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Isospin mixing and energy distributions in three-body decay
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Abstract

The structure of the second 2+ resonance in 6Li is investigated with special emphasis on its isospin 0 components. The wave functions are
computed in a three-body model (α + n + p) using the hyperspherical adiabatic expansion method combined with complex scaling. In the decay
into three free particles the symmetry conserving short-range interaction dominates at short distance whereas the symmetry breaking Coulomb
interaction dominates at intermediate and large distances resulting in substantial isospin mixing. We predict the mixing and the energy distributions
of the fragments after decay. Computations are consistent with available experiments. We conjecture that nuclear three-body decays frequently
produce such large isospin mixing at large distance where the energy distributions are determined.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The spatial extension of halo states depends sensitively on
their binding energy [1]. The reason is that the outer particles
forming the loosely bound halo are confined by an attraction
or a barrier of moderate size. This sensitivity to the energy
must be particularly important for resonances owing their ex-
istence to a confining barrier. For the same reason, due to the
effect of the Coulomb interaction, the structure of isobaric ana-
log resonances can be very different. This influence can also
be reflected in mixing of different isospin components. For or-
dinary states the isospin mixing has been established to be in
the range 10−4–10−5 [2]. For isobaric analogs to halo states the
mixing could be substantially larger [3].

Early theoretical investigations of decay of three-body ana-
log halo states in light nuclei indicated that isospin is very
well conserved [4,5]. A very small isospin mixing is also de-
duced from the reduced measured branching ratio of decay of
the highest known 2+ resonance in 6Li (with excitation energy
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of 5.37 MeV and associated to isospin 1) into the α-deuteron
two-body system [6,7] (admixture of 8 × 10−3 or less). Nev-
ertheless, isospin mixing in 6Li-states is also investigated in a
number of reaction experiments 2H(α,α)2H∗ where 2H∗ is the
neutron–proton system in a spin singlet relative state which can-
not be populated when isospin is conserved. Strong evidence
is claimed for the formation of 2H∗ which means substantial
isospin mixing and especially when the incident energy is low
[8–10]. Reasonable agreement between measurements and sim-
ple model calculations can only be obtained with inclusion of
both spin zero neutron–proton s-wave (2H∗) and nucleon-α
relative d-waves. Some of these authors [8] suggest the large
isospin mixture to be due to direct reactions bypassing the 6Li
resonance, whereas others [9] call for better methods for includ-
ing the Coulomb interaction in three-body calculations.

Recent investigations emphasized that the structure of three-
body resonances can change substantially from small to large
distances [11–13]. This means for instance that the amount of
isospin may vary substantially with the (hyper)radial coordi-
nate describing the wave function. In other words, the relative
weights of different partial wave components can be very dif-
ferent from small to large distances, e.g. in 6Li (α + n + p)
for neutron and proton in relative s-waves and in triplet or
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singlet spin states corresponding to T = 0 or T = 1, respec-
tively. The absence of decay of the 2+ resonance in 6Li into
the deuteron channel is not a direct evidence for a correspond-
ingly small admixture of isospin 0. The dominant isospin 1
wave function at small distance can decay into continuum fi-
nal states with isospin 0 provided the coupling is sufficiently
strong. This is most likely at distances just outside the ranges
of the short-range interactions where the Coulomb interaction
still is substantial and completely dominating.

The purpose of the present Letter is to investigate the isospin
conservation in the 2+ three-body resonance in 6Li, that is the
isobaric analog state of the corresponding 2+ resonance in 6He
and 6Be, for which isospin zero components are forbidden. We
start with a sketch of the necessary theoretical framework. We
then discuss the structure of the resonance and present the final
state energy distributions. We finish with a brief summary and
the conclusions.

2. Theoretical framework

Bound states and resonances are obtained with the hyper-
spherical adiabatic expansion method combined with com-
plex scaling. These three-body wave functions Ψ are then ex-
pressed as a linear combination of the complete set of functions
{Φn(ρ,Ω)} [14]

(1)Ψ (x,y) = 1

ρ5/2

∑
n

fn(ρ)Φn(ρ,Ω),

where ρ is the hyperradius and the five hyperangles Ω =
{α,Ωx,Ωy} can formally be chosen in any of the three Jacobi
sets, or as we prefer the wave function can be given in terms
of three Faddeev components each associated with one Jacobi
set. Each of these Faddeev components are in turn expanded
in partial waves with a basis of corresponding hyperspherical
harmonic functions.

The functions Φn(ρ,Ω) are the eigenfunctions of the angu-
lar part of the Faddeev equations, and the radial coefficients
fn(ρ) are obtained from the coupled set of radial equations
where the eigenvalues of the angular part enter as effective adia-
batic potentials [14]. Due to the complex scaling the wave func-
tions fall off exponentially at large hyperradii for bound states
and resonances with width-to-energy ratios less than twice the
rotation angle.

