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1. First feasibility experiment for
EXL

It is a well-known fact that the study of light-ion induced direct reactions, like elastic
and inelastic scattering, transfer, and charge-exchange reactions, provides important
information on the structure of nuclei. Hence, elastic and inelastic scattering ex-
periments with light projectiles like proton have been routinely performed in the
past. Before having the radioactive ion beams (RIB), such studies were limited to
the use of stable or long-lived nuclei as targets in normal kinematics experiments.
But with the advent of RIB facilities there is a possibility to extend the nuclear
structure investigations to exotic nuclei as well. In this way, virtually the whole
chart of the nuclei opens up for research so that theoretical models can be tested
and verified all the way up to the limits of nuclear existence: the proton and neutron
drip lines [1]. In particular, using stored radioactive beams and exploiting reactions
in inverse kinematics inside a storage ring using thin internal targets enables, com-
paring to investigations with external targets, high resolution measurements down
to very low momentum transfers. This technique allows, in many cases, to deduce
essential nuclear structure information. It also provides a gain in luminosity from
accumulation and recirculation of the radioactive beams [2]. The high luminosities
provided in these kinds of ring experiments allow measurements at very small mo-
mentum transfers with high accuracy; the very thin targets permit the low-energy
scattered target-like recoil ions to make it through the target-beam interaction re-
gion and to enter the detectors installed around the target without major distortion
of energy and angular resolution. The possibility of studying these low-energy re-
coil particles is especially important when getting away from the region of stable
nuclei, since it will allow us to study the periphery of exotic nuclei. For example,
one of the most outstanding discoveries was the finding that the nuclear matter may
appear under certain conditions with a qualitatively new type of nuclear structure,
so-called “halo” structure [3, 4, 5]. It magnifies, among other nuclear structure as-
pects, the importance of studying such systems in the limits of very low momentum
transfers. Other aspects like the in-medium interactions in proton-neutron asym-
metric nuclear matter, giant resonances with strength distributions totally different
from those known in stable nuclei, the shell structure in nuclei of extreme proton-
to-neutron asymmetry leading to disappearance of the known magic numbers and,
in turn, to the appearance of new shell gaps could also be studied well in the low
momentum transfer region. These were all the motivations to start with the design
of a new detection system in the framework of the upcoming FAIR1 facility [6]. In

1 Facility for Antiproton and Ion Research

1



2 Chapter 1: First feasibility experiment for EXL

order to perform a feasibility study for the EXL2 setup [7] at the NESR storage ring,
a test experiment was set up at the existing storage ring ESR3 in December 2005
at GSI Darmstadt, Germany. In this feasibility test, we used the ESR storage ring
to study the reactions resulting from the interaction of a stable 136Xe beam with
an internal hydrogen target. The test experiment was intended to investigate the
performance of the detector systems and the background conditions in a realistic
storage ring scenario.

1.1 Experimental setup

For the feasibility experiment, detector elements representing all the major detector
systems of the future EXL setup, along with an internal hydrogen gas-jet target
were installed at the ESR (Fig. 1.1). Most of the various detector elements in this
experiment covered only a small fraction of the total available phase space. A 136Xe
beam with an energy of 350 MeV/A was injected into the ESR from the heavy-ion
synchrotron SIS, periodically exposed to electron cooling and moderately bunched
by an RF cavity. We had two bunches of totally 100 ns length; the circumference
of the ESR storage ring was about 108 m (≈ 500 ns). The beam storage lifetime
was found to be about 30 min; on average more than 109 ions were circulating
with a revolution frequency of 2 × 106/s, scattering off the internal hydrogen gas-
jet target (with a thickness of ≈ 1012 atoms/cm2) which was installed inside the
vacuum chamber [8]. The detector setup for fast ejectiles consisted of two arrays
with a total of 15 organic scintillators, each coupled with an iron converter, for
detection of fast neutrons and light charged particles which are detectable mostly
at forward angles due to their relativistic velocities when being produced in beam-
target interaction. The two scintillator arrays were installed at about 230 cm and
400 cm downstream from the target (Figs. 1.1 and 1.2). Every scintillator and iron
element had a rectangular cuboid shape with the dimensions of 10× 50× 4 cm3 and
10×50×5 cm3, respectively. Each iron-scintillator couple was mounted in such a way
that we had 4 cm of scintillator material in the beam direction preceded by 5 cm iron.
In total we had eight iron-scintillator couples put together in a square-like frame
making the first array and seven put together as a wall making the second array.
For detection, identification, and fast timing of the beam-like reaction products we
had a position sensitive silicon p-i-n diode (of 300 µm thickness and 45 × 45 mm2

surface area) followed by a 1 mm thick scintillation detector. They were installed
further downstream the target after the first dipole magnet in a movable vacuum
pocket driven in and out of the beam tube. Furthermore, a multi-wire proportional
chamber (MWPC) for detection of the product of atomic charge-exchange reactions
and a photomultiplier (PM) for luminosity measurements were the other detector
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1.1. Experimental setup 3

Figure 1.1: Experimental setup for the EXL test experiment performed at the storage

ring ESR at GSI. For details see the text.

elements in the setup which were mounted outside the UHV (Ultra High Vacuum)
reaction chamber. A UHV compatible single-sided Si-strip detector (Fig. 1.3) of
1 mm thickness and 40× 40 mm2 area (totally 40 strips) for detection of the target-
like reaction products was the only detector element mounted inside the UHV of the
vacuum chamber. The detector was designed [9] on the basis of a special vacuum
compatible ceramic support and connected to the preamplifiers located outside of the
reaction chambers via home-made copper wires with glass pearls acting as isolation.
The Si-strip detector was read out in five groups of silicon strips, each of which
with eight strips, and was used to detect the recoil protons. Energy deposition
and position of the particles were reconstructed using a charge-division method
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Figure 1.2: Top view of the organic scintillators used for detection of fast ejectiles. The

angular ranges that are shown here represent the range of the scattering angle θ that

covers the whole of the two detector layers labeled as “1st layer” and “2nd layer”. Note

that the iron converters in front of the scintillator bars are not shown here.

Figure 1.3: Photo of the UHV compatible Si-strip detector used in the EXL test experi-

ment, together with the mounting flange and the wiring.

(Fig. 1.4). The detector was first tested with an 241Am α-source and an energy
resolution of 25 keV at 5 MeV (0.5%) was obtained (Fig. 1.5). It also showed a
very good position resolution in terms of having well separated peaks (Fig. 1.6).
The UHV conditions in the storage ring require any equipment placed inside to be
resistant to high temperatures. The Si-strip detector was tested and it was shown
that it can withstand temperatures of up to 200◦ Celsius [10].

Geometrically, the silicon detector edges were placed at angles of about 89.5◦

and 73.4◦ with respect to the beam direction (z-axis) in such a way that the normal
vector to the detector surface, passing through the mid-point of the detector, points
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Figure 1.4: Charge-division readout for the Si-strip detector. The sum of signal 1 and

signal 2 gives the energy deposited in the detector, and their ratio gives information about

the coordinate of the particle [9].
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Figure 1.5: Energy spectrum of individual strips of the Si-strip detector, tested with

an 241Am α-source. The fit is a Gaussian with mean = 5637.11 ± 0.02 keV and

sigma = 11.63 ± 0.01 keV [9].
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Figure 1.6: Position resolution of one group of the Si-strip detector, tested with an 241Am

α-source. The individual strips are clearly separated [9].

straight to the center of the interaction point inside the target chamber (Fig. 1.7);
the distance of the mid-point of the detector square surface to the target point was
about 14.3 cm. To protect the detector from the UV light coming from beam-target

Figure 1.7: Position of the Si-detector with respect to the beam direction and the inter-

action-profile center O (OH is perpendicular to the mid-point of the detector and is about

14.3 cm long). The angular positions of the edges of the five groups of silicon strips with

respect to the beam direction in laboratory frame (LAB) are shown as well. The circle

drawn at the target point represents the extended target. Note that the dimensions are

not to scale.
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interactions, a thin nickel foil of 1 µm thickness was mounted in front of it.

1.2 Luminosity monitors

During the test experiment the beam was moved horizontally along the x-axis (per-
pendicular to the beam axis and the direction of the gas-jet injection) over the target
in order to measure the extension of the interaction profile by different relative lu-
minosity monitors. Three detector elements were used to measure the relative lumi-
nosity: a MWPC that was used to detect the (Xe54+ →Xe53+) beam ions deflected
out of the central orbit of the ring after atomic charge exchange, a photomultiplier
installed close to the target that was used to detect UV light produced from the
beam-target interaction, and the silicon detector that was used to detect the re-
coil light particles. The interaction profiles obtained from these three detectors are
shown in Fig. 1.8. The size of the target profile is obtained to be about 7.4 mm
(FWHM) after unfolding the beam size which was estimated to be about 5 mm
in diameter. The absolute luminosity was calculated measuring the beam intensity
(by means of a current transformer) and the target density and reached the value
of (6 ± 2) × 1027 cm−2 s−1. The target density was constantly recorded during the
experiment and the beam intensity was also registered during each period of data
acquisition (run) with cooled and stabilized beam. For a specific run with the dura-
tion of 18976 seconds, the registered ESR beam current was about 6.16 mA and the
average target density during the run time was obtained to be about 2.29×1012/cm2

(the target density was recorded every 3 seconds). This results in a luminosity of
about 1.6 × 1027 cm−2 s−1 for a fully stripped 136

54 Xe. It is comparable to the lumi-
nosity calculated from the nominal values of the average number of ions circulating
in the ring (≈ 109) and the revolution frequency of ions (≈ 2 MHz).

1.3 Heavy-ion and forward detector systems

The detection system for beam-like reaction products in the ESR test experiment
consisted of a silicon p-i-n diode detector with a thickness of 300 µm and an area of
45 × 45 mm2 followed by a thin scintillator of 1 mm thickness, which was used for
triggering and fast timing of the beam-like particles. The system was installed about
21 m downstream from the target (≈ 6 m after the dipole magnets; see Fig. 1.1). The
energy resolution of the scintillator did not allow for isotope separation; thus, the
energy loss of heavy-ions was measured by the p-i-n diode. There was a possibility
for the p-i-n diode to be moved in and out of the ring; during the refilling of the
ESR ring and before the beam was cooled down we needed to bring out the detector
in order to keep it away from any possible radiation damage caused by the direct
intense beam. This feature allowed us as well to change the distance of the detector
with respect to the center of the ring during the experiment (the surface of the
detector was perpendicular to the beam direction). This way, one could scan for
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Figure 1.8: The interaction profile as measured by three different detection systems [11].

Asterisks, hollow squares, and hollow circles represent data from MWPC, Photomultiplier

(PM), and Si-detector, respectively. For the sake of clarity, the data points of PM and

Si-detector are shifted a bit to the right and the left side of the MWPC data, respectively.

The fit is made to the MWPC data. The interaction profile has a width of 8.95±0.22 mm

(FWHM).

the heavy ions deflected from the beam direction, which are basically those which
undergo an interaction.

Using the combination of the heavy-ion detection setup and the two series of
scintillator assemblies, installed about 2.3 m and 4 m downstream of the target,
one can identify different reaction channels like (p, n), (p, pxn), and (p, 2pxn). In
such reactions there is a possibility that the light ejectiles, emitted at forward angles
due to relativistic velocities, are detected by the scintillator arrays in coincidence
with the beam-like particles hitting the small area p-i-n diode. The result of such
a coincidence measurement is shown in Fig. 1.9 (middle panel). We also used the
Geant4 package to compare data with simulations. Comparing to the results of
the simulations (bottom panel), it reveals the identification of at least two reaction
channels, namely 136Xe(p, np) and 136Xe(p, 2p). The simulations are performed for
135Xe and 135I of 350 MeV/nucleon.



1.3. Heavy-ion and forward detector systems 9

Deposited Energy [MeV]

C
ou

nt
s

10000

20000

10
20
30

40
50

60
70

I Xe

400 450 500 550 600 650 700 750

5000

10000

15000

Figure 1.9: Identification of the reaction channels. The top panel shows the deposited

energy (in MeV) of heavy ions in the p-i-n diode. Here, all the reaction products are

registered. In the middle panel the reaction channels are differentiated through requiring

a coincidence between two coupled detectors in the first series of scintillators (the two

detectors are labeled as “1st layer” and “2nd layer” in Fig. 1.2). The spectrum of the first

panel clearly shows the dominance of single channel, when compared to the middle panel

in terms of the amount of statistics after requiring coincidence. The bottom panel shows

the Geant4 simulation results for 135I and 135Xe ions of 350 MeV/nucleon that are detected

by the p-i-n diode in the reaction channels 136Xe(p, 2p) and 136Xe(p, np), respectively. The

left peak corresponds to I isotopes and the right one to Xe. The results of the upper two

panels are calibrated to the simulations at the Xe peak.

Fig. 1.10 shows the deposited energy in the two consecutive scintillator layers of
the first series of the fast ejectile scintillators (see Fig. 1.2). The results are from
data analyses and simulations in Geant4 and Geant3 as well. The Geant3 results
were obtained using the Virtual Monte Carlo (VMC)4 package. The two simulation

4 The Virtual Monte Carlo provides an abstract interface into the Monte Carlo transport codes:
Geant3, Geant4 and Fluka. The user VMC based application, independent from the specific
Monte Carlo codes, can then be run with all three simulation programs. [12]
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Figure 1.10: Deposited energy (in MeV) in the two consecutive layers of the first series

of fast ejectile scintillators (shown in Fig. 1.2). On the left side the experimental spectra

are shown. These spectra were obtained using the coincidence condition between the two

scintillators labeled as “1st layer” and “2nd layer” in Fig. 1.2. Shown on the right are the

corresponding simulation results of 350 MeV protons thrown isotropically. The solid and

dotted histograms are the results of simulations with Geant4 and Geant3 (using the VMC

package), respectively.

results of Geant3 and Geant4 are well comparable. There is a small peak, appearing
at around 20 MeV, in the simulated spectrum of the “2nd layer” which is not present
in the experimental data. It is built up by those protons which are scattered at angles
around 3.7◦ (see Fig. 1.2) and hit the “1st layer” at the upper edge while they miss
the first iron layer before this scintillator layer. Thus, the small peak appears more
or less at the same position as that of the peak of the “1st layer”, since it is built up
by those events which effectively pass through one layer of iron placed right before
the “2nd layer”; the peak of the “1st layer” is built up by events which essentially pass
through the first iron layer before being registered by the “1st layer”. The reason
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that we do not see the small peak of the “2nd layer” in the data should be due to the
misalignment of the iron-scintillator layers resulting in a geometry slightly different
from what we implemented in the simulations (Fig. 1.2).

1.4 Silicon strip detector; data analysis and

results

In the feasibility experiment we used different detector elements in order to study
different reaction channels by installing them at appropriate positions. This way, we
could detect various interaction products such as the light ejectiles and the projectile-
like particles by (at least) partly covering the predicted phase space of the expected
interactions. In order to study the elastic scattering channel of proton-136Xe a UHV-
compatible single-sided silicon strip detector of 1 mm thickness preceded by a 1 µm
thick foil of nickel was installed inside the target chamber. Using the data from
the first group of strips of the Si-strip detector, the 136Xe(p, p) elastic scattering
differential cross section was determined. Since the registered data by the silicon
detector (including the first group) comprises the elastic as well as inelastic scattering
events, the most appropriate way of studying the elastic scattering channel would
be to measure the scattering angles with a good resolution. Although the silicon
detector did not have a sufficient angular resolution, measurement of the proton
elastic scattering cross section was possible using the first group of the Si-detector.
This is because in the first group of strips primarily elastic scattering events are
expected, since the inelastic scattering cross section is expected to be negligibly small
at angles covering this group of strips. The solid angle coverage of the first group
of strips can easily be calculated from Fig. 1.7 to be about 15.4 msr. Apart from
the elastic scattering channel, there is a possibility to study the inelastic scattering
channels provided that the solid angle covered by the Si-detector overlaps (at least
partly) with the phase-space coverage of the respected channels.

