once the unfolding is
performed, the level density becomes

(4)ρ(ε) = g(E)

ḡ(E)
= 1 + g̃(E)

ḡ(E)
= 1 + ρ̃(ε).

It can also be separated into a smooth constant part ρ̄(ε) = 1
and a fluctuating part ρ̃(ε). The latter defines the fluctuating
part of the accumulated density

(5)ñ(ε) =
ε∫

−∞
dζ ρ̃(ζ ),

which satisfies that ñ(ε) = Ñ(E) with ε = N̄(E).
The δq statistic is defined using the unfolded energies as

(6)δq = εq+1 − ε1 − q,

and it represents the deviation of the excitation energy of the
(q + 1)th unfolded level from its mean value. Moreover, if we
appropriately shift the ground state of the system, we can write

(7)δq = −ñ(εq+1),

that is, the accumulated level density fluctuations at ε = εq+1.
We consider the δq function as a discrete time series, where the
index q plays the role of a pseudo-time, and analyze their prop-
erties with numerical techniques normally used in the study of
complex systems. The most simple technique is the calculation
of the power spectrum

(8)P δ
k = 1

N

∣∣∣∣∣
N−1∑
q=0

δq exp(−2πqk/N)

∣∣∣∣∣
2

,

where N is the total number of levels in the sequence.
In this Letter, we will use RMT to derive theoretical ex-

pressions for the δq power spectrum when only a fraction ϕ

of levels is observed, or there are several sequences mixed. The
three canonical random matrix ensembles are considered as the
paradigmatic models of chaotic systems. They differ in the sym-
metry group under which they are invariant [9]: the Gaussian
orthogonal ensemble (GOE) corresponds to systems with time-
reversal symmetry and spin-rotation symmetry; the Gaussian
unitary ensemble (GUE) applies when the system has no time-
reversal symmetry, and finally, systems with time-reversal sym-
metry but no spin rotation symmetry are well described by
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the Gaussian symplectic ensemble (GSE). Their spectra dis-
play level correlations at all scales. Short range correlations
are usually measured by means of the nearest neighbor spac-
ing distribution P(s). It behaves as P(s) ∝ sβ when s � 1 for
the three canonical ensembles. This means that the probability
of finding two neighboring levels at a distance s is proportional
to sβ , provided that s is small enough. Therefore, the expo-
nent β measures the “repulsion” between consecutive levels.
The repulsion parameter is β = 1,2,4 for GOE, GUE and GSE,
respectively. On the contrary, there is no level repulsion in inte-
grable systems since their energy levels are uncorrelated.

Since the nucleon–nucleon interaction is time-reversal in-
variant, GOE is the appropriate ensemble to study the fluctu-
ation properties of nuclei. Nevertheless, we will write general
expressions for the three classical ensembles, and compare the
shell model results with the GOE predictions.

It has been shown [16] that the ensemble average of the δq

power spectrum 〈P δ
k 〉 can be written in a compact form as

〈
P δ

k

〉 = N2

4π2

[
K(k/N) − 1

k2
+ K(1 − k/N) − 1

(N − k)2

]

(9)+ 1

4 sin2(πk
N

)
+ Δ,

valid for N 	 1, k ∈ [1,2, . . . ,N − 1] and β = 0,1,2 and 4,
i.e., for the three canonical ensembles as well as for integrable
systems. In the following we will assume that the statistical
properties of the level sequences are well described by these
type of ensembles and that the conditions for N and k are ful-
filled.

The function K(τ) is the so-called spectral form factor

(10)K(τ) =
〈

lim
L→∞

1

2L

∣∣∣∣∣
L∫

−L

dε ρ̃(ε)e−2πiετ

∣∣∣∣∣
2〉

.