The components of the solution directly contain informa-
tion about the symmetry and hence about the isospin mixing,
which can vary with hyperradius. This point has apparently not
been appreciated in the old analyses [6,7]. For instance, in 6Li
(n+p+α) the total isospin is obtained by coupling neutron and
proton isospins to either 0 or 1. Components with both isospins
are in principle permitted, like for instance (�x, �y,L,S, J ) =
(0,2,2,0,2), (1,1,2,0,2), where �x and �y are orbital angular
momenta related to the Jacobi coordinates x and y (with x pro-
portional to the neutron–proton distance), and L, S and J are
the total orbital, spin and total angular momenta. In fact these
two components do contribute, and are coupled due to the pres-
ence of the α-particle, which Coulomb interacts with the proton
but not with the neutron. This can totally break the (isospin)
symmetry if the symmetry breaking interaction is dominating
as it is for large distances. Thus, small isospin mixing at small
distance can be compatible with a very large isospin mixing at
large distance.

The kinetic energy distribution of the fragments after de-
cay of a resonance is, except for a phase-space factor, obtained
as the absolute square of the total wave function in coordinate
space for a large value of the hyperradius ρ, but where the five
hyperangles are interpreted as in momentum space [12,13]. Af-
ter integration over the four hyperangles (Ωx,Ωy) describing
the directions of the two Jacobi momenta, kx and ky , con-
jugate to x and y, the probability distribution as function of
k2
y ∝ cos2 α, where α is the fifth momentum hyperangle, is

given by

P
(
k2
y

) ∝ P
(
cos2 α

)

(2)∝ sin(2α)

∫
dΩx dΩy

∣∣Ψ (ρ,α,Ωx,Ωy)
∣∣2

.

The kinetic energy of the third particle is proportional to k2
y ∝

cos2 α which then gives the energy of the particle relative to
its maximum possible energy in the decay process. These ob-
servables carry information about initial state and decay mech-
anisms.

3. Details of the calculations

The 2+ resonance in 6Li has been computed using the same
α-nucleon interaction as in [15] for 6He. For the neutron–proton
potential we use the one in [16]. Components with relative two-
body orbital angular momenta up to 4 are considered. The main
components included in the calculation are shown in Table 1
(the first column labels the components). A proper choice of
the maximum value of the hypermomentum (Kmax) for each of
them is crucial to obtain a correct convergence of the effective
potentials at a sufficiently large distance. The Kmax value for the

Table 1
Components included for the 2+-state in 6Li. The left part refers to the first
Jacobi set (x from neutron to proton), and the right part to the second and third
Jacobi sets (x from one of the nucleons to the α-particle). The first column
numbers the different components

1st Jacobi set 2nd and 3rd Jacobi sets

�x �y L sx S Kmax T �x �y L sx S Kmax

1 0 2 2 0 0 240 1 0 2 2 1/2 0 44
2 2 0 2 0 0 180 1 0 2 2 1/2 1 44
3 1 1 1 1 1 180 1 2 0 2 1/2 0 70
4 1 1 2 1 1 64 1 2 0 2 1/2 1 44
5 2 2 2 0 0 90 1 1 1 1 1/2 1 240
6 0 2 2 1 1 240 0 1 1 2 1/2 0 240
7 2 0 2 1 1 240 0 1 1 2 1/2 1 44
8 1 1 2 0 0 240 0 2 2 1 1/2 1 32
9 2 2 1 1 1 240 0 2 2 2 1/2 0 50

10 2 2 2 1 1 240 0 2 2 2 1/2 1 42
11 2 2 3 1 1 240 0 1 3 2 1/2 0 42
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Fig. 1. Outer panel: Real parts of the (complex scaled) effective adiabatic po-
tentials for the 2+ resonance in 6Li. Inner panel: Real parts of the radial wave
functions associated to the three most contributing effective potentials (indi-
cated by the thick curves in the outer part).

components 6–11 in the left part of Table 1 is relatively large to
ensure an accurate calculation of their contribution, since these
are precisely the components with zero isospin (T in the table)
that are not allowed in 6He or 6Be. For the remaining compo-
nents (not shown in the table) the Kmax-value is at least 20.

The outer part of Fig. 1 shows the real parts of the ef-
fective potentials obtained after use of the (complex scaled)
hyperspheric adiabatic expansion method. The lowest effec-
tive potential converges towards the deuteron binding energy,
and appears due to the inclusion of the components with zero
isospin in the neutron–proton channel. These potentials are in-
distinguishable from the ones obtained when the basis size is
reduced by a factor of two. This fact guaranties the convergence
of the potentials at least up to 100 fm.