1.4.1 Elastic scattering cross section

The elastic scattering cross section could be measured knowing that the first group
of the Si detector is thick enough to effectively stop the elastically-scattered protons.
This is also confirmed through simulations by calculating the deposited energy of
elastically-scattered protons in this group. It is convenient to make use of the
Mandelstam variable −t, which is defined as the square of the four momentum
transfer. For the proton-136Xe elastic scattering one can measure the cross section
as a function of −t, which is expressed in terms of the proton scattering angle θp in
LAB, as follows (Eq. A.49):

− t = 4
(

cpCM
)2

(

1

1 + (γLAB)2 tan2 θLAB
p

)

.
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It is also possible to express −t in terms of the proton kinetic energy KLAB
p after

collision with the heavy ion (Eq. A.52):

2mpK
LAB
p = 2

(

cpCM
)2 (

1 + cos θCM
p

)

≡ −t,

in which mp, KLAB
p , and θCM

p are the rest mass of the proton, kinetic energy of the
recoil proton in the LAB frame, and scattering angle of proton in the center-of-mass
frame (with its z-axis along the beam direction), respectively. In order to determine
−t from the recoil energy KLAB

p (since the angular resolution of the Si-detector was
not good enough), the energy of the protons was corrected for their energy loss in the
nickel foil which was mounted in front of the Si-detector. For a 136Xe beam energy
of 350 MeV/nucleon, the parameters cpCM and γLAB are obtained to be 0.8779 GeV
and 1.3695, respectively. Figs. 1.11 and 1.12 show the experimental differential cross
section (solid squares) as a function of −t, obtained using Eq. A.52 after correcting
for the energy loss in the nickel foil and assuming that the recoil protons would not
punch through in the first group of the Si-detector. The curve shows the prediction
of the Glauber multiple-scattering theory for the elastic scattering cross section [16,
9]. For comparison, the simulations for point-like and extended interaction profiles
are shown as well. The simulations were performed by implementing the geometry
in a Geant4/VMC5 code. Exploiting the VMC package allowed us to compare the
Geant3 and Geant4 simulation results. We started from the Glauber theory for
the elastic scattering cross section (solid curve) and used it as the generator for
the elastic scattering channel. There is a cut-off in the simulations for the point-like
target (asterisks in the top panel of Fig. 1.11) at about −t = 0.0067 (GeV/c)2 which
corresponds to the maximum scattering angle with respect to 90◦ in LAB at which
a proton can be generated at the target point and still end up in the first group of
silicon strips. In the absence of threshold, the simulation points should, in principle,
start to show up from about −t = 0.0001 (GeV/c)2, which corresponds to protons
generated with kinetic energies of about 70 keV.

In Fig. 1.11 (bottom panel), the shape of the simulations for the extended inter-
action profiles agree reasonably well with the experimental results up to a value of
about −t = 0.011 (GeV/c)2, however, beyond this value of −t, there is an abrupt
drop in the number of counts which is not compatible with the trend at lower −t
values. This might have to do with the operation of the Si-detector in this experi-
ment. Fig. 1.12 compares the Geant4 simulation results for two extended interaction
profiles with the experimental data. The simulated data points start to show up at
around −t = 0.0011 (GeV/c)2 due to the energy threshold of 500 keV of the silicon
detector. This is also visible in the experimental data points at very low values of
−t. The shapes of the simulations for the extended interaction profiles agree reason-
ably well (over the shown range of −t) with the experimental results; with the best
agreement for a profile with a FWHM of 10.5 mm (star) in the z-direction. Due

5 Virtual Monte Carlo
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Figure 1.11: The curves show the proton-136Xe elastic scattering cross section as a func-

tion of four-momentum-transfer squared, as predicted by the Glauber theory [13] (solid

curve), Eikonal approximation (dashed curve [14]), and Edad2 calculation (dash-dotted

curve [15]). The solid squares show the experimental absolute elastic scattering cross sec-

tion. Top: The asterisks, which are normalized to data at −t = 0.0031 (GeV/c)2, are the

simulation results for the point-like target using the Glauber theory prediction. Bottom:

the hollow squares and triangles are, respectively, Geant4 and Geant3 simulations (using

the VMC package) which, together with the experimental data, are normalized to the the-

ory curve at −t = 0.0031 (GeV/c)2. The simulations for the extended interaction profile

were done for an interaction profile of FWHMz = 7.4 mm, using the Glauber theory.
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Figure 1.12: The curves and solid squares are the same as in Fig. 1.11 (top panel).

Circles and stars show the simulation results, based on the Glauber theory (solid curve),

for interaction profiles of FWHMz = 7.4 and 10.5 mm, respectively. Hollow squares and

pluses show the simulation results for the elastic scattering cross section, based on the

Eikonal approximation (dashed curve) and Edad2 calculation (dash-dotted curve), for an

interaction profile of FWHMz = 7.4 mm. The simulation data points (obtained using

Geant4) are normalized to the experiment at −t = 0.0031 (GeV/c)2 and the error bars

are statistical. KLAB
p is the recoil energy of the proton in the laboratory frame and θCM

is the angle of the recoil proton in the center-of-mass frame with respect to −ẑ, in which

ẑ represents the direction of the beam.

to the small dimensions of the first group of the Si-detector and its placement close
to 90◦ as well as the small extension of the interaction profile, (compared with its
distance to the first group of silicon strips), the extension of the interaction profile
along the x- or y-axis has a quite negligible effect on the shape of the simulations.
This negligible effect was confirmed through simulations, even at the order of 1 cm
for the FWHMx or FWHMy. This shows that the main source in shaping the slope
of the cross section is due to the much higher sensitivity of the cross section to
the extension of the interaction profile along the z-axis rather than the other two
axes. Nevertheless, the simulation results presented here are obtained using a full
three-dimensional Gaussian profile as the position density of generation. For the
four simulation results that are presented in Fig. 1.12, the Gaussian extension of the
interaction profile along the x- and y-axes were assumed to be FWHMx = 9.0 mm
(corresponding to a target extension of 7.4 mm) and FWHMy = 5 mm (since we
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had a beam diameter of 5 mm and since we expect no folding with target along
the direction of injection of the gas-jet target, namely along the y-axis, with the
assumption of a rather uniform target density in the interaction region). Along the
z-axis the position distribution for generating protons was chosen according to a
Gaussian of FWHMz = 7.4 mm (circles and hollow squares) or FWHMz = 10.5 mm
(stars).

In order to deduce a cross section from the data, the experimental data points
must be unfolded for geometrical effects by using appropriate correction factors. The
correction factors are inter-related to the geometrical acceptance of the first group
of silicon strips and were calculated through simulations which will be discussed
hereafter. In order to understand the descending behavior of the elastic scattering
cross section, we can decompose the effects of various independent sources that have
influence on the shape of the deduced cross section (solid squares in Fig. 1.12). The
first source is the intrinsic shape of the cross section itself. The other source is
the geometrical acceptance of the Si-detector for which we expect, for the specific
geometry in our experiment, that more particles miss the detector at larger values
of −t (the effective solid angle is t-dependent). One can calculate the acceptance of
the detector for a particular scattering angle through simulations, provided that the
interaction profile is well known. Thus, in order to study the effect of geometrical ac-
ceptance, we performed simulations for the recoil detector using an isotropic angular
distribution for the generation of particles. Fig. 1.13 compares the correction factors
that are obtained, using a uniform angular distribution, for the interaction profiles
of FWHMz = 7.4 mm and 10.5 mm. It is reasonable to use these correction factors
(respectively, corresponding to the circles and stars in Fig. 1.13) in order to correct
the experimental data and to compare them with any theoretical predictions. This
way, we can reliably correct the experimental data, taking into account the geomet-
rical conditions and the energy cut-off. The results are shown in Fig. 1.14, where all
the data sets are normalized to the theory at −t = 0.0031 (GeV/c)2. It shows that
the results corresponding to an interaction profile of FWHMz = 10.5 mm agree best
with the theoretical prediction. This fact could be interpreted as an indication of an
asymmetric target profile with respect to the x- and z-axes. In case of a symmetric
target profile with respect to the x- and z-axes, we would have a conical extension
of the gas-jet which would be essentially symmetric around the y-axis (direction of
the gas-jet injection). It should be mentioned that, in the simulations of Fig. 1.13,
−t was calculated based on Eq. A.52, since the effect of those few protons which
punch through at areas close to the edges of the first group of the Si-detector was
found to be negligible (see Fig. 1.17, top panel).

The effect of profile asymmetry discussed above is shown by simulations to be
approximately the same as the effect of either a slightly rotated Si-detector around
the target point or a shifted interaction profile along the beam direction. It is quite
possible that the exact position of the Si-detector with respect to the nominal target
point has not been calculated very accurately in the experiment. Even if the position
of the Si-detector during the experiment had been calculated with a good accuracy
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Figure 1.13: Required correction factors for unfolding the acceptance of the first group

of the Si-detector from the cross section, as obtained from simulations, using the uniform

distribution. In the simulations we used the kinematics of proton-136Xe elastic scattering.

Circles and stars show the simulation results with FWHMz =7.4 mm and 10.5 mm, respec-

tively, as the extension of the interaction profile. Squares and pluses are obtained with an

interaction profile of FWHMz =7.4 mm, respectively, when the Si-detector is rotated 0.5◦

around the y-axis toward the z-axis and when the Si-detector is only shifted (no rotation

around the y-axis) by 1.5 mm toward −∞ in the z-direction. Since in the simulations for

the registered counts by the first group of the Si-detector all points are normalized to a

constant (uniform distribution) at −t = 0.0031 (GeV/c)2, the correction factor is equal to

1 at this value of −t.

with respect to the center of the interaction chamber, the center of the interaction
region could have been easily off-centered by a few millimeters from the nominal
position. The effect of an interaction point shifted by 1.5 mm toward −∞ in the
z-direction is comparable, up to a few percent, to the case when we have a rotated
the Si-detector by about 0.5◦ toward the z-axis (Fig. 1.13). Simulation results for
the elastic scattering cross section, using an interaction profile of FWHMz = 7.4 mm
and a rotated geometry of 0.5◦ (or a shifted geometry of 1.5 mm) would reasonably
agree with the shape of the experimental curve in Fig. 1.12. This can be inferred,
since the correction factors, in Fig. 1.13, corresponding to the rotated (or shifted)
geometry are well comparable to the correction factors of an interaction profile of
FWHMz = 10.5 mm, which were already shown to agree reasonably with data.
This means that the interaction profile could still be the same as the one measured
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Figure 1.14: The curve and solid squares are the same as in Fig. 1.12. The hollow

circles and stars represent the corrected experimental data for the interaction profiles of

FWHMz = 7.4 mm and 10.5 mm, respectively. All data points are normalized to the curve

at −t = 0.0031 (GeV/c)2.

by the luminosity monitors. However, we cannot rule out the possibility of having
extraordinarily extended target profile in the z-direction as the measurement of the
luminosity was done through scanning the target with the beam in the x-direction.
We could not disentangle the exact geometrical condition that we might have had
during the experiment (a slightly rotated geometry with respect to the target point
or a slightly shifted interaction profile with respect to the center of the interaction
chamber or an asymmetric profile). Nevertheless, based on simulations, the net
result of the three scenarios would be the same as far as the elastic scattering cross
section is concerned.

One can imagine other scenarios for the shape of the interaction profile than
simply a Gaussian; especially when seeking an explanation for the abrupt drop in
the cross section at −t values higher than −t ≈ 0.011 (GeV/c)2 (Fig. 1.11), other
than the malfunctioning of the detector. It could be that we had a non-uniform
(and/or discontinuous) luminosity resulting from the non-uniformity of the target
density over the area of interaction with the beam. In subsection 1.4.2, we will try
to understand the unusual behavior of the data points at higher −t values merely
based on the interaction profile analysis.
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Discussion

Fig. 1.15 (top panel) compares the elastic scattering cross-section calculations for an
interaction profile of FWHMz = 7.4 mm for both cases of a uniform distribution and
Glauber theory predictions as the angular density generators for the cross section.
Clearly the difference between the two data points (related to the uniform and
Glauber distributions) at each −t reflects the deviation of the cross section from
uniformity. Similarly, the amount of change in the difference between the two data
points at −t and −t + δ(−t) is directly related to the slope of the line connecting
the two neighboring corrected points at −t. It is the slope of the fit to the corrected
data points which would determine the local slope of the derived theory at a certain
−t. Following the trend of the circles in this figure, we can intuitively conclude
that, over the region of smaller CM scattering angles, the acceptance of the detector
falls with −t (or equivalently with the energy of the scattered protons) faster than
exponentially. Over the larger values of the CM scattering angle (away from 90◦ in
LAB), the acceptance falls rather exponentially.

It is necessary to investigate the amount of contamination of punch-through
events in the results of the top panel in Fig. 1.15. This is because we established our
arguments on the geometrical acceptance of the first group of silicon detector based
on the assumption of having negligible amount of punch-through events. For the
interaction profiles of FWHMz = 7.4 and 10.5 mm (with FWHMx = 9.0 mm and
FWHMy = 5 mm) the simulations show that majority of the generated protons stop
in the first group of the Si-detector of 1 mm thickness (Fig. 1.15, bottom panel).
The shaded region in this figure is due to those few protons which punch through
at areas close to the edges of the first group of the Si-detector.

There is a possibility that we had an effective thickness of less than 1 mm for the
silicon detector. In such a case protons might punch through the silicon detector,
thereby changing the shape of the calculated elastic scattering cross section (based
on Eq. A.52). In order to have an estimate of this change, we can take an exaggerated
case considering a thickness of 0.5 mm (half of the nominal thickness) for the silicon
detector. Fig. 1.16 shows the results using a uniform distribution for the cross section
and interaction profiles of FWHMz = 7.4 and 10.5 mm (with FWHMx = 9.0 mm
and FWHMy = 5 mm). Up to −t = 0.0085 (GeV/c)2 the simulated cross sections
decrease smoothly; however, at higher values of −t, there are significant deviations
from this smooth trend of the cross section. It has to do with those protons punching
through the nickel foil and 0.5 mm thick silicon detector at high enough energies.
Simulations show that, for the detector geometry in our setup, those protons that
are generated at around z = −5 mm down to −∞ can punch through the first group
of the Si-detector. Based on this fact, we can compensate for the punch-through
protons and extract the cross section. By incorporating the proper FWHM for the
interaction profile into our simulations as well as normalizing the simulations to the
statistics of our experiment, we can obtain −t which is now different from the one
extracted through Eq. A.52 due to the punch through; this is particularly important
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Figure 1.15: Top: proton-136Xe elastic scattering cross section as a function of four-mo-

mentum-transfer squared, calculated based on Eq. A.52 (assuming no punch through).

The curve is the Glauber theory prediction and the dotted line represents the uniform

distribution. Circles and triangles show the simulation results with FWHMz = 7.4 mm

as the extension of the interaction profile using the uniform distribution and Glauber the-

ory, respectively. Ep is the deposited energy in the first group of the Si-detector and all

points are normalized to the curve at −t = 0.0031 (GeV/c)2. Bottom: simulations of the

1 mm thick Si-detector, showing four-momentum-transfer squared on the y-axis, calcu-

lated based on the deposited energy in the Si-detector with the assumption of no punch

through, versus the one calculated from angular relations (Eq. A.49) on the x-axis. Here,

the interaction profile of FWHMz = 10.5 mm and a uniform cross section is used in the

simulations in order to magnify the influence of the probable punch-through events. The

same pattern is expected when using a FWHMz = 7.4 mm.

when we want to compensate for the punch-through protons in the experimental
data. Therefore, by doing simulations with Glauber theory used as the generator
for the cross section, we can repeat the same procedure as in the case of uniform
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Figure 1.16: Top: proton-136Xe elastic scattering cross section as a function of four–

momentum-transfer squared, calculated based on Eq. A.52. The solid squares show the

experimental data. The other three symbols represent the simulations for a Si-detector of

0.5 mm thickness with a uniform phase space density generator (the dotted line); stars:

simulations with an interaction profile of FWHMz = 10.5 mm, pluses: simulations with an

interaction profile of FWHMz = 7.4 mm, and triangles: simulations with an interaction

profile of FWHMz = 7.4 mm compensated for the punch-through protons. All experi-

mental and simulated data points are normalized to the line at −t = 0.0031 (GeV/c)2.