Exact analytical expressions are known for K(τ) in GOE, GUE,
GSE and regular systems [9]. Eq. (10) can be written as

K(τ) =
∞∫

−∞
dε

[
δ(ε) − 1 + R2(ε)

]
exp(−2πiετ)

(11)= 1 −
∞∫

−∞
dε Y2(ε) exp(−2πiε),

where R2 and Y2 are the two-point correlation function and the
two-point cluster function, respectively. The n-point correlation
function Rn(ε1, . . . , εn) (see Ref. [9] for details) is the probabil-
ity density of finding n levels (without considering their labels)
around the positions ε1, ε2, . . . , εn, the positions of the remain-
ing levels unobserved. The cluster functions Yn(ε1, . . . , εn) de-
scribe the clustering of the n(> 1) levels in small subgroups.
Since we are considering unfolded spectra that become trans-
lationally invariant in the limit N → ∞, the functions Rn

and Yn turn out to depend only on the differences |εi − εj |.
Therefore we can write R2(ε1, ε2) = R2(ε2 − ε1) = R2(ε) and
Y2(ε1, ε2) = Y2(ε2 −ε1) = Y2(ε), which are the expressions ap-
pearing in Eq. (11).
The constant term Δ is a subtle consequence of the discrete
nature of δq . It depends on the difference between the variances
of δq and ñ(ε)|ε=q , whose large q behavior is [7]

〈
δ2
q

〉 − 〈
ñ(q)2〉 = 1

3

∞∫
−∞

dr ds Y3(0, r, s)

(12)− 1

2

( ∞∫
−∞

dr Y2(r)

)2

, q 	 1,

except in the rare cases where the integrals do not exist. The
r.h.s. is zero for Poisson and −1/6 for the canonical ensembles.
A straightforward calculation [16] allows us to obtain

(13)Δ =
{

− 1
12 for canonical ensembles,

0 for Poisson.

Our main objective is to obtain a theoretical expression for
the average power spectrum of an energy level sequence with
missing levels and mixed symmetries. Suppose that there are
l complete, infinite and stationary level sequences with level
densities ρi(ε), whose spectral fluctuations are given by an ap-
propriate ensemble. Then, the crucial step is to find how the
original spectral form factor K(τ) is modified when these se-
quences are superposed and some levels are dropped randomly
from each sequence. The relevant parameters of the problem are
the probability ϕi(εq) of observing one given level with energy
εq pertaining to the ith sequence, and the fractional densities
ηi = ρi(ε)/(

∑l
i=1 ρi(ε)). In order to make the statistical analy-

sis tractable we consider two basic assumptions:

(1) The probabilities ϕi(εq) are set equal to a constant ϕi for
each sequence, meaning that the energy levels are dropped
randomly and uniformly from the spectrum; from now on
these quantities will be called the fractions of observed lev-
els.

(2) The fractional densities are taken constant through the
whole spectrum; therefore, except for a constant factor, the
smooth shape of the different sequences is the same.

We shall consider first and in great detail the case of a single
incomplete level sequence, which is most likely the situation
most relevant to experiments in nuclear physics. Assuming that
the fraction of observed levels is 0 < ϕ < 1, it can be shown
that the n-point cluster functions are modified as [11]

(14)Yn(ε1, . . . , εn) = Yn(ε1/ϕ, . . . , εn/ϕ).

In what follows capital letters denote the statistical quantities
of the actual spectrum, while “calligraphic” letters denote the
same quantities for the observed spectrum. Then the two-point
cluster function becomes

(15)Y2(ε) = Y2(ε/ϕ),

where we have already taken into account that it only depends
on the energy difference ε = ε1 − ε2. Using the properties of
the Fourier transform, it is immediate to see that

(16)K(τ ) = 1 − ϕ + ϕK(ϕτ).
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Since the correlations should approach those of a Poisson
sequence as the number of missing levels increases, the constant
term Δ is expected to reduce with ϕ. Introducing Eq. (14) into
Eq. (12) one can easily see that

(17)Δ → ϕ2Δ.