Calculation of the resonance wave function requires spec-
ification of the corresponding boundary condition. As shown
in [17], a simple box boundary condition at a sufficiently large
distance is enough to obtain a resonance wave function with
the proper asymptotics. This requires extrapolation of the ef-
fective potentials for ρ values beyond 100 fm. An expansion
of the form A/ρ + B/ρ2 + C/ρ3 + · · · is used (except for the
lowest one). The non-adiabatic coupling functions Pnn′(ρ) and
Qnn′(ρ) (see [14]) are extrapolated as Qnn(ρ) = AQnn/ρ

2 +
BQnn/ρ

3 + CQnn/ρ
4 for diagonal Q’s (diagonal P ’s are zero),

and as AP,Q/ρ3 + BP,Q/ρ4 + CP,Q/ρ5 for the non-diagonal
P ’s and Q’s.

A box boundary condition at ρmax = 1000 fm gives rise
to a 2+ resonance in 6Li with energy and width (ER,ΓR) =
(1.67,0.51) MeV (5.37 MeV excitation energy), that agrees
with the experimental value of (ER,ΓR) = (1.67 ± 0.02,

0.54 ± 0.02) MeV [18] (the resonance energy is indicated in
Fig. 1 by the dashed line). However, the extrapolation used
for the effective potentials implies that the asymptotics of
the radial wave functions must be Fξ (η, κρ) − iGξ (η, κρ),

where κ =
√

2mE/h̄2, Fξ and Gξ are the regular and irreg-
ular Coulomb functions, and the Coulomb charge η and the
index ξ can be easily obtained from A, B , and AQnn . When
this asymptotic condition is imposed, a much smaller value of
ρmax is enough to obtain the resonance wave function (but still
Fig. 2. Thick curves: Radial wave functions corresponding to the three
most contributing effective potentials. Thin curves: Expected asymptotics
(Fξ (η, κρ) − iGξ (η, κρ)) from the extrapolated potentials for ρ > 100 fm.

ρmax > 100 fm, and the expansions of the effective potentials,
P ’s, and Q’s are required).

In the inner part of Fig. 1 we show the real parts of the
computed radial wave functions. A complex scaling angle of
0.10 rads has been used. To make the picture clear we only show
the ones associated with the three most contributing effective
potentials (thick curves in the outer part of the figure). It is im-
portant to note that the contribution from the lowest adiabatic
potential, the one holding deuteron at large distances, is very
small, providing about 10−3% of the norm, which is consistent
with [6,7]. It is also necessary to investigate whether the radial
wave functions have already reached the asymptotic behaviour
for ρ < 100 fm, i.e., in the ρ-region where the calculation is
purely numerical. This would mean the asymptotics given by
the extrapolated effective potentials, P ’s, and Q’s, is consistent
with the numerical results.

This is tested in Fig. 2, where the real and imaginary parts
of the three most relevant radial wave functions (thick curves)
are shown and compared to the expected asymptotics as given
by the regular and irregular Coulomb functions, with Coulomb
charges and indices computed numerically from the extrapola-
tion of the potentials (thin curves). The matching between the
numerical wave functions and the asymptotics is already very
good at about 60 fm, clearly below the ρ-value (100 fm) from
which the extrapolations are used. The labels 1, 2, and 3 refer
to the deepest thick potential, intermediate thick potential, and
repulsive thick potential in the outer part of Fig. 1.

From the three-body wave function in Eq. (1), we define the
total weight (as function of ρ) as:

(3)W(ρ) =
∫

sin2 α cos2 α dα dΩx dΩy

∣∣Ψ (ρ,α,Ωx,Ωy)
∣∣2

.

When writing Ψ in the first Jacobi set (x from neutron to pro-
ton) we find, after integration over ρ in Eq. (3), that roughly
82% of the weight is given by the three first components in the
left part of Table 1 (38%, 20%, and 24%), while the remaining
18% is distributed among the other components.
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Fig. 3. Top: Main contributions (as a function of ρ) of the components in the
left part of Table 1 to the eigenfunction Φ3(ρ,Ω) associated to the third adi-
abatic potential (thick repulsive potential in Fig. 1). The thin and thick curves
correspond to components associated to T = 1 and T = 0, respectively. Bot-
tom: Weight of the T = 1 (dashed) and T = 0 (dot-dashed) components in the
2+ resonance wave function in 6Li (scaled by a factor 2.5). The thick and thin
solid curves are the relative weight of the T = 0 components and the relative
weight of the 9th component in the left part of Table 1, respectively.