Bottom: simulations of the recoil detector, with 0.5 mm thickness for the Si-detector,

showing four-momentum-transfer squared, calculated based on Eq. A.52, versus the one

calculated from angular relation (Eq. A.49). The interaction profile of FWHMz = 7.4 mm

(corresponding to the plus signs in the top panel) is used in the simulations.

distribution to see how much we need to compensate for the punch-through events
in our experimental data. Fig. 1.17 shows the result of these simulations with
an interaction profile of FWHMz = 7.4 mm. It confirms that the punch-through
protons have negligible contribution in changing the shape of the elastic scattering
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generator for the elastic scattering cross section. Bottom: elastic scattering cross section

obtained using Eq. A.52 (dotted line; projection of the top histogram on the y-axis),

contribution of the punch-through protons to the elastic scattering cross section (shaded

area), and elastic scattering cross section compensated for the punch-through protons

(solid line), all shown within the range of the detected four-momentum-transfer squared

over which the protons could punch through.

cross section, calculated based on Eq. A.52. Even a 0.5 mm thick Si-detector can
effectively stop the protons (knowing the fact that the underlying cross section is,
like the Glauber theory curve, a sharply decreasing function with respect to −t)
so that we expect no significant change in the extracted shape of the cross section.
Therefore, the probable minute deviations in the effective thickness of the Si-detector
from 1 mm should not be a potential source of concern (see Fig. 1.17) in making
use of Eq. A.52 to calculate the elastic scattering cross section. Therefore, unlike
Fig. 1.16 (for the case of a uniform cross section and 0.5 mm thick Si-detector), it
is not necessary to compensate for the punch-through events at all.
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The compensation for the probable punch-through events in the experimental
data would first require normalizing simulations to data. In this sense one has to be
careful regarding the procedure of normalization; we can perform the simulations
with the same amount of statistics as we had in the experiment or we can normalize
to one point. Clearly, either of the two methods would lead to (even slightly)
different compensation factors and that means slightly different contributions of the
punch-through protons (shaded region in Fig. 1.17).

1.4.2 Effect of various interaction-profile shapes on the
acceptance (target profile asymmetry)

Assuming that the drop in the elastic scattering cross section happens at −t ≈
0.011 (GeV/c)2 (Fig. 1.11), one can obtain the corresponding value of the proton
scattering angle θ, from Eq. A.47, to be 85.32◦. In the following procedure this θ
value represents the angle at which the proton is generated and ended up at the
upper edge of the first group of the Si-detector; the generation point of the proton
(say on the z-axis) is essentially where the target density (and equivalently the
interaction profile) undergoes a discontinuity. The idea is to see whether or not we
can translate back the abrupt drop in the cross section to a possible discontinuity
in the pressure profile (target density). Based on the position of the first group
of the Si-detector, this density discontinuity must have started at z = −2.52 mm,
assuming the center of interaction to be at z = 0. Therefore, we simply assume
that (possibly) a pressure drop in the target must have occurred over the region of
z < −2.52 mm. For simplicity, I proceed with assuming a discontinuity only along
the z-axis, since we know that the discontinuity in the density along the x- or y-axis
should have very small effect on the outcome of the simulations for the cross section.
This small effect on the shape of the cross section is even more negligible than the
principal effect of the extension of the target profile along the x- and y-axes. This
is, of course, because of the far less impact of the derivative of the interaction profile
along the latter two axes on the overall cross section, when we already see a quite
small impact from the sheer extension of the interaction profile along these axes.
Now I consider for the continuous part of the generation region to be a Gaussian
along the z-axis, with the centroid at z = 0 and FWHMz = 7.4 mm, bounded in the
interval z ∈ [−2.52 mm, +∞]. But, for the region of z ∈ [−∞,−2.52 mm], we can
think of different possibilities for the generator functional form such as: uniform,
damping sinusoidal or even diffraction-like patterns. Doing simulations we can study
the influence of these scenarios for the shape of the interaction profile, even though
it seems hard to seek physical and experimental explanations backing any of these
functional forms. For −t = 0.02 (GeV/c)2, we would find z = −14.46 mm as the
lowest point (along the z-axis) from which a proton can be generated and ended up
at the first group of strips right at the edge of the detector located at θ = 89.5◦.
This way, we make sure that the contribution to the cross section in the interval
0.011 < −t

(GeV/c)2
< 0.02 is solely made by the generation points in the interval
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z ∈ [−14.46 mm,−2.52 mm]. Practically, here, z = −14.46 mm is equivalent to
−∞. In order to reproduce the shape of the cross-section data, shown in Fig. 1.11,
which resembles a step-like behavior at −t ≈ 0.011 (GeV/c)2, three functional forms
were used as follows:

1) A diffraction-like pattern as sketched in Fig. 1.18.
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Figure 1.18: An exaggerated sketch (in terms of the scales) of a diffraction-like pattern,

which was assumed as the area over which the proton generation was performed for the

discontinuous generation region extended from the point labeled as D down to −∞ along

the beam direction. The continuous Gaussian generator extends along the beam direction

from D up to +∞. The x- and y-components of the generation points are continuously

distributed; y: uniformly, x: uniformly before and Gaussian after D along the beam

direction.

2) A damping sinusoidal of the form sin2(z)
z2 for generation density defined over

z ∈ [−∞,−2.52 mm]. The generation along the x- and y-axes was performed as
continuous Gaussians of FWHM = 9 and 5 mm, respectively, all over the z-axis
(beam direction).

3) A uniform function defined over z ∈ [−∞, z0], followed by a gap defined over
z ∈ [z0,−2.52 mm]. For an optional value of z0 = −10 mm, the result (Fig. 1.19,
bottom left panel) shows a very small enhancement around −t = 0.013 (GeV/c)2.

Fig. 1.19 (top left panel) shows the specific functional forms that were chosen for
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Figure 1.19: Top left: functional forms (uniform and damping sinusoidal) for discontinu-

ous generation region together with a Gaussian for the continuous generation region used

as the interaction profile for particle generation along the beam direction (z-axis). The

corresponding elastic scattering cross sections at high values of −t can be compared with

the cross section calculated based on the diffraction-like pattern (Fig. 1.18).

the step-like uniform and damping sinusoidal generators together with the resulting
cross sections. In all the three procedures 97% of the events were dedicated to
the continuous Gaussians, while 3% to the discontinuous regions. In fact, there
is only a slight difference between the results of the second and third functional
forms; in the case of a ‘damping sinusoidal’ the range of z ∈ [−12 mm,−2.52 mm]
acts effectively as a gap (see Fig. 1.19, top left panel), which is a longer gap than
what I used in the ‘uniform generation’ approach, and that is the reason of having no
enhancement around −t = 0.013 (GeV/c)2. On the other hand, the high probability
of generation around z = −14 mm, in the case of a damping sinusoidal, causes a
small enhancement at very high values of −t (as compared to the case of ‘uniform
generation’). The latter two arguments could well explain the kind of fluctuations in
the resulting cross section of the ‘damping sinusoidal’ as opposed to the one obtained
for the ‘step-like uniform generation’. For a generator of diffractive form, the cross
section shape (Fig. 1.19, bottom right panel) at higher values of −t does not seem to
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be compatible with the experiment at all, since it has a smoothly decreasing trend
rather than a uniform one (the assumption of the step-like behavior of data at high
values of −t). This favors especially the idea of a ‘gap’ since, in terms of the target
density distribution in the discontinuous region, the density of gas (in case of gap
or damping sinusoidal) goes in the opposite direction, as compared to the assumed
diffraction-like pattern, as we Go to a large negative distance along the z-axis. For
the discontinuous region in Fig. 1.18, I optionally chose spatially uniform generation
over three regions. Thus, for instance, I have only dedicated 0.6% of total events to
the farthest generation region. The choice of the shape of this diffraction-like pattern
should not matter, as long as we are solely interested qualitatively in studying the
change in the cross section trend; based on the above discussion, the whole idea of
a ‘diffraction-like’ interaction profile is out of question (see Fig. 1.19, bottom right
panel), independent of the specific form of the assumed diffractive pattern.

Apart from the different resulting shapes for the cross section in the region of
large −t values (Fig. 1.19), what they show in common is the smoothness in their
continuous spectra. Clearly, this cannot explain the broken trend of the cross section
at −t ≈ 0.011 (GeV/c)2 (Fig. 1.11). In other words, we may conclude that what-
ever shape the interaction profile possesses (continuous or discontinuous), it cannot
explain the sudden drop in the experimental cross section. This is a valid point,
since we deal with an extended interaction profile in which the contribution from
different regions of the interaction profile to the cross section pattern is appreciable
in smoothening any abrupt behavior originating from a discontinuous region of the
interaction profile.

1.4.3 Acceptance correction by using the measured
angular distribution

As already mentioned, one needs to correct for (i.e. unfold) the geometrical accep-
tance of the detector setup in order to obtain the correct elastic scattering cross
section that can be properly compared with theoretical calculations. By performing
simulations, using a specific angular probability distribution (say theory 1) one can
simply use the same theory curve in order to correct back the simulated points.
Obviously, the corrected simulated points would, by definition, be exactly back on
the curve of theory 1. In principle, one can correct the cross-section data using the
correction factors obtained from simulations. However, one cannot compare these
corrected data with the same theory prediction in order to draw any conclusion
on the agreement between the theory and the experiment. In order to be able to
make such a conclusion we need to have another source to be used for our gener-
ator other than the theory under investigation. In subsection 1.4.1, we calculated,
trigonometrically, the percentage of particles that are generated at a certain −t and
missed the first group of the Si-detector (back-tracking the generated protons). This
percentage was directly related to the geometrical acceptance of the detector at −t
and subsequently provided the correction factor. In the following discussion we will
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try to reconstruct the underlying theory by using the measured position in the Si-
detector and following a procedure that I will refer to as “trigonometric approach”
in calculating −t. This will allow us to investigate the possibility of safely extracting
the elastic scattering cross section, while making use of the position information of
the Si-detector.

Fig. 1.20 shows the measured position in the Si-detector for the first group of
strips close to 90◦ in LAB. Keeping in mind that we had a threshold of about
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Figure 1.20: Position information, as obtained during the measurement, of the detected

events by all the eight strips of the first group of the Si-detector. The first peak is

originating from the strip which is close to 90◦. The percentages on the figure reflect the

relative heights of the peaks and sum up to 100%. The Si-detector had a threshold of

about 500 keV.

500 keV, one can understand the observed trend of data in this figure. Except for
the last three strips, we can see an increase in the number of events registered at
each position (strip), while getting away from the closest strip to 90◦ in LAB (the
midpoints of the first and eighth strips of the first group of the silicon strips are
placed at 89.3◦ and 86.5◦, respectively). In principle, we would expect a decreasing
behavior, since the elastic scattering cross section as well as the detector acceptance
decrease with increasing −t or equivalently with decreasing θ. The fact that we
see an opposite behavior in this figure (for the first few strips) has to do with the
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threshold condition which is discussed below.

First, consider the situation where every strip receives equal number of elasti-
cally scattered events. Analytic calculations (trigonometric approach) show that for
a target profile of FWHMz = 7.4 mm, the energy threshold is directly related to
the relative heights of the position peaks. Considering a Gaussian interaction profile
with 9 mm, 5 mm, and 7.4 mm as the extension of the FWHM along the x-, y-,
and z-axes and allowing the generated events at a specific random point to end up
uniformly over the area of every strip, we can obtain the corresponding distribution
of −t for each strip. We expect identical peak heights for all the strips when we
have no threshold, since we are assuming identical number of events ending up at
every strip and triggering the detector. On the other hand, when we have a non-zero
threshold every strip detects a different percentage of events ending up in them. The
resulting spectrum for the triggered events by the strips would show no more peaks
of identical heights. Loosely speaking, the peaks would have relative heights as 0.34,
0.5, 0.55, 0.64, 0.74, 0.85, 0.89, and 0.92 as compared to 1 (when we have no thresh-
old). These numbers are simply the ratio of events with −t ≥ 0.0011 (GeV/c)2

(for a threshold of 500 keV) to the total number of events for each strip. Fig. 1.21
shows −t as it is seen by each strip as well as the cumulative −t seen by the first
group of eight strips. For the first few strips, this resembles the rising trend of the
peaks’ heights in Fig. 1.20. However, what we see in Fig. 1.20 is a combination of
the discussed threshold effect as well as the effect of non-uniformity of the elastic
scattering cross section. This non-uniformity can be quantified and integrated in
the above approach for distributing events; it can be thought of as dedicating dif-
ferent number of events to each strip. Therefore, if we could somehow obtain the
relative number of events (based on the real elastic scattering cross section) to be
dedicated to each strip, then we would expect a resulting spectrum with relative
heights identical to what we see in Fig. 1.20. In principle, we can attribute the
effect of the relative (appropriate) number of events to the relative heights of the
position peaks by doing the simulations. This should give the exact relative heights
of the peaks provided that we implement the exact experimental conditions in the
simulations (such as the spatial extension of the interaction profile and the precise
position of the Si-detector). In addition to the exact experimental conditions to be
implemented in the simulations, we need to know the underlying cross section based
on which to generate particles. We can try to make sense of Fig. 1.20, based on
the approximate geometrical information (such as an interaction-profile extension
of FWHMz = 7.4 mm, FWHMy = 5 mm, and FWHMx = 9.0 mm) and by consid-
ering a shear elastic scattering cross section based on the Glauber theory (or the
derived cross section in subsection 1.4.1). Fig. 1.22 shows the position information
of the detected events by all the eight strips of the first group of the Si-detector,
as obtained through simulations with the mentioned assumptions. Comparing the
relative heights of the peaks in this figure (bottom panel) with the trend of the per-
centage of events that can satisfy the threshold condition for each strip in Fig. 1.21,
we can qualitatively conclude that the increasing behavior of the peak heights in
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Figure 1.21: Analytic (trigonometric) calculation of −t for the elastic scattering, based

on Eq. A.49, as seen by each strip of the first group of Si-detector. A Gaussian of 9.0 mm,

5 mm, and 7.4 mm as FWHM along the x, y, and z-axes is considered for the spatial

generation of protons and all the events (dedicated to a specific strip) are required to end

up at a random point on the strip surface. No threshold is considered here and identical

number of events are distributed over each strip. The percentage of events that, for each

strip, can satisfy a threshold condition of 500 keV is written under the corresponding

curve. The detected −t by the first group is, in principle, the summation of all eight

spectra of the individual strips (spectrum on the bottom right hand side).

Fig. 1.22 for the first five peaks is due to the threshold condition. On the other hand,
it is the decreasing elastic scattering cross section which counteracts and takes over
the threshold action at higher −t values and appears as gradually decreasing heights
for the other three strips. Comparing Fig. 1.22 (bottom panel) with Fig. 1.20 we
may assume that the relative heights of the position peaks (or at least the rising and
falling trend of the peaks’ heights) in Fig. 1.20 could mainly be attributed to the
elastically scattered protons. Based on this assumption, we may confidently extract
the appropriate number of events for each strip from Fig. 1.20 and feed it in our
random-generation model to obtain the cumulative elastic scattering cross section.

Fig. 1.23 (dotted curves) shows the same as in Fig. 1.21 with the addition of the
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Figure 1.22: Same as Fig. 1.20, but obtained through simulations, using the Glauber

theory, with threshold energies of zero (top panel) and 500 keV (bottom panel). The

percentages on the bottom panel could be compared with the corresponding ones on

Fig. 1.20.

threshold as well as using an appropriate number of events for each strip as extracted
directly from the experimental result of Fig. 1.20. We can also use strip position
information to derive the contribution of individual strips to the elastic scattering
cross section obtained through the analysis of the deposited energy. For comparison
the corresponding results are also presented in Fig. 1.23 (thin histograms).

If we would have a zero threshold for the Si-detector in the experiment, the dotted
curve in the panel that is labeled as “cumulative” (Fig. 1.23) could be regarded as the
underlying theory curve. This is true to the extent that we can trust the geometrical
assumptions that we made in our analytic calculation and provided that all the
detected events by the strips in Fig. 1.20 can be considered as elastic scattering
events. In other words, since in this cumulative cross section the acceptance of
the detector has already been automatically unfolded, it has to be the same as the
underlying cross section. It is because we were assigning a specific number of events
(total number of thrown events) to each strip instead of throwing events in the full
phase space and then tracing them to see if they end up at the detector or not.