Collecting together formulas (16), (17) and (9) we arrive to
the analytical expression for the average power spectrum of the
δq statistic as a function of ϕ

〈
Pδ

k

〉 = N2ϕ

4π2

[
K(

ϕk
N

) − 1

k2
+ K(

ϕ(N−k)
N

) − 1

(N − k)2

]

(18)+ 1

4 sin2(πk/N)
− ϕ2Δ.

In the case of a Poisson sequence, where the levels are un-
correlated, and the fluctuations must remain invariant as ϕ de-
creases, K(τ) = 1 and Δ = 0 we obtain

(19)
〈
Pδ

k

〉
β=0 = 1

4 sin2(πk
N

)
,

for all 0 < ϕ < 1. As it is expected, this Poisson limit is also
reached when ϕ → 0, regardless of the values of K(τ), i.e.,

(20)
〈
Pδ

k

〉 ϕ→0−→ 1

4 sin2(πk
N

)
.

Let us now consider the superposition of l level sequences
with different quantum numbers and constant fractional densi-
ties ηi . It is easy to find how the two-level cluster function is
modified in this case [10],

(21)Y2(ε) =
l∑

i=1

η2
i Y2,i (ηiε).

If the sequences are incomplete the two-level cluster func-
tion can be written as

(22)Y2(ε) =
l∑

i=1

η2
i Y2,i (ηiε/ϕi),

where ϕi is the fraction of observed levels in the ith sequence.
Using Eq. (22) and going through the same steps that lead to

Eq. (18), one obtains the average power spectrum in the general
case

〈
Pδ

k

〉 = N2

4π2

l∑
i=1

ηiϕi

[
Ki(

ϕik
Nηi

) − 1

k2
+ Ki(

ϕi(N−k)
Nηi

) − 1

(N − k)2

]

(23)+ 1

4 sin2(πk/N)
+ 〈ϕ〉2Δ,

where Ki(τ) is the spectral form factor characteristic of the ith
sequence and 〈ϕ2〉 = ∑l

i=1 ηi(ϕi)
2. Note that

(24)
〈
Pδ

k

〉
β=0 = 1

4 sin2(πk
N

)
,

i.e., the superposition of an arbitrary number of incomplete
Poisson spectra gives rise to a new uncorrelated sequence of
levels.
Fig. 1. Theoretical average power spectrum, predicted by Eq. (23), as a function
of the fraction of observed levels ϕ for pure sequences of length N = 256. The
curves are compared with the GOE and Poisson limits.

It is interesting to study the low frequency limit of this ex-
pression when several chaotic (β = 1,2 and 4) level sequences
are mixed. A Taylor expansion of Eq. (23) shows that its first
term becomes dominant when k � N and N 	 1, so we can
write

(25)〈Pδ
k 〉 = N

∑l
i=1(ϕi)

2

2π2βk
+ (1 − 〈ϕ〉)N2

4π2k2
.

This expression shows that for small frequencies, the excita-
tion energy fluctuations exhibit a linear combination of 1/f and
1/f 2 noises. If 1 − 〈ϕ〉 	 l/N the second term dominates and
we have a 1/f 2 spectrum

(26)
〈
Pδ

k

〉 = (1 − 〈ϕ〉)N2

4π2k2
.

In this case we can extract the average fraction of missing lev-
els from the multiplicative constant. When there are no missing
levels, the resulting expression is

(27)
〈
Pδ

k

〉 = Nl

2π2kβ
,

so we have a strict 1/f and the proportionality constant gives
the number of mixed sequences l, independently of the values
of fractional densities ηi .

In order to better see how the theoretical expressions look
like, it is interesting to plot them in some paradigmatic cases, as
it is done in Figs. 1 and 2. In both cases, the scenarios discussed
are similar to those studied in Section 3; nevertheless the figures
pursue only to illustrate the qualitative behavior of Eq. (23) in
different situations.