It is remarkable that the last components from 6 to 11 in
the left part of Table 1 (associated to zero isospin) accumulate
about 4.5% of the integrated weight, most of it correspond-
ing to component 9. This is due to the third adiabatic potential
(repulsive thick potential in Fig. 1), whose corresponding eigen-
function Φ3(ρ,Ω) is dominated at intermediate distances by
the components with zero isospin in the neutron–proton chan-
nel. This is shown in the upper part of Fig. 3, where we show,
as a function of ρ, the main contributions to Φ3(ρ,Ω) from the
components in the left part of Table 1. The thick curves corre-
spond to components 8 and 9 in the table (T = 0). As observed
in the figure, these components have a non-negligible weight at
intermediate distances. In particular, component 9 gives a large
contribution from 20 to 50 fm. Beyond 50 fm component 3
dominates (T = 1), but still a 5% contribution from compo-
nent 9 is present. The rapid transition in Φ3 from component 9
to 3 reflects that the isospin symmetry is totally broken, because
only the Coulomb interaction is active. The lowest centrifugal
barrier with �y = 1 is then abruptly preferred over �y = 2. At
short distances, as seen on the bottom of Fig. 2, the radial coeffi-
cient corresponding to the third adiabatic potential is negligible,
but beyond 20 fm, the amplitude of f3(ρ) is similar to the one
in f1(ρ) and f2(ρ).

Let us denote now by WT =1 and WT =0 the contributions to
W(ρ) in Eq. (3) from the T = 1 and T = 0 components in the
three-body wave function, respectively. These contributions are
shown (scaled by a factor 2.5) by the dashed and dot-dashed
curves in the bottom part of Fig. 3. At short distances the T = 1
contribution clearly dominates, while WT =0 becomes relevant
at intermediate ρ’s. This is more clearly seen by the thick solid
curve, that shows the relative weight of the T = 0 components.
From 20 to 50 fm this weight reaches up to 40% of the total.
This region coincides with the one where Φ3(ρ,Ω) has a rel-
Fig. 4. Thick curves: Energy distribution of the α (solid), neutron (dashed), and
proton (dot-dashed) after decay of the 2+ resonance in 6Li. Thin curves: The
same energy distributions after excluding the T = 0 components.

evant contribution from the T = 0 components (upper part of
the figure). Beyond 50 fm WT =0 stabilizes at about 10%. In the
figure the thin curve shows the relative contribution to the to-
tal weight from component 9. This contribution gives most of
the T = 0 contribution, and governs the general behaviour of
WT =0/W .

The non-negligible isospin mixing found at large distances
can be relevant for those observables sensitive to the asymptotic
behaviour of the wave function, like for instance the energy dis-
tributions of the fragments after decay. In Fig. 4 we show the α

(solid), neutron (dashed), and proton (dot-dashed) energy dis-
tributions according to Eq. (2). The thick curves show the total
distributions, while the thin ones give the same distributions
when the T = 0 components have been excluded. The results
shown in the figure are very stable for ρ values in Eq. (2) rang-
ing from 65 to 85 fm. In particular the curves shown in the
figure correspond to ρ = 75 fm. As seen in the figure, inclu-
sion of the T = 0 components produce a visible change in the
energy distributions, although the general behaviour of the dis-
tributions does not change.

4. Summary and conclusions

We have investigated dynamic isospin mixing in nuclear res-
onances. We illustrate by the highest known 2+ resonance of
the three-body system 6Li, where components with different
isospin simultaneously can be present. The Coulomb interac-
tion between α-particle and proton is breaking the isospin sym-
metry and mixing isospins of 0 and 1. The isospin zero compo-
nents essentially only appear in the neutron–proton continuum.
The deuteron is populated in the decay by about 10−3%, that is
consistent with the experimental upper limits [6,7]. The amount
of isospin zero is consistent with that found in experiments [8,9]
(up to 30% isospin mixing for low energies), while here the
isospin mixing is due to the decay process and not direct reac-
tions as suggested by these authors.

We have used the complex scaled, hyperspheric adiabatic
expansion method with an extraordinary large basis for the
components with zero isospin. The isospin content of the ac-
curately computed resonance wave functions vary substantially
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from small to large distances. The relative isospin 0 contribu-
tion is small at small distances where the main contribution
resides. This relative contribution reaches about 40% at inter-
mediate distances, and stabilizes beyond 50 fm at roughly 10%
of the total. The total contribution integrated over all distances
of the isospin 0 components is about 4% which is much larger
than for ordinary stable nuclei. This mechanism of dynamic
isospin mixing is a common feature in decays of nuclear three-
(or more-)body resonances.
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