What we see in Fig. 1.20, however, includes the real detector condition of having
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Figure 1.23: Thick dotted and solid curves (trigonometric approach): same as Fig. 1.21

but with a threshold of 500 keV for the Si-detector and generating appropriate number

of events towards each strip as extracted from Figs. 1.20 (dotted curves) and 1.24 (solid

curves). Thin curves (energy deposition approach): Elastic scattering cross section ob-

tained, alternatively, through the experimental analysis of deposited energy in each strip.

a non-zero energy threshold. Although with the explained cumulative method we
could unfold the geometry acceptance, detector threshold still remains folded so that
we cannot simply feed the raw spectrum of Fig. 1.20 into our generator in order to
extract the underlying theory. It could readily be understood if we notice that the
underlying theory should be independent of the threshold energy of the Si-detector.
In fact, if we could have a zero threshold detector, then we could directly exploit
the spectrum of Fig. 1.20 to extract the underlying theory (like what we did to
obtain the dotted curve in Fig. 1.23). In the following we will try to unfold, to
some extent, the influence of the threshold in shaping the spectrum of Fig. 1.20 by
making use of simulations. Considering the simulation results in Fig. 1.22, we can
use the ratio of the heights of the peaks of the upper panel to the corresponding
ones of the lower panel and use them to enhance (modify) the heights of the peaks
in Fig. 1.20. Since this ratio only represents the amount of threshold influence we
assume that it should be irrelevant to the theory curve that we used (Glauber) as
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our generator. Therefore, we can directly use these ratios to appropriately modify
the heights of the peaks of Fig. 1.20. In principle, we would expect the resulting
spectrum to show a pattern similar to what we see in the simulations of Fig. 1.22
(top panel). Fig. 1.24 shows the enhanced (modified) spectrum of Fig. 1.20 through
exploiting the simulations of Fig. 1.22 with the assumed threshold of 500 keV (solid
bars) as well as assuming an optional threshold of 900 keV (dotted bars). In none
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Figure 1.24: Modified spectrum of Fig. 1.20, exploiting simulations of Fig. 1.22 with

the nominal threshold of 500 keV (solid bars) as well as assuming a threshold of 900 keV

(dotted bars). Simulations show that, regardless of the threshold value, the relative counts

of at least the first strip (with respect to the others) violates the trend that one should

expect from the elastic scattering cross section. This could be an indication that this

strip must have been (partly) outside the phase space coverage of the elastically-scattered

protons.

of these two results we see a decreasing trend for the heights of the bars as one
should expect from the elastic scattering cross section (like in Fig. 1.22, top panel).
Different threshold values were used in the simulations in order to investigate the
effect of threshold on the relative heights of the modified spectrum. Nonetheless, all
of them show smaller heights of the peaks at least for the first strip(s) relative to the
next neighboring strip(s). This could be an indication that the detector placement
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must have been different; for instance, the spectrum corresponding to 900 keV in
Fig. 1.24 can be explained if we consider a geometry of the Si-detector in which the
first strip of the first group is placed (at least partly) at an angle more than 90◦ in
LAB. In principle, what we expect from the unfolded spectrum in Fig. 1.24 should
resemble the underlying cross section. That means if all the strips were placed at
angles less than 90◦ in LAB, then we would see an ever decreasing pattern in the
heights of the peaks (remember that at this stage, the threshold effect is unfolded
and we can imagine all the strips with zero threshold capable of detecting all the
events corresponding to each of the peaks in Fig. 1.24). Thus, the lower number of
counts of the first peak relative to that of the second peak could only mean that this
strip must have been located (at least partly) at an angle larger than 90◦ in LAB so
that the phase space of the elastic scattering channel cannot cover the strip. In fact,
a rotated geometry of the Si-detector in Fig. 1.7 as much as 1◦ around the y-axis
toward the x-axis can place the first strip at a slightly larger angle than 90◦ in LAB.
Fig. 1.23 shows as well the cumulative cross section (thick curves), obtained like the
dotted curves when feeding the statistics of 500 keV threshold of Fig. 1.24 (instead of
Fig. 1.20) into the generator. Fig. 1.25 shows the cumulative cross section, obtained
through the trigonometric approach, together with the Glauber theory prediction
for the elastic scattering cross section, all normalized to the theory curve.

There is an inherent drawback in this method of calculating −t from the angular
placements of individual strips. It arises from the sizable extension of the interaction
profile with respect to the widths of the detector strips. The fact that a number of
random positions for the generated particles are chosen over a sizable region (interac-
tion profile) and then attributed with equal weights to a specific strip, considerably
flattens the fine structure of any underlying cross section. This can easily be seen
in Fig. 1.25, especially in the flat structureless region below −t = 0.003 (GeV/c)2.
As an example we can take two generation points, over the interaction profile, one
at z = z0 and the other at z = −z0 which are located symmetrically with respect
to the origin. Clearly, the generation probability for the two positions is the same,
but that the two generated particles at these points both end up at a specific strip
with the same probability is not true. In our analytic approach of calculating −t,
it is not possible to implement this difference in the probability of ending up at a
specific strip for a particle generated at z0 or −z0. Therefore, the bigger the ex-
tension of the target profile the less precise would be the calculation of −t, when
using the trigonometric approach. Thus, one has to be careful in following this
approach to calculate −t, even when there is a high confidence in the spectrum of
Fig. 1.20. For extended target profiles, along the beam direction, this method is
the most inaccurate when the detector is installed near 90◦ in LAB. Hence, there is
no way of precisely calculating the elastic scattering cross section (detector instal-
lation at 90◦), based on this approach, other than minimizing the target extension
along the beam direction. Similarly, for other reaction channels, one cannot expect
that installing detectors at angles close to zero in LAB could overcome this inherent
problem of target extension, because then the calculation of −t gets sensitive to the
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Figure 1.25: Elastic proton-136Xe scattering cross section as a function of four-momen-

tum-transfer squared. The solid squares are the experimental data (corresponding to the

thin histogram in the bottom right panel of Fig. 1.23), as obtained through Eq. A.52 as-

suming no punch through, and the curve is the Glauber theory prediction. Solid triangles:

cumulative −t, as in Fig. 1.23 (solid thick curve). The hollow triangles are for when we

exclude the events registered in the last two strips of the first group of the Si-detector,

using the same approach that led us to obtain cumulative −t in Fig. 1.23. All points are

normalized to the curve at −t = 0.0031 (GeV/c)2.

target extension along the x- and y-axes.

There is a possibility that the malfunctioning of the Si-detector (appeared as
a drop in the cross section pattern of Fig. 1.11) is due to the operation of the
last two or three strips of the first group. In such a case, the registered energy of
the events by these defected strips cannot be used to calculate −t from Eq. A.52
and might instead contribute to cross section at lower values of −t than what we
expect from an elastic scattering event. This in turn can cause the shape of the
elastic scattering cross section, obtained from data analysis, to deviate from the
simulations for FWHM = 7.4 mm at the values of −t lower than where the drop
happens (Fig. 1.11). In this case, we are not able to exclude these miscalculated
events. However, that does not necessarily mean that the relative peak heights of
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the last few strips are wrong. If we assume that all of the eight strips of the first
group of the Si-detector were triggering correctly (based on the threshold energy),
Fig. 1.20 would show a correct pattern of triggering while at the same time the last
few strips did not register the correct deposited energy spectrum. Thus, it is possible
that this figure could still be used to extract the elastic scattering cross section as
the underlying cross section. It is interesting to note that the behavior of (at least)
the first strip in Fig. 1.24 undermines the applicability of this method in calculating
the cross section over the whole range of −t.

Fig. 1.25 compares the results of the analytic calculation of the cumulative −t for
the two cases of excluding or including the influence of the last two strips. As can be
seen in this figure, apart from the overall shapes of the two calculated cross sections,
the inclusion of the statistics of all the strips causes the slope of the cross section to
deviate from the theory prediction; even if the pattern in Fig. 1.20 (and consequently
in Fig. 1.24) can be considered as a true triggering pattern, there still could be a
significant amount of inelastic scattering events in the last two (few) strips which
can satisfy the threshold condition. The qualitative similarity of Figs. 1.20 and 1.22
cannot, quantitatively, rule out the significance of inelastic scattering events that
were detected by the first group of the Si-detector. Hence, it would not be reasonable
to take all the statistics under the peaks (especially the last few peaks) of Fig. 1.20
as having originated from elastic scattering events.

1.4.4 Inelastic scattering channel(s)

Using the spectra of the deposited energy in the Si-detector groups (see Fig. 1.7), one
can also try to identify inelastic scattering events. In general, these spectra comprise
elastic and inelastic scattering events. One can build up the whole spectrum of the
deposited energy (in a Si-detector group) by performing simulations for elastic as well
as inelastic scattering. It is necessary to know what the dominant inelastic scattering
channels are if we want to understand the shape of the experimental spectrum. The
procedure would be to use the theoretical estimation for the dominant channels in
the Monte Carlo simulations getting protons with appropriate energies and angles
in phase space.

The calculation of the inelastic scattering channels in 136Xe, that leads to the
Giant Dipole Resonance (GDR) with an excitation energy of 15 MeV has been
performed, using the Eikonal approximation [14]. Fig. 1.26 shows the theoretical
calculations for the proton-136Xe elastic and inelastic scattering cross sections, based
on the Glauber multiple scattering theory and the above-mentioned calculations for
the Giant Dipole Resonance in 136Xe. Fig. 1.27 shows the experimental as well as
the simulations results for the deposited energy in all the Si-detector groups. In the
spectrum of the deposited energy for the fifth group of the Si-detector we expect
the lowest contribution from the elastic scattering events (compared to the other
groups of the Si-detector). Whereas, based on the simulations results for this group,
we see the highest contribution from the inelastic scattering events, as compared
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Figure 1.26: Theoretical calculations for the cross section of proton-136Xe elastic scatter-

ing channel (thin curve), based on the Glauber theory, and inelastic scattering channel of

giant dipole resonance of 136Xe with Ex = 15 MeV, based on a calculation using the Eikonal

method (thick curve [14]). The numbers on the top horizontal axis represent the proton

scattering angle in the center-of-mass frame with respect to −ẑ; the upper row of num-

bers is related to the inelastic scattering kinematics of proton-136Xe with Ex = 15 MeV,

whereas the lower one is related to the elastic scattering kinematics. The brick- and sim-

ple-shaded areas in the picture show, respectively, the covered region of the fifth group

of the Si-detector by the elastic and inelastic scattering kinematics for a point-like target.

The boundary edges of the two shaded areas correspond to the LAB scattering angles of

a = c = 73.4◦ and b = d = 76.6◦.

to the amount of inelastic scattering events registered in the other groups for the
case of GDR in 136Xe with Ex = 15 MeV. For the simulations in Fig. 1.27, we only
considered the elastic and inelastic scattering channels and assigned equal number of
events to the two channels to be generated according to their respective kinematics
and cross section. In order to have a thorough investigation on the contribution of
various reaction channels to the observed spectra, one needs to take into account
all the potential reaction channels. Apart from the elastic and inelastic scattering
channels one can think of possible transfer reactions as well, e.g. (p, d) and (p, t).
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Figure 1.27: Deposited energy in the five groups of the Si-detector as measured in the

experiment (thick histograms) and obtained through simulations. In the simulations for

the elastic (thin histograms) and inelastic (dotted histograms) scattering channels an ex-

tended interaction profile of FWHMz = 7.4 mm is assumed and equal number of events

were thrown into the phase space for both channels. In the simulations for the inelastic

channel of 136Xe, a giant dipole resonance with Ex = 15 MeV is considered. The unusual

extension of the experimental spectrum of the third group of the Si-detector has to do

with the operation of this group.

However, based on the kinematical calculations for these two channels, one would
expect no Si-detector exposure from these transfer channels (Fig. 2.3, bottom panel,
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shows the respective kinematics).
The inelastic scattering channels may be identified by analyzing the data orig-

inating from those groups of the Si-detector which are positioned farther from 90◦

in LAB (see Fig. 1.7). This is especially fruitful in distinguishing the elastic and in-
elastic scattering channels, since we expect a narrower distribution in the deposited
energy for elastically-scattered protons as we move away from the first group. This
is because for smaller laboratory scattering angles, almost all protons punch through
the detector and deposit almost the same amount of energy in the detector. This
narrower pattern of the deposited energy is clear in the spectrum of elastic scat-
tering of the fifth group as compared to the fourth group, and the fourth group as
compared to the third group in Fig. 1.27. If we would not have protons punching
through these layers then we would expect a completely different behavior in terms
of the extension of the elastic scattering spectrum in these groups. In this case,
it is the kinematical curve of Fig. 1.28, rather than the straggling, that influences
the amount of extension of the elastic scattering spectrum. Whereas, when we have
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Figure 1.28: Four-momentum-transfer squared versus the scattering angle in LAB for the

proton-136Xe elastic scattering. The scattering is in inverse kinematics with a beam energy

of 350 MeV/nucleon. The shaded regions show the coverage of the four-momentum-trans-

fer squared by the five groups of the Si-detector in the case of a point-like scatterer.

punch-through protons, it is the kinematics of Fig. 1.28 as well as the energy of the
protons that compete in determining the amount of extension of the spectra of the
deposited energy. For instance, based on kinematics, this extension is broader for
the fifth group as compared to the fourth group. But since the elastically-scattered
protons can punch through both groups, we expect to have lower deposition of en-
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ergy (and hence slightly narrower spectrum) in the fifth group. On the other hand,
for the first group of the Si-detector, we would expect the extension of −t (or, equiv-
alently, deposited energy) to be the same as what we see in Fig. 1.28 (for a point-like
scatterer). It is because we do not expect punch-through events for this group.

Fig. 1.29 compares the amount of GDR inelastic scattering events registered by
the fourth and fifth groups of the Si-detector (rotated by 0.5◦ around the y-axis)
for an interaction profile of FWHMz = 7.4 mm. For comparison, the contribution
of the non-punch-through events in the fifth group is also presented in the top
panel (dotted line). The reduction of the statistics, appearing at around 8 MeV
for the punch-through events, is an indication of the inherent fluctuation in the
cross section pattern. Based on the results of the second panel, protons start to
punch through the fifth group at energies around 12 MeV. Accidently, around the
same energy, the inverse kinematics of the two-body proton-136Xe inelastic scattering
(with 350 MeV/nucleon) requires the scattering angle to turn around (see the bottom
panel of Fig. 1.29). This is due to the specific detector thickness in the present setup.

Once we have a thickness for the Si-detector that could stop protons with the
kinetic energy corresponding to the turning point of the kinematical curve (point T
in Fig. 1.29), then the angular position of the detector could be important as far
as the stopping power of the silicon layer is concerned. For instance, imagine that
the thickness of the silicon layer is such that protons effectively punch through at
kinetic energies higher than the one corresponding to point P (Fig. 1.29). Hence, for
the ideal case of having a point-like scatterer, it would be more desirable to install
the detector in such a way that θ

(P2)
LAB > θ

(P )
LAB. This way, we can effectively stop the

inelastically-scattered protons. The bigger the extension of the target profile the less
effective would be the stopping power of the detector. This is because the extension
of the interaction profile exposes the detector to protons with smaller scattering
angles in LAB than θ

(P2)
LAB; in such a case we may expect to have punch-through

events. Therefore, in order for the inelastically-scattered protons generated at z < 0
(for an extended target) to be stopped by the fifth group of the Si-detector, one needs
to install the detector in such a way that the upper edge of the detector is placed
at an angle larger than θ

(P )
LAB. This, in turn, could slightly limit the exposure area

of the detector to inelastic scattering events (depending on the angular extension of
the detector). Based on the above discussion, it would be desirable to have thicker
detectors in order to stop all the inelastically-scattered protons that are detected by
the fifth group. In short, when we are interested in stopping all the inelastically-
scattered protons observed by the fifth group of the Si-detector, we could simply
increase the detector thickness and move it towards smaller θ-angles to make sure
that we will have a thoroughly exposed detector surface. Clearly, as far as the
stopping power for the inelastically-scattered protons is concerned, the fifth group
of the Si-detector in our experiment was absolutely inefficient. This is because the
thickness of the detector is small (1 mm) and θ

(P )
LAB is close to θ

(T )
LAB (≈ 77.1◦).