Fig. 1 displays the theoretical predictions of Eq. (23) for pure
GOE sequences of length N = 256 and different values of ϕ.
We immediately realize that the correlations are very sensitive
to the fraction of missing levels, and actually there is an im-
portant difference with the GOE limit already for ϕ = 0.99.
In agreement with the predictions of Eq. (26), 〈Pδ

k 〉 is con-
sistent with a 1/f 2 noise at low frequencies. We can also see
a crossover from this behavior to the 1/f noise behavior of
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Fig. 2. Theoretical average power spectrum predicted by Eq. (23) for a mixed
sequence obtained by superposing l sequences of dimension N = 256 and no
missing levels. As in the previous figure we compare with the GOE and Poisson
curves.

chaotic systems at large values of k. The 1/f noise region gets
smaller very quickly as ϕ decreases, and for ϕ � 0.8 it is almost
impossible to distinguish this part. However, the global factor
of 〈Pδ

k 〉 is very sensitive to small changes of ϕ when this frac-
tion is close to unity; therefore, the δq power spectrum analysis
seems to be adequate to detect the existence of a small amount
of missing levels by fitting the curve (26) to the experimental
data. On the contrary, for ϕ ≈ 0 the global factor changes very
slowly and it is more difficult to obtain precise information on
the fraction of observed levels.

Fig. 2 compares the predictions of the theoretical for-
mula (23) for the mixing of l pure GOE sequences of length
N = 256 with the GOE and Poisson limits. For simplicity, it
has been assumed that all the fractional densities are equal to
ηi = 1/l. In this case the fluctuations also exhibit a smooth
transition from GOE to Poisson statistics, but the behavior of
〈Pδ

k 〉 in the intermediate region is very different from the pre-
vious case. The theoretical curves (27) are parallel to the GOE
limit up to a critical frequency kc  N/l; therefore, 〈Pδ

k 〉 dis-
plays a 1/f behavior in a wide frequency interval, even for the
superposition of a large number of sequences.

3. Analysis of shell model spectra

To test if the theoretical expression (23) can be used to ob-
tain a good estimation of the number of mixed symmetries and
the fraction of observed levels, we have resorted to shell model
calculations. After preparing several incomplete sequences, that
may correspond to generic experimental situations, we have
compared them to the predictions of a simplified version of
Eq. (23) (see below for details). The values of the number
of mixed symmetries and the fraction of observed levels are
estimated by means of least-square fits. Moreover, this proce-
dure has also allowed us to test some assumptions included in
the calculations presented in Section 2 that may not be com-
pletely satisfied in experimental situations—the missing levels
are dropped randomly and uniformly from the original spec-
Table 1
Dimensions of the J (T = 0) spectra of 24Mg in the sd shell

J 0 1 2 3 4 5 6 7 8
NJ 325 779 1206 1304 1311 1070 835 531 329

trum, and the fractional level densities ηi are constant through
the whole spectrum.

As a representative example, we have considered the sd nu-
cleus 24Mg. This system was studied in Refs. [15,16] to show
that the spectral fluctuations of quantum chaotic systems exhibit
1/f noise. We follow the standard shell model procedure to ob-
tain a large enough number of energy levels. The most bound
particles are assumed to form an inert core while the remain-
ing particles are allowed to move in a few single-particle levels,
the so-called valence space. For 24Mg it is usually considered
an 16O core and the valence space consists of the three shells
1d5/2, 2s1/2 and 1d3/2. The single particle energies and the
two-body matrix elements correspond to the USD interaction
of Wildenthal [24]. The construction and diagonalization of the
JT Hamiltonian matrices were carried out by using the shell-
model code NATHAN [25]. Because the valence space shells
have positive parity all the states have positive parity. Moreover,
the angular momentum and isospin quantum numbers can take
the following values J = 0,1,2,3,4,5,6,7,8 and T = 0,1,2.
The dimension of the J (T = 0) matrices, whose spectra have
been used in the statistical analysis, are shown in Table 1.