The angular positions of the two edges of the fifth group of the Si-detector are
θ

(P2)
LAB = 73.4◦ and θ

(P1)
LAB = 76.6◦. It is worth mentioning that, based on the kinematics
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Figure 1.29: Top panel: simulation results for the deposited energy in the fifth (thick

line) and fourth (thin line) groups of the Si-detector (Fig. 1.7) for the inelastically-scat-

tered events corresponding to the GDR excitation of 136Xe with Ex = 15 MeV. The dotted

line shows the deposited energy by the stopped protons in the fifth group of the Si-de-

tector. Second panel: kinetic energy of proton versus the deposited energy in the fifth

group of the Si-detector for the GDR events. In the simulations, an interaction profile of

FWHMz = 7.4 mm and a rotated geometry by 0.5◦ around the y-axis toward the z-axis

is considered. Bottom panel: kinetic energy of proton after inelastic scattering versus the

proton laboratory scattering angle, calculated using Eqs. A.9 and A.13. The numbers on

the histogram show a few proton scattering angles (in degrees) in the center-of-mass frame

corresponding to θLAB ≈ 10◦, 20◦, 29◦, 40◦, 50◦, 60◦, 70◦, 73.4◦, 76.6◦, 76.6◦, and 73.4◦. P1

and P2 represent the location of the edges of the fifth group of the Si-detector on the

kinematical curve with the assumption of a point-like target. T represents the turning

point of the kinematical curve. See text for further details.
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in the bottom panel of Fig. 1.29 and the specific position of the Si-detector groups
in the experiment (Fig. 1.7), we would not expect a considerable amount of inelastic
scattering events (related to the discussed channel) to be seen by the groups other
than the fifth group, when we have a point-like scatterer. Therefore, the spectrum
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Figure 1.30: Simulations and experimental results for the deposited energy in the fifth

group of the Si-detector. The simulations are for the elastic as well as the inelastic scatter-

ing events for the giant dipole resonance of 136Xe with Ex = 15 MeV. The dotted curves

show the simulations for the point-like target, while the solid curves are for an interaction

profile with the spatial extension of FWHMz = 7.4 mm, when the Si-detector is rotated

0.5◦ around the y-axis toward the z-axis. The spectrum in the bottom right panel is the

sum of the two spectra in the top panels.

that we see in the top panel of Fig. 1.29 for deposited energy in the fourth group is
mostly constructed by those protons that are generated at spatial points along the
z-direction lower than the center of the interaction profile (θ

(fourth group)
upper edge ≈ θ

(T )
LAB).

This, in turn, is the reason that we have a drastic loss in the registered inelastic
scattering events in the third group (see Fig. 1.27).

Fig. 1.30 shows the experimental data for the response of the fifth group of the
Si-detector together with the simulation results of the elastic and inelastic (GDR)
scattering channels for a point-like target as well as an extended interaction profile.
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In the simulations, the ratio of the elastic scattering to inelastic scattering events
is taken to be in agreement with the amount of reaction rates observed by the Si-
detector for the two reaction channels. Clearly, the extended tail in the experimental
data is a sign of the extended target profile, as can be compared to the simulation
results. In the simulations of the elastic scattering channel, there is a step-like
behavior right after the cut-off of the threshold region. It is due to those protons
which punch through the fifth group of the Si-detector at regions close to the edges
of this group. Comparing the experimental data with the simulations for FWHMz =
7.4 mm (for a rotated Si-detector by 0.5◦ around the y-axis toward the z-axis), two
major differences can be observed: the position of the elastic scattering peak and
the existence of a dip right after the elastic scattering peak in the experimental data
which is missing in the simulations.

Assuming that we have a correct calibration for the experimental spectrum, one
can think of other scenarios in order to reproduce these two characteristics of the
experimental spectrum through simulations, namely the position of the elastic scat-
tering peak and the existence of a dip following this peak. Fig. 1.31 shows the same
results as in Fig. 1.30 (solid histograms), assuming a significantly smaller thickness of
0.5 mm for the Si-detector. In this case, the simulations can reproduce data with the
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Figure 1.31: Same as Fig. 1.30 (solid histograms) but for a 0.5 mm thick Si-detector.
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mentioned characteristics. Nevertheless, the tail of the inelastic scattering events
in the experimental data is more extended than in the simulations. Simulations
show that whatever inelastic scattering channels we consider to have contributed in
building up the tail of the experimental data, we cannot reconstruct the contribution
corresponding to deposited energies more than ≈ 9 MeV in this spectrum. This is
because a 0.5 mm thick silicon detector is not thick enough to let protons deposit
more than about 9 MeV in it. Although the peak position as well as the extension
of the peak can be better explained in this case, it is highly improbable that the
measurement of the detector thickness had been done with such an uncertainty.

In order to have a consistent picture explaining both the peak position and the
end-point of the experimental spectrum, there must have been a combination of
a problem with the calibration as well as the nonlinearity behavior of it; the two
effects, which are related to the calibration, can shift the experimental peak position
toward the higher values of deposited energy and at the same time keep the end-
point around the position that simulations predict. Nevertheless, the problem of
nonlinearity needs to be further investigated.



2. Overall design and future
experiments for EXL

The Facility for Antiproton and Ion Research, FAIR, provides unique opportuni-
ties in experimental studies on nuclei far off stability, exploring new regions in the
chart of nuclides which are of paramount interest in the fields of nuclear struc-
ture and astrophysics. The investigations of direct reactions with exotic beams in
inverse kinematics gives access to a wide field of nuclear-structure studies in the
region far off stability. The objective of the EXL project (Exotic nuclei studied in
Light-ion induced reactions at the NESR storage ring) is to capitalize on light-ion
induced direct reactions in inverse kinematics by using novel storage-ring techniques
and a universal detector system [7]. Light-ion induced direct reactions have been
also applied within the last two decades for the investigation of light exotic nuclei
with radioactive beams in inverse kinematics [17]. It turned out that the essential
nuclear-structure information is deduced from high-resolution measurements at low-
momentum transfer. It is exactly because of the kinematical conditions of inverse
kinematics that make low-momentum transfer measurements an exclusive domain in
storage-ring experiments for studying the unstable nuclei. This way, one can benefit
from the luminosities provided in the ring experiments which are superior by orders
of magnitude as compared to experiments with external targets.

The possibility of studying low-energy recoil particles is especially important
when getting away from the region of stable nuclei, since it will allow us to study
large-distance behavior of exotic nuclei. For example, one of the most outstanding
discoveries was the finding that nuclei may appear under certain conditions with a
qualitatively new type of nuclear structure, so-called “halo” structure [3, 4]. Com-
pared to stable nuclei and nuclei close to stability, in which all the protons and
neutrons are essentially distributed uniformly over the nuclear volume, it was found
that some light neutron-rich nuclei located at or near the neutron drip line exhibit
a widely extended low-density distribution. The low-density distribution is due to
nothing else than loosely bound valence neutrons (the halo) surrounding a compact
distribution of the majority of nucleons (the core). This phenomenon was a sign of
the unusual matter distribution in neutron-rich nuclei near the neutron drip line. It
magnifies, among other nuclear structure aspects, the importance of studying such
systems in the limits of very low-momentum transfer; aspects like the in-medium
interactions in proton-neutron asymmetric nuclear matter, giant resonances with
strength distributions totally different from those known in stable nuclei, the shell
structure in nuclei of extreme proton-to-neutron asymmetry leading to disappear-
ance of the known magic numbers and, in turn, to the appearance of new shell gaps.
These were the motivations to start with the design of a new detection system for

43
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future investigations. Various types of light-ion induced direct reactions serve in
these investigations like: elastic scattering of type (p, p), (α, α); inelastic scattering
of type (p, p′), (α, α′); charge exchange reactions of type (p, n), (d, 2He); quasi-free
reactions of type (p, 2p), (p, pn), (p, p+cluster); and transfer reactions of type (p, t),
(p, 3He), (p, d), (d, p).

Since the domain of low momentum transfer is of interest, extremely thin targets
are requested, resulting in too low luminosities if external targets would be used.
Likewise, due to their production mechanism, a large momentum spread and large
emittance are inherent to the secondary ion beams, which would deteriorate a mea-
surement of the target-recoil momenta and kinetic energies if not counteracted [7].
These problems can be overcome using stored and cooled secondary beams of unsta-
ble nuclei interacting with thin internal gas-jet targets. This way we would expect:

• high luminosities due to the continuous beam accumulation and beam recir-
culation;

• high-resolution detection of low-energy recoil particles due to beam cooling
and thin targets; and

• low-background conditions due to pure, windowless targets of H, He, etc.

Within the EXL Technical Proposal, the design of a complex detection setup was
investigated with the aim of providing a highly efficient universal detection system.
This universal detector system is applicable to a wide class of reactions and would
provide high resolution and large solid-angle coverage in kinematically complete
measurements. The apparatus, foreseen to be installed at the internal target of the
NESR storage cooler ring, is shown schematically in Fig. 2.1. The setup includes:

• a Si-strip and Si(Li) detector array for recoiling target-like reaction products,
completed by slow-neutron detectors, and a scintillator array of high granu-
larity for gamma rays and for the total-energy measurement of more energetic
target recoils;

• detectors in forward direction for fast ejectiles from the excited projectiles,
i.e., for neutrons and light charged particles; and

• heavy-ion detectors for the detection of beam-like reaction products.

All detector components will practically cover the full relevant phase space and have
detection efficiencies close to unity.

2.1 Overall design of the recoil detector system

The overall design for the recoil and gamma-ray detector for EXL is divided into two
major parts, namely the EXL Silicon Particle Array (ESPA), which is assigned to
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Figure 2.1: The EXL detection setup. Right: New Experimental Storage Ring (NESR).

Middle: schematic view of the three main parts of EXL. Left: recoil detector setup sur-

rounding the gas-jet target, showing the silicon-detector elements which are covered by the

calorimeter crystals. The silicon-detector system consists of five regions covering different

angular ranges. These regions are known as A, B, C, D, and E which are colored here as

red, green, blue, yellow, and brown, respectively. Except for the region E which covers

the scattering angles of θLAB > 90◦, the other four regions are spread over the region with

θLAB < 90◦.

detect light charged particles emerging from the target, and the EXL Gamma and
Particle Array (EGPA), which covers the whole ESPA solid angle by a scintillator
hodoscope and detects the punch-through charged particles as well as the gamma
rays. The whole ensemble will be referred to as ERGA (EXL Recoil and Gamma Ar-
ray). Optionally, low-energy neutrons from (p, n) reactions are detected by the EXL
Low-Energy Neutron Array (ELENA). Fig. 2.2 shows some views of the mechanical
design (using UGS NX 5), performed at KVI, for the EXL recoil-detector setup. In
the realized EXL recoil-detector setup, one has to deal with difficulties like gluing
the Si-detector elements to the frame (grid structure) shown on top left-hand side of
this figure. The gluing should be performed so neatly, in order to leave a completely
sealless spherical structure covered by the Si-detector elements. While this struc-
ture would be capable of standing pressure differences of the order of 10−5 mbar,
it should be sealed enough to hold a relative vacuum of 10−14 mbar for the interior
pressure as compared to 10−5 mbar for the pressure outside the spherical structure.
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Figure 2.2: Mechanical design of various elements of the EXL recoil-detector setup [18].

(a) grid structure for holding the Si-detector elements; (b) Si-detector elements installed

on the grid structure and surrounded by the conflat flange; (c) a profile view showing

various detection layers. The outermost green layer represents the calorimeter scintillators

which are separated from the Si-detectors by a metallic shell holding the vacuum; (d)

the outlook of the completed design of the whole recoil-detector setup, installed on a

supporting structure.
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In contrast, it is the thick spherical shell (connected to the “conflat flange”) that
would have to stand the high pressure differences of the order of one bar. This shell
would separate the calorimeter from the Si-detector elements. More design aspects
are outlined in the conceptual design report of EXL [7].

 [M
eV

]
re

co
il

E

 [deg]LABθ

0 20 40 60 80 100 120 140 160

-110

1

10

210

’)    E = 400 MeV/u,  E*= 15  MeVα,αPb(196

He,t)     E = 400  MeV/u3Be(12

He,t)    E = 400  MeV/u3Pb(196

)         E = 400  MeV/uα,αC(18

Sn(d,p)       E = 15    MeV/u132

°=1CMθ

°=5CMθ

°=10CMθ

°=20CMθ

0 20 40 60 80 100 120 140 160

-110

1

10

210

C(p,p’)      E = 400 MeV/u,  E*= 25  MeV18

Xe(p,p’)   E = 350 MeV/u,  E*= 15  MeV136

Xe(p,p)     E = 350  MeV/u136

Sn(p,p)     E = 740  MeV/u132

C(p,d)        E = 15    MeV/u22

Xe(p,d)    E = 350   MeV/u136

Xe(p,t)     E = 350   MeV/u136

°=1CMθ

°=5CMθ

°=10CMθ
°=20CMθ

Figure 2.3: Kinetic energy of the recoil particle versus its scattering angle, as calculated

in inverse kinematics by making use of A.16. Some representative center-of-mass angles

for the recoil particle (θCM = 1◦, 5◦, 10◦, 20◦) are also marked on the kinematical curves;

the order of the four points on each curve follows the same trend, with respect to the

Erecoil, as those shown for two of the curves. The CM scattering angles are here defined

to be supplementary to the ones obtained using A.20. Here, E∗ is the excitation energy

of the beam particle having undergone inelastic scattering.
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2.1.1 Kinematical regions of interest

The detector components need to fulfill strong demands concerning angular and
energy resolutions, energy threshold, dynamic range, granularity, vacuum compat-
ibility, etc. The kinematical conditions and the resulting constraints on energy
resolutions are summarized in Figs. 2.3, 2.4, and 2.5 as well as Tables 2.1 and 2.2
for a few selected typical reactions at different incident energies.
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Figure 2.4: Same as Fig. 2.3 but for θCM instead of kinetic energy. The calculations are

based on A.20.

Having in mind that the regular region of interest is, for direct reactions, con-
centrated for most cases in the CM angular region 0◦ < θCM < 30◦, target-like recoil
particles are to be detected in an energy range from about 100 keV up to several
hundred MeV, and in an angular region of 30◦ < θLAB < 120◦ (except for transfer



2.1. Overall design of the recoil detector system 49
 [d

eg
]

C
M

θ

 [deg]LABθ

0 20 40 60 80 100

20
40
60
80

100
120
140
160 Xe(p,p’)   E = 350 MeV/u,  E*= 15  MeV136

C(p,p’)      E = 400 MeV/u,  E*= 25  MeV18

C(p,d)          E = 15    MeV/u22

Xe(p,p)       E = 350  MeV/u136

Sn(p,p)       E = 740  MeV/u132

0 20 40 60 80 100

2

4

6

8

10

12

Figure 2.5: Same as Fig. 2.4 but for different reaction channels.

reactions, see Fig. 2.3). This defines the constraints concerning detection angle,
energy threshold, and dynamic range of the individual detectors. Fig. 2.6 shows
the recoil energy as a function of the scattering angle for some selected reactions
(shown in Fig. 2.3) which are representative to elastic, inelastic, charge-exchange,
and transfer reactions. The dotted curves show the ±σ boundaries for the proba-
bility distribution of the kinematical curves when we have a center-of-mass energy
resolution of σ = 300 keV for the recoil particle.

In Tables 2.1 and 2.2 the calculation of the expected resolution (σ = ∆E∗) was
performed through simulations. In the calculation of the overall resolution of the
detector setup we follow the same approach as explained in ??. Here, we exploit the
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Table 2.1: Required and expected resolutions for a few selected typical reactions with

E∗ being the excitation energy of the nucleus (projectile). The required resolution is cal-

culated considering a resolution of 300 keV for the center-of-mass recoil energy. Here,

σ
(detected)
Erecoil

is the overall energy resolution calculated through simulations for the recoil de-

tector geometry of Fig. ?? without having the UHV shell in the geometry. The superscript

(P) is shown for those cases where the majority of the recoil particles punch through the

calorimeter. Calculation of σ
(detected)
Erecoil

for the three cases in which θLAB ≥ 90◦ are yet to

be performed after the implementation of the silicon-detector elements of region E (see

Fig. 2.1) in the simulations (see the text).

Resolution Resolution
Reaction θCM ELAB

recoil imposed for expected for
(θLAB) [MeV] σECM

recoil

= 300 keV EXL setup

E [MeV/u]

E∗ [MeV] [deg] σELAB
recoil

[keV] σ
(detected)
Erecoil

[keV]

0.5 − 5 0.09 − 6.3 6 − 220 −
12Be(3He, t) (120 − 91)

5 − 18 6.3 − 81 220 − 440 40
400 (91 − 80)
0 18 − 25 81 − 155 440 − 460 40 − 550

(80 − 75)
25 − 59 155 − 802.1 460 − 530 550 − 2650(P)

(75 − 55)
132Sn(d , p) 3 − 22 2.8 − 5.9 90 − 160 −

(170 − 120)
15 22 − 45 5.9 − 15.3 160 − 290 −
0 (120 − 90)

1.5 − 14.6 0.3 − 26.5 250 − 440 130 − 30
136Xe(p, p) (89 − 80)

14.6 − 22.1 26.5 − 60.3 440 − 450 30 − 140
350 (80 − 75)
0 22.1 − 37.6 60.3 − 170.6 450 − 470 140 − 230

(75 − 65)
a)5.3 − 2.5 3.6 − 0.9 210 − 40 20

136Xe(p, p′) b)16.9 − 35.1 34.7 − 145.8 650 − 510 80 − 220
(75 − 65)

350 a)2.5 − 1.6 0.9 − 0.4 40 − 20 20
15 b)35.1 − 52.6 145.8 − 314.6 510 − 530 220 − 420(P)

(65 − 55)
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Table 2.2: Continued from Table 2.1.
Resolution Resolution

Reaction θCM ELAB
recoil imposed for expected for

(θLAB) [MeV] σECM
recoil

= 300 keV EXL setup

E [MeV/u]

E∗ [MeV] [deg] σELAB
recoil

[keV] σ
(detected)
Erecoil

[keV]

1.1 − 11.3 0.4 − 39.3 220 − 340 130 − 180
132Sn(p, p) (89 − 80)

11.3 − 17.1 39.3 − 89.7 340 − 350 30 − 180
740 (80 − 75)
0 17.1 − 29.4 89.7 − 261.3 350 − 380 180 − 270

(75 − 65)
1.6 − 15.8 0.9 − 87.1 360 − 470 10 − 30

18C(α, α) (89 − 80)
15.8 − 23.8 87.1 − 196.1 470 − 480 30 − 370

400 (80 − 75)
0 23.8 − 40.3 196.1 − 547.2 480 − 500 370 − 2200

(75 − 65)
a)10 − 2.5 12.6 − 1.1 1050 − 30 150 − 20

18C(p, p′) b)12.8 − 51.4 20.4 − 304.3 1650 − 340 160 − 300(P)

(74 − 55)
400 a) 2.5 − 1 1.1 − 0.5 30 − 12 20
25 (55 − 30)

a)1.5 − 0.9 1.3 − 0.5 60 − 20 20
196Pb(α, α′) b)12.8 − 20.6 90.8 − 233.6 480 − 460 30 − 600

(80 − 75)
400 a)0.9 − 0.3 0.5 − 0.08 20 − 3 20
15 b)20.6 − 52.5 233.6 − 1429 460 − 520 600 − 4300(P)

(75 − 55)
a)0.9 − 0.6 0.4 − 0.16 30 − 14 20

196Pb(3He, t) b)13.3 − 20.9 75 − 184 460 − 450 40 − 690
(80 − 75)

400 a)0.6 − 0.2 0.16 − 0.03 14 − 2 20
0 b)20.9 − 52.5 184 − 1094 450 − 510 690 − 3970(P)

(75 − 55)
22C(p, d) a)25 − 4 5.9 − 2.3 460 − 120 30 − 10

15 b)74 − 156 30.9 − 78 1050 − 730 40 − 330
0 (40 − 10)
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Figure 2.6: Same as Fig. 2.3 for some representative reactions. The two dotted curves

are corresponding to when we choose the center-of-mass energy of the recoil particle as

ECM = ECM
0 ± 300 keV, in which ECM

0 is the center-of-mass energy of the recoil particle

according to the corresponding kinematical curves in Fig. 2.3. Here, the kinematical curve

of only 136Xe(p, p) is shown (solid line); for the other four reactions only the σ = 300 keV

boundaries for the probability distribution of the kinematical curves around ECM
0 are

shown.

generalized form of Eq. ?? which reads as

Histo → Fill
(

(E
(tot)
sil − µsil) + (E

(tot)
cal − µcal)

)

, (2.1)

with E
(tot)
sil = ΣiE

(i)
sil and E

(tot)
cal = ΣjE

(j)
cal, in which i and j run over all the silicon-

detector elements and calorimeter crystals that detect energy deposition Esil and
Ecal, respectively, in an event. On the other hand, µsil and µcal are taken as the
means of the Gaussian fits to ΣkE

(tot)
sil and ΣkE

(tot)
cal when no detector resolution

is folded to silicon-detector elements and calorimeter crystals. Here, k runs over
all the events. In the simulations, an intrinsic resolution of FWHM = 50 keV
was considered for the Si-detector elements. The resolution of CsI crystals was
calculated from Fig. ?? as a function of the deposited energy by the recoil protons
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in the individual crystals. For other recoil particles (d, t, α), a resolution of 1%

for FWHM was considered. In addition, in order to calculate σ
(detected)
Erecoil

, I used a
Gaussian interaction profile of σx = σy = σz = 1 mm as an extended region around
the target point within which the recoil particles were generated in the simulations.

For five examples in these tables, we expect the (majority of the) recoil particles
to punch through the recoil-detector setup, namely, silicon-detector elements plus
calorimeter crystals. For the two reactions 18C(p, p′) and 136Xe(p, p′) with recoil-
particle energies of ELAB

recoil = 304.3 MeV and 314.6 MeV, respectively, the calculation
of resolution was performed based on the energy deposition of those few non-punch-
through events (respectively, ≈ 3.5% and 0.5% of the total events). On the other
hand, we expect all the events to punch through for the reactions 196Pb(3He, t),
196Pb(α, α′), and 12Be(3He, t) with recoil-particle energies of ELAB = 1094.3 MeV,
1429.1 MeV, and 802.1 MeV, respectively. In this case, the numbers appeared under
σ

(detected)
Erecoil

(= 3970 keV, 4300 keV, and 2650 keV, respectively) show the resolutions
expected if the kinetic energy of the particles would be measured with 1% resolution
after punching through the calorimeter; that is, if one places a thick detector right
after the calorimeter to stop these particles with a 1% resolution. In Table 2.1,
calculation of the expected resolution σ

(detected)
Erecoil

for those cases in which θLAB ≥
90◦ needs to be performed after the implementation of the Si-detector elements of
region E (shown schematically in Fig. 2.1) in the simulations. These three cases
are 12Be(3He, t) with 91◦ ≤ θLAB ≤ 120◦ and 132Sn(d, p) with 120◦ ≤ θLAB ≤ 170◦

and 90◦ ≤ θLAB ≤ 120◦. Considering the range of energies of the corresponding
recoil particles (≤ 15.3 MeV), most probably we will have them stopped in the
silicon layers (a thickness of 1.6 mm for the Si-detector elements can stop protons
of 15.3 MeV). In this case the overall resolution will be the same as the resolution
of the silicon elements.

2.1.2 Design of upcoming experiments with ESR

Using the simulations, one can calculate the acceptance of different detector ele-
ments for various reaction channels. In practice, one can exploit this idea in order
to devise a detector setup which is optimized for a specific reaction channel. In
the optimization process, one would find the best position for the various detector
elements with the aim to maximize the acceptance of individual detectors, while
reaching a reasonable coincidence acceptance. For instance, Fig. 2.7 shows the pre-
dicted kinematical curves for various reaction channels of 56Ni in inverse kinematics.
It shows the influence of the beam energy as well as the excitation energy on the rela-
tion between the kinematical variables Erecoil and θLAB. As an example, we consider
a proposed experiment with 56Ni nuclei as beam and 3He nuclei as target, in order
to find an optimized geometry for the recoil and heavy-ion detectors and derive the
respective single and coincidence reaction rates. In the procedure of predicting the
reaction rates we would rely on theoretical calculations for the cross section of the
channels of interest. Fig. 2.8 shows the theoretical prediction for the cross section
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Figure 2.7: Top: same as Fig. 2.3 but for 56Ni(p, p) and 56Ni(α, α) reactions with beam

energies of 50 and 200 MeV/nucleon. The dotted curves show the kinematics, corre-

sponding to the same-color solid curves with no excitation, but considering an excitation

energy of E∗ = 10 MeV for the projectile(-like) nucleus. Bottom: same as top panel for
56Ni(3He, t) reaction channel. The turning points of the curves are defined as where the

low- and high-energy branches meet.

of 56Ni(p, n) reaction, with beam energies of 50 and 200 MeV/nucleon, as a function
of projectile-like excitation energy. It shows that the charge-exchange cross section
has a maximum probability at excitation energies around 4 MeV. Fig. 2.9 shows the
relation between various kinematical variables of the light ejectile and heavy projec-
tile for a projectile-like excitation energy of 4 MeV for (p, n) and (3He, t) reaction
channels. For the sake of illustration, we take for the rest of the discussion the
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Figure 2.8: Theoretical predictions for the differential cross section of 56Ni(p, n) reaction,

with beam energies of 50 (dotted curve) and 200 MeV/nucleon (solid curve), as a func-

tion of projectile-like excitation energy [15]. The calculation is performed for the normal

kinematics with a light-ion scattering angle of 0.1◦ in the laboratory frame.

reaction channel 56Ni(3He, t)56Cu for the beam energies 50 and 200 MeV/nucleon.

Consider a detector setup in which we would have a silicon detector with an area
of 45× 45 mm2 and a thickness of 300 µm for the heavy ions (the same dimensions
as the p-i-n diode detector in the feasibility experiment 1.3), installed inside the
ESR storage ring in possible locations after the dipole magnets. Based on the
simulations, the heavy-ion detector would have the highest acceptance for fully-
stripped 56Cu ions, when it is installed right after the last dipole magnet before
the quadrupole magnet (see Fig. 1.1 for the geometry of the ESR storage ring).
The position optimization for the heavy-ion detector was achieved by moving the
detector along (and on both sides of) the beam line as well as changing its distance
to the center of the beam pipe. Now consider the low-energy branch of the light-ion
kinematics in Fig. 2.9 (recoil energies less than about 17.5 and 15.5 MeV in the
56Ni(3He, t) reaction channel for the beam energies of 50 and 200 MeV/nucleon,
respectively). Based on this convention, the low- and high-energy branches meet

at the turning point of θ
(light ion)
LAB . Having the kinematics of the low-energy branch,

there is not much difference in terms of the specific position of this detector in the
available space of 70 cm length right after the last dipole magnet. This is the case
when we put the detector on the left side of the beam line (when looking along
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Figure 2.9: Top panel: center-of-mass scattering angle of the light ejectile versus its

scattering angle in the laboratory frame (LAB) for the reaction channels 56Ni(3He, t)

and 56Ni(p, n), with beam energies of 50 and 200 MeV/nucleon and an excitation energy

of 4 MeV for 56Cu ions. The angles are measured with respect to the heavy-ion beam

direction. Second panel: the same as above but for a small region of center-of-mass

angles. Here, the region close to 180◦ corresponds to small center-of-mass scattering

angles in normal kinematics. Third panel: kinetic energy of the light ejectile versus its

laboratory scattering angle. Bottom panel: laboratory scattering angle of the excited 56Cu

versus the laboratory scattering angle of triton.
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the direction of the beam), since on the right side the acceptance drops drastically.
For the two beam energies, the detector position was fixed at 60 cm after the last
dipole magnet perpendicular to the beam direction with its closest edge 5 mm away
from the center of the beam pipe. The acceptance of this detector (labeled as D1 in
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Figure 2.10: Theoretical prediction for the inverse-kinematics differential cross section

of 56Ni(3He, t) reaction, with beam energies of 50 (dotted curves) and 200 MeV/nucleon

(solid curves), as a function of triton scattering angle in LAB (top panel) and CM (bottom

panel) frames [19]. The calculation is performed for a projectile-like excitation energy of

4 MeV and only the cross sections corresponding to the low-energy branch is shown (see

Fig. 2.7, bottom panel).

Fig. 2.11) for 50 and 200 MeV/nucleon beam energies was obtained to be 24% and
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57% for singles, respectively, when we use a point-like scatterer.
The next stage would be to find the optimized position for the recoil detec-

tor setup. For the recoil detector we will have double-sided silicon-strip detectors
(DSSD) of 300 µm thickness and 65× 65 mm2 area. Based on the simulations with
the kinematics of low-energy branch, there is no significant difference in the coinci-
dence acceptance of the DSSD detector, whether it is positioned on the right or left
side of the beam line inside the target chamber. Using the cross section correspond-
ing to the low-energy branch of the light-ejectile kinematics (Fig. 2.10), we optimized
the position of a single DSSD detector in terms of having the maximum amount of
coincident events with the heavy-ion detector. The optimization was dictated only
by the best angular position for the recoil detector (DSSD (1) in Fig. 2.11) on the
left side of the beam line, while the distance of the detector to the center of the
interaction profile was set to be 15 cm. This distance is sufficient to cover a range
of about 24◦ for the polar scattering angle, when we have a point-like target. The
optimized (in terms of giving the maximum coincidence rate) installation angle for
this DSSD detector element was found to be about 53◦ and 64◦, for the beam ener-
gies of 50 and 200 MeV/nucleon, respectively. Here, I define the installation angle

to be the angle between
−→
OR and ẑ in Fig. 2.11.

Due to the probable limitations in changing the position of detectors inside the
interaction chamber for different beam energies, it is more suitable to work with a
common detector geometry for various beam energies. Thus, from now on I will

proceed with a common geometry in which
−→
OR makes an angle of 53◦ with ẑ. Nev-

ertheless, in the discussion of the reaction rates, I will present the reaction rates cor-
responding to the optimized geometry of DSSD (1) as well, in order to compare with
the results of the finalized geometry (see Fig. 2.14). Note that the difference between
the optimized and the final geometry would only show up for the 200 MeV/nucleon
beam. Having the final geometry, the coincidence acceptance of DSSD (1) with the
heavy-ion detector was found to be 2.9% and 0.7% for the beam energies of 50 and
200 MeV/nucleon, respectively, when we have a point-like scatterer. For a Gaussian-
type extended interaction profile of FWHMz = 7.4 mm, FWHMx = 9.0 mm, and
FWHMy = 5.0 mm, the coincidence acceptance was obtained to be 2.8% (2.9% for
the optimized geometry of DSSD (1)) and 0.7% for the beam energies of 50 and
200 MeV/nucleon, respectively. I took the size of the extended interaction profile to
be the same as what we had in the feasibility experiment, though it can, in principle,
be different.

Apart from DSSD (1) we included six other DSSD elements in the geometry;
DSSD (4) has the mirror position of DSSD (1) with respect to the beam direc-
tion, DSSD (2) and (3), to be used in combination with DSSD (1), are considered
for tracking the light ejectiles, and DSSD (5), (6), and (7) play the same role as
DSSD (1), (2), and (3) do, while covering the region of small scattering angles. In
order to prevent the deflected heavy ions to hit the DSSD (5) and (7), I ended up
with a setup in which OR′′ makes an angle of about 19◦ with the beam direction.

In order to obtain the shape of the cross section of a specific reaction channel
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Figure 2.11: Schematic view of the ESR recoil Si-detector setup (seven DSSD elements)

for the proposed experiment with a beam of 56Ni and a gas-jet target of 3He. The lower

box represents the interaction chamber which is connected to the beam pipe. The recoil

detectors DSSD (1) and (4) are placed symmetric with respect to the beam direction

in such a way that their midpoints are 15 cm away from the center of the interaction

profile (O) and the detector surfaces are perpendicular to the lines connecting O and their

midpoints (OR and OR′), while two of the sides of their rectangular surfaces are parallel

to the direction of gas-jet injection (the y-axis). DSSD (2) and (3) are placed next to

each other with the same orientation as DSSD (1) in space, but with a distance of 15 cm

between their surfaces and the surface of DSSD (1). In the simulations, OR and OR′

make an angle of 37◦ with respect to x̂ and −x̂, respectively. The detectors DSSD (5), (6),

and (7) have the same positions with respect to each other as DSSD (1), (2), and (3) do;

OR′′ makes an angle of 19◦ with respect to ẑ. The smallest edge-distance of the heavy-ion

detectors D1 and D2 to the center of the beam pipe are 5 and 60 mm, respectively. D1

is approximately 17 m away from O.
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as a function of scattering angle from the experiment (or simulations), we need to
find the respective acceptance as a function of scattering angle. Practically, we
need to choose a finite (as opposed to differential) bin size for the scattering angle
(∆θ). Nevertheless, ∆θ should be small enough to show the interesting features of
the cross section pattern. Consecutively, we would be able to calculate the corre-
sponding detector count rates for each bin of ∆θ. In practice, it is the obtained
count rates for the consecutive ∆θ bins (regions) that would reveal the “measured”
shape of the underlying cross section. Dividing the angular range of interest into
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Figure 2.12: Top: Energy of the emitted photon in the phase-space decay of
56Cu∗ → γ + 56Cu versus its scattering angle in LAB, considering 4 MeV excitation

energy for the daughter nucleus in the reaction channel 56Ni(3He, t) with a beam energy

of 50 MeV/nucleon. Bottom: scattering angle of the de-excited 56Cu nuclei versus the

scattering angle of the emitted γ rays. The calculation is done for the kinematics of the

low-energy branch (see Fig. 2.9). Different shades in the lower panel refer to different

intensities.