Before we proceed to present the main results of this section,
we describe briefly how the different types of sequences used
in the statistical analysis are built:

(1) Mixed sequences. In order to obtain a mixed sequence, all
the levels from different J spectra are gathered together
and ordered in increasing energy, regardless of their angular
momentum; then, the resulting sequence is unfolded. Note
that this method does not guarantee that the basic assump-
tions introduced in the theoretical calculations hold. The
average δq power spectrum of the mixed sequence is cal-
culated using a standard two-fold average procedure. The
mixed sequence is divided in several sets of N = 256 con-
secutive energy levels; the power spectrum of each set is
calculated using a fast Fourier transform routine, and fi-
nally all these sets are used to compute some kind of “en-
semble” average of the power spectrum. To improve this
kind of average and clarify the main trend of the power
spectrum, we divide the high frequency portion of the log-
arithmic frequency axis into equal bins and average locally
the power spectrum components in each bin. Note that this
last procedure can be performed if we have only a single
sequence, for which the ensemble average is not possible.

(2) Pure sequences. After unfolding every J spectrum, we di-
vide it in several sets of N = 256 consecutive levels. 〈Pδ

k 〉 is
calculated using the same procedure described above. First
an ensemble average is carried out by averaging over the
different sets of N = 256 levels (notice that in this step we
can use sets with different J ), and then we perform the lo-
cal average.
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Table 2
Results of fitting the power spectrum of different level sequences to Eq. (28).
In the left side, “Fig.” stands for the number of the figure where the results of
the fit are presented; “mixing” can be equal to “pure” or “mixed” depending
on the type of sequence we consider in each case; J are the values of angular
momentum involved in the calculation; and χ is the value of the cut-off or the
average value of the cut-off function. In the right side we display the estimates
of the two parameters appearing in Eq. (28): the fraction of observed levels ϕ

and the number of mixed sequences l

Fig. J Mixing χ ϕ l

3 3, 4 Mixed 1 1.00 ± 0.01 2.1 ± 0.2
4 0–8 Mixed 1 0.91 ± 0.03 7.2 ± 0.6
5 3, 4 Mixed 0.8 0.77 ± 0.03 2.1 ± 0.4
5 3, 4 Pure 0.8 0.80 ± 0.03 1.1 ± 0.3
6 0–8 Mixed 0.8 0.7 ± 0.1 11 ± 3
6 0–8 Pure 0.8 0.77 ± 0.02 0.9 ± 0.1
7 3, 4 Mixed 〈χ(ε)〉 = 0.8 0.73 ± 0.03 1.5 ± 0.3
7 3, 4 Pure 〈χ(ε)〉 = 0.8 0.82 ± 0.02 1.0 ± 0.2

(3) Incomplete sequences. To generate incomplete sequences
(pure or mixed) we first consider the complete and pure se-
quences that are going to be analyzed. Running along each
sequence, the decision of keeping or dropping a given level
εq is made by means of a random variable x uniformly
distributed in the interval [0,1] and a smooth cut-off func-
tion 0 � χ(ε) � 1 satisfying that

∑N
q=1 χ(εq)/N = ϕ. If

x > χ(εq) the level is dropped from the spectrum. With this
procedure we drop roughly a fraction (1 − ϕ) of the levels,
but note that this quantity can be slightly different from one
sequence to another. For incomplete sequences, the unfold-
ing is performed after all the levels have been dropped and
the resulting sequences are mixed.

The expression (23) has too many free parameters to perform
a meaningful fit; moreover, the number of mixing symmetries
l also determines the number of terms involved in the sum.
Therefore, to obtain a realistic estimation of the most signif-
icant parameters, the number of mixing symmetries l and the
fraction of observed levels ϕ, a further simplification is needed.
In what follows, we will consider the two following assump-
tions: (a) the fraction of observed levels is the same for all the
mixed sequences ϕi = ϕ, and (b) the fractional densities are
also the same ηi = η = 1/l. In such a case, the power spectrum
of the δn function can be written as follows

〈
Pδ

k

〉 = N2

4π2
ϕ

[
K(

lϕk
N

) − 1

k2
+ K(

lϕ(N−k)
N

) − 1

(N − k)2

]

(28)+ 1

4 sin2(πk/N)
+ ϕ2Δ.