∆θ regions of 2◦ width, we can derive the singles acceptance of a DSSD detector,
the singles acceptance of the heavy-ion detector, and the coincidence acceptance of
the two detectors for every ∆θ region. Tables 2.3 and 2.4 summarize the results. In
all the tables presented here, the acceptance of the heavy-ion detector implies the
acceptance for 56Cu ions, de-excited via a phase-space photon decay of the mother
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nucleus at the beam-target interaction point. Fig. 2.12 shows the relation between
various kinematical variables of the de-excited nuclei and the emitted photons for
the low-energy-branch kinematics and 50 MeV/nucleon beam energy.

Table 2.3: Acceptance of DSSD (5), the heavy-ion detector D1 in Fig. 2.11, and the

coincidence acceptance of the two detectors (a5, b1, and acoinc.(5), respectively). The

results are from simulations for a detector setup to be installed at the ESR storage ring

and for the beam energy of 50 MeV/nucleon (200 MeV/nucleon). The calculation is for

the low-energy branch of the reaction channel 56Ni(3He, t) with an excitation energy of

4 MeV for the projectile-like particle (see Fig. 2.9), using the theoretical cross sections

of Fig. 2.10. The de-excited 56Cu nuclei were generated (and tracked down) according to

the phase space kinematics of an excited nucleus emitting a photon at the center of the

interaction profile. “θLAB-range” represents the triton scattering angle in the laboratory

frame.

θLAB-range a5 b1 acoinc.(5)

[deg] [%] [%] [%]
1 − 3 0.01 (0.02) 100 (100) 0.01 (0.02)
3 − 5 0.6 (0.5) 100 (100) 0.6 (0.5)
5 − 7 5.0 (5.0) 100 (100) 5.0 (5.0)
7 − 9 15.8 (16.6) 100 (100) 15.8 (16.6)
9 − 11 25.5 (25.7) 100 (100) 25.5 (25.7)
11 − 13 31.1 (31.5) 100 (100) 31.1 (31.5)
13 − 15 31.6 (31.5) 100 (100) 31.6 (31.5)
15 − 17 27.8 (27.0) 100 (100) 27.8 (27.0)
17 − 19 24.0 (23.7) 100 (100) 24.0 (23.7)
19 − 21 21.5 (21.2) 100 (100) 21.5 (21.2)
21 − 23 19.0 (18.9) 100 (100) 19.0 (18.9)
23 − 25 17.7 (18.2) 100 (100) 17.7 (18.2)
25 − 27 16.4 (15.7) 100 (100) 16.4 (15.7)
27 − 29 15.1 (14.3) 100 (100) 15.1 (14.3)
29 − 31 12.4 (12.6) 100 (100) 12.4 (12.6)
31 − 33 6.3 (6.2) 99.9 (100) 6.3 (6.2)
33 − 35 1.0 (1.2) 99.6 (100) 1.0 (1.2)
35 − 37 0.04 (0.07) 98.6 (100) 0.04 (0.07)

The results presented in Tables 2.3 and 2.4 can, in turn, be used to derive the
corresponding reaction rates by making use of B.5. Figs. 2.13 and 2.14 (top panel)
show the singles reaction rates of DSSD (1), (4), and (5) as well as their reaction
rates in coincidence with the heavy-ion detector, taking a luminosity of 1025 cm−2s−1

and beam energies of 50 and 200 MeV/nucleon.
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Table 2.4: Same as Table 2.3 for DSSD (1) and DSSD (4).

θLAB-range a1 a4 b1 acoinc.(1) acoinc.(4)

[deg] [%] [%] [%] [%] [%]
35 − 37 0.002 (0) 0 (0) 98.6 (100) 0.002 (0) 0 (0)
37 − 39 0.1 (0.2) 0.1 (0.2) 95.9 (100) 0.1 (0.2) 0.1 (0.2)
39 − 41 2.3 (2.2) 2.1 (1.9) 90.1 (100) 2.3 (2.2) 2.1 (1.9)
41 − 43 6.9 (7.0) 6.9 (7.1) 81.4 (100) 6.9 (7.0) 6.9 (7.1)
43 − 45 9.4 (9.3) 9.4 (9.4) 71.4 (100) 9.4 (9.3) 9.4 (9.4)
45 − 47 9.3 (9.5) 9.2 (9.1) 62.1 (100) 9.3 (9.5) 9.2 (9.1)
47 − 49 9.1 (9.4) 9.1 (9.2) 55.4 (100) 9.1 (9.4) 9.1 (9.2)
49 − 51 8.9 (8.7) 9.0 (9.0) 49.9 (100) 8.9 (8.7) 9.0 (9.0)
51 − 53 8.6 (8.6) 8.5 (8.7) 44.8 (100) 8.6 (8.6) 8.5 (8.7)
53 − 55 8.6 (8.4) 8.3 (8.6) 40.4 (100) 8.6 (8.4) 8.3 (8.6)
55 − 57 8.0 (8.3) 8.2 (8.4) 34.6 (100) 8.0 (8.3) 6.5 (8.4)
57 − 59 8.2 (8.1) 8.0 (8.0) 21.7 (100) 8.2 (8.1) 0.6 (8.0)
59 − 61 7.8 (7.9) 7.9 (7.8) 14.9 (100) 7.8 (7.9) 0 (7.8)
61 − 63 7.6 (7.7) 7.6 (7.7) 12.7 (100) 7.4 (7.7) 0 (7.7)
63 − 65 6.2 (6.3) 6.2 (6.4) 3.2 (100) 1.4 (6.3) 0 (6.4)
65 − 67 2.3 (2.4) 2.2 (2.4) 0.0004 (100) 0 (2.4) 0 (2.4)
67 − 69 0.2 (0.2) 0.2 (0.2) 0 (100) 0 (0.2) 0 (0.2)
69 − 71 0 (0.002) 0 (0.002) 0 (99.7) 0 (0.002) 0 (0.002)
71 − 73 0 (0) 0 (0) 0 (96.9) 0 (0) 0 (0)
73 − 75 0 (0) 0 (0) 0 (83.5) 0 (0) 0 (0)
75 − 77 0 (0) 0 (0) 0 (59.1) 0 (0) 0 (0)
77 − 79 0 (0) 0 (0) 0 (31.4) 0 (0) 0 (0)

In order to have a thorough investigation on the reaction rates of a specific reac-
tion channel registered by a detector element, one needs to have an estimation of the
rates of other reaction channels in the real experiment. In our case, we need to work
out the reaction rates of the high-energy branch as well as the elastic scattering (as
a potentially dominant channel and background) rates. It was shown by simulations
that the acceptance of the designed recoil detector setup is approximately zero for
the elastic events. It is worth mentioning that for the kinematics of the high-energy
branch, the acceptance of the heavy-ion detector is significantly reduced. This re-
quires having a second heavy-ion detector installed at a more appropriate location, in
order to detect heavy ions originating from the high-energy branch. The optimized
location for this detector (labeled as D2 in Fig. 2.11) was obtained to be at the same
60 cm after the last dipole magnet, but with an edge distance of 60 mm to the center
of the beam pipe (as compared to 5 mm in the case of the heavy-ion detector D1).
Although the position of this detector is now optimized to detect the heavy ions,
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Figure 2.13: Top: simulation results showing the reaction rates as a function of triton

scattering angle in the reaction 56Ni(3He, t) for 50 MeV/nucleon beam energy, correspond-

ing to the kinematics of the low-energy branch, as observed by DSSD (1) (hollow triangles),

DSSD (4) (hollow circles), and DSSD (5) (hollow stars) as well as the coincidence rates

observed by these detector elements and the heavy-ion detector D1 in Fig. 2.11 (corre-

sponding solid symbols). Note that the corresponding solid and hollow symbols coincide,

for most of the points. A luminosity of 1025 cm−2s−1 is considered in the calculations.

Bottom: same as top panel but for the high-energy branch. For the high-energy branch,

we considered a uniform distribution for the cross section equal to 1.4 mb/sr (see the text).

The effect of the acceptance can be seen in the dropping behavior of data points at posi-

tions close to the edges of individual detectors. Here, the solid stars are the coincidence

rates registered by DSSD (5) and the heavy-ion detector D2.

there will be few or no tritons detected in coincidence by various DSSD elements.The
corresponding reaction rates are shown in the bottom panels of Figs. 2.13 and 2.14.
In order to calculate the reaction rates corresponding to the high-energy branch, we
considered a uniform distribution for the cross section equal to 1.4 and 0.1 mb/sr
for the beam energies of 50 and 200 MeV/nucleon, respectively. This way, we would
have an overestimation of the reaction rates corresponding to high-energy branch;
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Figure 2.14: Same as Fig. 2.13 for the beam energy of 200 MeV/nucleon. For the high-en-

ergy branch, we considered a uniform distribution for the cross section equal to 0.1 mb/sr

(see the text). The asterisks show the reaction rates observed by DSSD (1) when it is

installed at the optimized angle of 64◦ (instead of 53◦) with respect to ẑ (see the text).

the actual cross sections are much smaller than these values (see Fig. 2.10). This
overestimation allows us to investigate the ratio of the reaction rates corresponding
to the low- and high-energy branches. In principle, one should expect a better dis-
crimination of the low-energy-branch events over the high-energy-branch ones in the
real experiment. Based on the results of these figures, the heavy-ion detector D1 has
(approximately) 100% acceptance for the 56Cu ions corresponding to the kinematics
of low-energy branch for the beam energy of 200 (50 MeV/nucleon). In the case
of the high-energy branch, only DSSD (5), at beam energy of 50 MeV/nucleon, is
capable of registering coincidences with D2. As expected, the extracted data points,
for the two branches of kinematics, reveal the same trend as the generator cross sec-
tion of Fig. 2.10. Based on the derived reaction rates from simulations we can have
an estimation of the relative errors in determining the cross section. Fig. 2.15 shows
the results for the two beam energies and a luminosity of 1025 cm−2s−1, with ten
days run-time. For the angular range between 11◦ and 65◦ (except for the interval
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[31◦, 41◦]), the relative error of measurement is obtained to be less than 11% (54%)
for the beam energy of 50 (200 MeV/nucleon). For the estimation of the error bars,
we have made use of the singles reaction rates of DSSD (1) and (5).

Obeying the kinematics of the low-energy branch (Fig. 2.9), tritons can hardly
punch through DSSD (1), making it impossible to track them by DSSD (2) or
DSSD (3). Whereas, having the kinematics of the high-energy branch, tritons can
be tracked exploiting the latter two recoil detectors (see Fig. 2.11). Fig. 2.16 shows
the reconstructed triton scattering angle for the events that are detected by two
consecutive DSSD elements (like DSSD (1) and DSSD (2)), as obtained from the
simulations. The linear diagonal pattern that shows the relation between the thrown
scattering angle and the reconstructed one indicates how good the reconstruction
can be performed. In the simulations, a pixel size of 1× 1 mm2 was assumed for the
DSSD detectors. The position of the hit pixel is reconstructed from the real position
of the hit. The real x- and y-positions of the hit are extracted from the entrance and
exit windows of each DSSD detector. If the particle stops in the detector element,
the x- and y-positions of the hit would be retrieved from the entrance window of
the DSSD detector element. The extracted x- or y-position then gets replaced with
the x- or y-position of the closest pixel center, which would be registered as the
reconstructed hit point. The line that connects two reconstructed hit points on
two consecutive DSSD detectors (like DSSD (1) and DSSD (2)) would eventually
represent the reconstructed scattering direction.
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Figure 2.15: The extracted cross sections for the low-energy branch of the reaction chan-

nel 56Ni(3He, t), based on the reaction rates of Figs. 2.13 and 2.14 for the beam energies

of 50 (top panel) and 200 MeV/nucleon (bottom panel). The error bars are statistical

and are estimated to be attainable after ten days of running the experiment, with the

assumption of having a luminosity of 1025 cm−2s−1. The error bar estimation was done

exploiting the singles reaction rates of DSSD (1) and (5). The curves show the theoretical

cross sections of Fig. 2.10.
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Figure 2.16: 2D histogram: The real scattering angle of tritons, as generated in the

simulations, versus the reconstructed one by the combination of DSSD (1) and DSSD (2),

DSSD (1) and DSSD (3), DSSD (5) and DSSD (6), or DSSD (5) and DSSD (7). The

results are for the high-energy branch of the reaction channel 56Ni(3He, t) with a beam

energy of 50 MeV/nucleon. The 1D histogram shows the reconstructed angle for those

events that are detected by two consecutive DSSD elements. The left peak is scaled down

by a factor of 20.
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A. Relativistic kinematics for
two-body interactions

A.1 Kinematics

In this appendix we try to derive the important kinematical parameters in a two-
body interaction. While the energy-momentum conservation restricts the possible
configurations between ingoing and outgoing particles in a collision, two arguments
make kinematical considerations important in the treatment of collision problems.
First, experiments are performed in the laboratory system (LAB) in which the
target particle is often at rest. Second, calculations are mostly performed in the
center-of-mass (CM) frame, since the dynamics depends only on the relative motion
of the colliding particles. To compare theoretical computations with experimental
results, one needs to transform from one frame to the other. To link experiments and
computations, it is necessary to find the connections between energies, momenta,
angles, and cross sections in the two systems, before and after collision.

To establish these connections, we use the Lorentz transformation and conser-
vation of energy and momentum. Although from the point of view of relativistic
mechanics all coordinate systems are equal, for practical purposes, however, LAB
and CM frames are the two systems of particular importance. All direct observations
are in the laboratory system, so it is convenient to use it for reporting experimental
results. The CM coordinate system is convenient to use, since in this system the
disintegration and collision processes for two particles have the maximum degree of
symmetry [20]. Thus, for example if there are no polarization effects, the disinte-
gration of one particle into two others is characterized by a spherically symmetric
distribution of secondary particles in the center-of-mass frame.

A.1.1 Kinematical invariants

The Lorentz transformations can always be performed in order to derive the kine-
matical variables of interest. Alternatively, we can make use of the appropriate
kinematical invariants. This way, the use of the Lorentz transformations is unnec-
essary. Relativistic invariants have the same value in any system, hence we can
express them in a system where they have the simplest form. It is convenient to
consider the Mandelstam variables s, t, and u, which are expressed in terms of dot
products of the relevant four vectors, as an appropriate set of kinematical invariants
in an interaction. This is particularly useful for the case where two particles interact,
resulting in only two emerging particles. Take the case of two incoming particles

69
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1 and 2 scattering to produce two outgoing particles 3 and 4 (Fig. A.1). One can

 LABθ
 1

,  m LAB
 1E

 3
,  m LAB

 3E

 4
,  m LAB

 4E

 2m

Figure A.1: Scattering variables in a typical two-body scattering. Here, mi is the rest

mass of the ith particle and m2 is considered to be at rest in LAB frame. Ei
LAB represents

the total energy of the ith particle in LAB.

define s as the square of the total energy in the CM frame, t as the square of the
four-momentum transfer, and u as the crossed four-momentum transfer squared as
follows:

s = (p1 + p2)
2 = (p3 + p4)

2

t = (p1 − p3)
2 = (p4 − p2)

2

u = (p1 − p4)
2 = (p3 − p2)

2, (A.1)

from which it follows that (we use hereafter natural units; ~ = c = 1):

s + t + u = m1
2 + m2

2 + m3
2 + m4

2 = const., (A.2)

which shows that only two of the three invariants are independent. Experimentally,
the total energy of the beam particle in the LAB frame (E1

LAB), mass of the beam
particle (m1), and target-particle mass (m2) are fixed. Thus, for given outgoing
masses m3 and m4 and for a particular scattering angle θLAB, the corresponding
energies E3

LAB and E4
LAB can be computed from the four-momentum conservation

relation:
p1 + p2 = p3 + p4. (A.3)
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The kinematical invariant s is then given by:

s ≡ (p1 + p2)
2
CM =

(

E1
CM + E2

CM , 0
)2

=
(

E3
CM + E4

CM , 0
)2

(A.4)

≡ (p1 + p2)
2
LAB =

(

E1
LAB + m2,

−→p1
LAB

)2

= m1
2 + m2

2 + 2m2E1
LAB.