This equation is going to be used to fit the power spectrum
corresponding to different situations. In all the cases, the fit is
performed by means of a nonlinear least-square algorithm, in
logarithmic scale, and discarding the two first and the two last
points. For the sake of clarity, we present the results in differ-
ent figures, and present the values of the fitted parameters in
Table 2.

Fig. 3 compares the average power spectrum of the δq func-
tion corresponding to the superposition of two level sequences
Fig. 3. Numerical 〈Pδ
k
〉 calculated by using J = 3 and J = 4 pure sequences of

length N = 256 (open circles) and the superposition of these sequences (filled
circles), compared to theoretical predictions: GOE (dashed line), Poisson (dot-
ted line), and the result of fitting the mixed sequences to Eq. (28) (solid line).

with J = 3 and J = 4 to the fit of these data to (28), and
with the theoretical predictions for the Poisson and GOE lim-
its. Since the dimensions of the sequences are very similar, we
have η1  η2  0.5, and therefore the assumptions included in
the derivation of (28) are essentially fulfilled. It can be seen
that the agreement between the calculated points and the fitted
curve is remarkable; the estimated parameters, included in the
first row of Table 2, are in excellent agreement with the actual
ones.

We can also consider a more involved situation where all
the J spectra of the sd nucleus 24Mg are taken into account.
Therefore, we compute the average power spectrum of the δq

statistic using nine pure sequences with J = 0,1, . . . ,8 and the
superposition of all these sequences. The fractional densities
are rather dissimilar in this case because the nine J spectra have
very different dimensions; thus deviations from the predictions
of (28) are more probable. Fig. 4 compares 〈P δ

k 〉 for the mixing
of nine spectra with the fit of these data to Eq. (28) as well as
with the theoretical predictions for the Poisson and GOE lim-
its. We see that the fitted curve falls very close to the numerical
points. Although the agreement between the estimated parame-
ters and the values of ϕ and l is worse that in the previous case,
their values are still quite reasonable and provide us a hint about
the actual situation.

As commented above, experimental studies face the diffi-
culty of establishing whether the level sequences are complete
and how the missing levels distort the statistical properties. In
order to get some insight on the effect of missing levels in the
power spectrum of the δq function, we have generated incom-
plete sequences using the procedure described at the beginning
of this section and a constant cut-off function χ(ε) = 0.8 ≈ ϕ.
With this procedure we lose roughly 20% of the levels, but note
that this quantity can be slightly different from one sequence to
another, and therefore the basic assumptions of the theoretical
calculation are not exactly fulfilled.

The average power spectrum of δq for two incomplete se-
quences with J = 3 and J = 4 and a mixed sequence is dis-
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Fig. 4. Same as Fig. 3, but using nine different spectra with J = 0–8.

Fig. 5. Numerical 〈Pδ
k
〉 calculated by using J = 3 and J = 4 incomplete pure

sequences of length N = 256 (open circles) and incomplete mixed sequences
of the same length (filled circles), generated with a constant cut-off function
χ = 0.8. These numerical power spectra are compared with fitted curves to
Eq. (28): solid line corresponds to the fit of incomplete mixed sequences, and
dashed line corresponds to fitting incomplete pure sequences. Theoretical pre-
dictions of Eq. (23) for GOE (dotted line) is also shown.

played in Fig. 5. The two power spectra, that are very close
to the Poisson predictions, are indistinguishable for low k val-
ues, and only the high frequency region seems to be sensitive to
the mixing when there are missing levels. Nevertheless, a least-
squares fit to Eq. (28) makes it possible to distinguish between
both situations and leads to an excellent estimation of the frac-
tion of observed levels and of the number of mixed symmetries;
the values of the fitted parameters can be found in the third and
fourth rows of Table 2.

Let us consider now a mixed (and incomplete) level se-
quence corresponding to all the J spectra. In spite of the fact
that the situation is quite involved, a least-squares fit to Eq. (28)
gives rise to estimated parameters that are in striking agreement
with the actual values of ϕ and l (see rows 5 and 6 of Table 2).
Actually, the results of the fit do almost coincide with the exact
parameters for pure sequences and are inside the error margin
of the estimations when the different spectra are superposed.
Fig. 6. Same as Fig. 5, but using all the calculated J spectra of 24Mg.

Fig. 7. Same as Fig. 5 for a cut-off function χ(ε) that decreases linearly with
the excitation energy.

Moreover, the fitted curves follow very closely the numerical
values of 〈P δ

k 〉, as it can be seen in Fig. 6.
Up to this point, these examples suggest that the theoretical

expressions derived in Section 2 may be a reasonable tool to
obtain relevant information on the number of missing levels as
well as on the number of mixed symmetries.

However, the assumption that energy levels are dropped at
random and uniformly from the complete spectrum is proba-
bly not well justified. For this reason, we consider now a more
realistic situation where the number of missing levels increase
with the excitation energy. To test our theoretical expressions
we use a cut-off function χ(ε) that decreases smoothly with the
energy, but keeping the average 〈χ(ε)〉 = 0.8. Fig. 7 shows the
behavior of 〈P δ

k 〉 for the incomplete J = 3 and J = 4 spectra as
well as for the superposition of these two spectra; it also shows
the two curves obtained by fitting the numerical points to (28).
The plot looks like very similar to Fig. 5, except for the larger
spreading of the numerical points at low k values. In the case
of pure level sequences, the energy dependence of χ does not
spoil the results, since we obtain an excellent agreement for l

and ϕ (row 8 of Table 2). For the mixed sequence the situation
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is clearly worse (see row 7 of Table 2). Even though the fitted
value of ϕ is slightly smaller than the actual one, the result is
still reasonable; however the fit is not able to decide if there are
two mixed sequences or if there is just only one pure sequence.

These results show that starting from the power spectrum
of the δq function and the appropriate forms of the correlation
functions, one can obtain a powerful tool to estimate the frac-
tion of observed levels and the number of mixed symmetries in
many experimental situations.

4. Conclusions

Using the δq function we have studied the distortion cre-
ated by the existence of missing levels and mixed symmetries
in the correlation structure of a given spectrum. We have de-
rived theoretical expressions for the average power spectrum
of the δq statistic; it depends on the fractions of observed lev-
els ϕi and the fractional densities ηi of the different sequences
that compose the spectrum. This theory predicts that the cor-
relation structure of the spectrum undergoes a transition from
the 1/f noise of RMT spectra to the 1/f 2 noise characteris-
tic of uncorrelated spectra as the fraction of missing levels or
the number of mixed symmetries increase. One important re-
sult is that the intermediate stages of this transition are different
in both cases: the low-frequency part of the power spectrum
is very sensitive to the existence missing of levels, while the
high-frequency part is more sensitive to the number of mixed
sequences. Thus, if the statistical nature of the actual spectrum
is known, it seems possible to extract information on the rel-
evant parameters of the problem, by fitting the experimental
power spectrum to the theoretical formulas. On the contrary,
if the fraction of observed levels and the number of mixed se-
quences are known, we can obtain some hints about the actual
correlation structure.

In order to test these expressions, we have used large scale
shell model calculations. Complete JT spectra have been ap-
propriately transformed into imperfect spectra by dropping at
random a fraction of levels or superposing several JT spectra.
Using a nonlinear least-square fit to the appropriate expression
we have obtained estimates of the average fraction of observed
levels 〈ϕ〉 as well as of the number of mixed symmetries l. In
general, the agreement between the results of the fit and the
actual parameters used to generate the level sequences ranges
from good to remarkable. Thus we conclude that the method
presented in this Letter is very useful to extract relevant statis-
tical information from experimental spectra.
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