Similarly:
t = m1

2 + m3
2 + 2 (−→p1 · −→p3 − E1E3) (A.5)

= m2
2 + m4

2 − 2m2E4
LAB

u = m1
2 + m4

2 + 2 (−→p1 · −→p4 − E1E4) (A.6)

= m2
2 + m3

2 − 2m2E3
LAB,

in which Ei and −→pi are total energy and three-momentum of the ith particle in an
arbitrary coordinate system.

Inserting Ei
CM =

(

(−→pi
CM
)2

+ mi
2

)1/2

, as the total energy of the ith particle

in CM frame, into the first equation of A.4 and knowing that |−→p1
CM | = |−→p2

CM | and

|−→p3
CM | = |−→p4

CM | we can obtain the magnitude of the CM momenta as follows:

|−→p1
CM | =

1

2
√

s
· ω
(

s,m1
2,m2

2
)

,

|−→p3
CM | =

1

2
√

s
· ω
(

s,m3
2,m4

2
)

, (A.7)

with
ω(x, y, z) =

√

x2 + y2 + z2 − 2xy − 2yz − 2xz. (A.8)

From Eqs. A.4, A.5, and A.6 for a fixed target particle in LAB (E2
LAB = m2)

we obtain

E1
LAB =

(

s − m1
2 − m2

2
)

/2m2,

E3
LAB =

(

m2
2 + m3

2 − u
)

/2m2,

E4
LAB =

(

m2
2 + m4

2 − t
)

/2m2, (A.9)

which in combination with Eqs. A.7 result in

|−→p1
LAB| = ω

(

s,m1
2,m2

2
)

/2m2,

|−→p3
LAB| = ω

(

u,m2
2,m3

2
)

/2m2,

|−→p4
LAB| = ω

(

t,m2
2,m4

2
)

/2m2. (A.10)

Furthermore, from Eqs. A.7 we can also get the corresponding CM energies as
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follows:

E1
CM =

(

s + m1
2 − m2

2
)

/2
√

s,

E2
CM =

(

s − m1
2 + m2

2
)

/2
√

s,

E3
CM =

(

s + m3
2 − m4

2
)

/2
√

s,

E4
CM =

(

s − m3
2 + m4

2
)

/2
√

s. (A.11)

Therefore, using Eqs. A.5 and A.7 and the expressions for E1
CM and E3

CM

from Eq. A.11, we can calculate the scattering angle in CM frame in terms of the
kinematical invariants as follows:

cos
(

θCM
)

=
−→p1

CM · −→p3
CM

|−→p1
CM ||−→p3

CM |
(A.12)

=
s2 + s (2t − m1

2 − m2
2 − m3

2 − m4
2) + (m1

2 − m2
2) (m3

2 − m4
2)

ω (s,m1
2,m2

2) · ω (s,m3
2,m4

2)
.

Similarly, for the scattering angle in LAB frame we obtain

cos
(

θLAB
)

=
−→p1

LAB · −→p3
LAB

|−→p1
LAB||−→p3

LAB|
(A.13)

=
(s − m1

2 − m2
2) (m2

2 + m3
2 − u) + 2m2

2 (m2
2 + m4

2 − s − u)

ω (s,m1
2,m2

2) · ω (u,m2
2,m3

2)
.

It is convenient to have the functional form of the total energy of the outgoing
particle

(

E3
LAB or E4

LAB
)

versus the scattering angle in LAB. Substituting for s
and u from Eqs. A.4 and A.6 into Eq. A.13, we will have

2 cos
(

θLAB
)

=
aE3

LAB + b
√

c
(

(

E3
LAB

)2 − m3
2
)

, (A.14)

in which

a = 2
(

E1
LAB + m2

)

, b = m4
2−m1

2−m2
2−m3

2−2m2E1
LAB, c =

(

E1
LAB

)2−m1
2.

(A.15)
Subsequently, from Eq. A.14 we obtain

E3
LAB =

−ab ± 2 cos
(

θLAB
)

·
√

4c2m3
2 · cos2 (θLAB) + c (b2 − a2m3

2)

a2 − 4c · cos2 (θLAB)
. (A.16)

The functional form of E3
LAB versus θLAB in Eq. A.16 shows that there could be

a turning point for θLAB as E3
LAB increases from zero to higher values. The angle,
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θLAB
0 , at which the turning happens can easily be calculated from this expression to

be:

θLAB
0 = cos−1

(
√

a2m3
2 − b2

2m3

√
c

)

≡ cos−1

(
√

P

Q

)

, (A.17)

with

P = 4
(

m3
2 − m2

2
) (

E1
LAB

)2
+ 4m2

(

m3
2 − m2

2 + m4
2 − m1

2
) (

E1
LAB

)

+
(

2m3
2
(

m2
2 − m1

2
)

+ 2m4
2
(

m2
2 + m1

2
)

−
(

m1
2 + m2

2
)2 −

(

m3
2 − m4

2
)2
)

and

Q = 4m3
2
(

(

E1
LAB

)2 − m1
2
)

. (A.18)

Once we have E3
LAB versus θLAB (scattering angle of particle #3), we can easily

calculate E4
LAB versus θLAB by making use of the following relation:

E4
LAB = E1

LAB + m2 − E3
LAB. (A.19)

It might also be of interest to calculate θLAB versus θCM . This we can do by
making use of Eqs. A.12 and A.13:

cos
(

θLAB
)

= cos
(

θCM
)

× ω (s,m3
2,m4

2)

ω (u,m2
2,m3

2)
×

(

(s − m1
2 − m2

2) (m2
2 + m3

2 − u) + 2m2
2 (m2

2 + m4
2 − s − u)

s2 + s (2t − m1
2 − m2

2 − m3
2 − m4

2) + (m1
2 − m2

2) (m3
2 − m4

2)

)

.

(A.20)

A.1.2 Transformation of cross sections

For a two-body reaction, dσ/dt and dσ/dΩ are connected by:

dσ/dt = 2π
d(cos θ)

dt

dσ

dΩ
. (A.21)

Equations A.12 and A.21 immediately give:

(dσ/dΩ)CM =
1

4πs
ω
(

s,m2
1,m

2
2

)

· ω
(

s,m2
3,m

2
4

) dσ

dt
. (A.22)
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With the help of Eqs. A.9 and A.10, we introduce laboratory quantities and get:

dσ/dt =
π
(

1 +
ELAB

1

m2
− cos θLAB ELAB

3

m2

|−→p1
LAB |

|−→p3
LAB |

)

|−→p1
LAB||−→p3

LAB|
(dσ/dΩ)LAB . (A.23)

Rewriting Eq. A.22 and using Eq. A.23 we will have:

(

dσ

dΩ

)CM

normal

=
1

4πs
· ω
(

s,m2
1,m

2
2

)

· ω
(

s,m2
3,m

2
4

)

(

dσ

dt

)

normal

≡ J1 ×
(

dσ

dΩ

)LAB

normal

, (A.24)

with

J1 =
ω (s,m2

1,m
2
2) · ω (s,m2

3,m
2
4)

4s · |−→p LAB
1 ||−→p LAB

3 |
×
(

1 +
ELAB

1

m2

− cos θLAB ELAB
3

m2

|−→p LAB
1 |

|−→p LAB
3 |

)

,

(A.25)

where “normal” stands for normal kinematics (light projectile on heavy target-
particle) and s = m2

1 + m2
2 + 2m2E

LAB
1 . We can have the same expression for the

inverse kinematics, where a heavy projectile impinges on the light target-particle
(exchanging m1 and m2):

(

dσ

dΩ

)CM

inverse

≡ J1,inv. ×
(

dσ

dΩ

)LAB

inverse

, (A.26)

with

J1,inv. =
ω (sinv.,m

2
2,m

2
1) · ω (sinv.,m

2
3,m

2
4)

4sinv. · |−→p LAB
1,inv.||−→p

LAB
3,inv.|

×

(

1 +
ELAB

1,inv.

m1

− cos θLAB
inv.

ELAB
3,inv.

m1

|−→p LAB
1,inv.|

|−→p LAB
3,inv.|

)

, (A.27)

in which sinv. = m2
2 + m2

1 + 2m1E
LAB
1,inv. and “inv.” shows the respective quantity

in inverse kinematics with the following numbering convention for the particles:
particle #1 with mass m2, particle #2 with mass m1, particle #3 with mass m3,
and particle #4 with mass m4. Hence, based on this notation, ELAB

1,inv. and −→p LAB
1,inv.

are the total energy of the beam particle (heavier than the target particle) and its

3-momentum in the LAB frame; ELAB
3,inv.,

−→p LAB
3,inv., and θLAB

inv. are the total energy, 3-
momentum, and scattering angle of the scattered light particle in the LAB frame.
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We have also from Eq. A.22:

(

dσ
dΩ

)CM

inverse
· 4sinv.

ω (sinv.,m2
2,m

2
1) · ω (sinv.,m2

3,m
2
4)

≡ 1

π
·
(

dσ

dt

)

inverse

, (A.28)

which, using Eq. A.26, results in:

(

dσ

dt

)

inverse

=
π

|−→p LAB
1,inv.||−→p

LAB
3,inv.|

× (A.29)

(

1 +
ELAB

1,inv.

m1

− cos θLAB
inv.

ELAB
3,inv.

m1

|−→p LAB
1,inv.|

|−→p LAB
3,inv.|

)

(

dσ

dΩ

)LAB

inverse

.

This, as well, could have been intuitively concluded from Eq. A.23, in which dσ/dt
and (dσ/dΩ)LAB are for normal kinematics.

Now in Eq. A.29,
(

dσ
dΩ

)LAB

inverse
can be obtained from Eqs. A.24 and A.26, using the

intuitive fact that
(

dσ
dΩ

)CM

normal
≡
(

dσ
dΩ

)CM

inverse
, (which in turn translates into sinv. ≡ s):

(

dσ

dΩ

)LAB

inverse

=

(

dσ

dΩ

)LAB

normal

× J2, (A.30)

in which

J2 =
|−→p LAB

1,inv.||−→p
LAB
3,inv.|

|−→p LAB
1 ||−→p LAB

3 |
×

(

1 +
ELAB

1

m2
− cos θLAB ELAB

3

m2

|−→p LAB
1 |

|−→p LAB
3 |

)

(

1 +
ELAB

1,inv.

m1
− cos θLAB

inv.

ELAB
3,inv.

m1

|−→p LAB
1,inv.|

|−→p LAB
3,inv.|

) . (A.31)

This, using Eqs. A.29 and A.30, results in:

(

dσ

dt

)

inverse

=

(

dσ

dΩ

)LAB

normal

×
π
(

1 +
ELAB

1

m2
− cos θLAB ELAB

3

m2

|−→p LAB
1 |

|−→p LAB
3 |

)

|−→p LAB
1 ||−→p LAB

3 |
,

(A.32)

which could be rewritten, using Eq. A.23, to give:

(

dσ

dt

)

inverse

≡
(

dσ

dt

)

normal

=

(

dσ

dt

)

. (A.33)

Therefore, we can summarize Eq. A.23 as follows:

(

dσ

dΩ

)LAB

normal

=

(

dσ

dt

)

× J3,

(

dσ

dΩ

)LAB

inverse

=

(

dσ

dt

)

× J4. (A.34)
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in which

J3 =
|−→p LAB

1 ||−→p LAB
3 |

π
(

1 +
ELAB

1

m2
− cos θLAB ELAB

3

m2

|−→p LAB
1 |

|−→p LAB
3 |

) ,

J4 =
|−→p LAB

1,inv.||−→p
LAB
3,inv.|

π
(

1 +
ELAB

1,inv.

m1
− cos θLAB

inv.

ELAB
3,inv.

m1

|−→p LAB
1,inv.|

|−→p
LAB
3,inv.|

) .

(A.35)

An example

In this subsection, we will try to derive a differential cross section as function of the
scattering angle for a specific channel, using the experimental data available for some
other reactions and having only one cross section point at one angle for our reaction
of interest. Consider the reaction channel 56Ni(p, n)56Cu with an excitation energy
of 4 MeV. The calculation of Fig. 2.8 gives the cross section dσ/dt at a single point
(0.1◦ in normal kinematics or equivalently at 0.34◦ and 1.96◦ in inverse kinematics
for 50 and 200 MeV/nucleon, respectively), which is 623 and 240 mb/(GeV)2 for
4 MeV excitation energy at the beam energies of 50 and 200 MeV/nucleon, respec-

tively. Thus, from Eq. A.34 we will have
(

dσ
dΩ

)LAB

inverse
= 1.3078 and 0.07896 mb/sr

for these two energies, respectively. Having this single cross section point in inverse
kinematics and exploiting the experimental cross section for 90Zr(p, n) reaction in

normal kinematics (Fig. A.2), we attempt to derive the cross section
(

dσ
dΩ

)LAB

inverse
for

the reaction channel 56Ni(p, n). The way we do this is to normalize to the experimen-

tal data. From Eq. A.34 we obtain
(

dσ
dΩ

)LAB

normal
= 14.65 and 29.95 mb/sr for the beam

energies of 50 and 200 MeV/nucleon, respectively. The normalization procedure is
performed for the cross sections when represented as functions of qR, in which q is
the 3-momentum transfer and R is the nuclear radius. At θLAB

normal = 0.1◦ we obtain
qR = 0.341 and 0.170 GeV.fm/c for beam energies of 50 and 200 MeV/nucleon,
respectively. Here, R = 4.629 fm is used as the radius of 56Ni nucleus. On the other
hand, for the 90Zr(p, n) reaction in normal kinematics at 295 MeV proton energy

and Ex = 10 MeV and ∆L = 0 we have
(

dσ
dΩ

)LAB

normal
= 2.1 and 7.26 mb/sr [21] at

qR0 = 0.341 and 0.170 GeV.fm/c, respectively, in which R0 = 5.422 fm is the radius
of 90Zr nucleus (see Tables A.1 and A.3). Therefore, the normalization factors for
proton beam energies of 50 and 200 MeV are obtained to be 14.65/2.1 = 6.976 and
29.95/7.26 = 4.125, respectively. Tables A.1, A.2, and A.3 show the results of the
normalization procedure for the proton beam energies of 50 and 200 MeV.

Fig. A.3 (top panel) shows the derived cross sections in normal kinematics
(based on Tables A.1, A.2, and A.3) for the two beam energies. Using Eq. A.30
we can then extract the corresponding cross sections in inverse kinematics. Fig. A.3
(bottom panel) compares the results of this procedure with the actual theoretical
prediction for the cross sections of 56Ni(p, n) reaction at beam energies of 50 and
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Figure A.2: Cross sections for the reaction channel 90Zr(p,n) in normal kinematics for

the beam energy of 295 MeV and an excitation energy of Ex = 10 MeV with ∆L = 0.

The six data points shown here are the results of multipole-decomposition-analysis (MDA)

and extracted from [21]. While the solid curve is a Gaussian fit to data points, the dotted

curve is taken as the cross section in Tables A.1, A.2, and A.3, which is maximum at

θLAB
normal = 0◦.

200 MeV/nucleon in inverse kinematics. The figure shows that the method of nor-
malizing from one nucleus to another one is rather reliable for making rate estimates.

A.2 Momentum transfer analysis in 136Xe (p, p)

For a given s, both t and u depend linearly on the cosine of the CM scattering angle
by:

− t = 2ECM
1 ECM

3 − m2
1 − m2

3 − 2pCM
1 pCM

3 · cos θCM

−u = 2ECM
2 ECM

3 − m2
2 − m2

3 − 2pCM
2 pCM

3 · cos θCM . (A.36)

In the case of elastic scattering
(

m1 = m3 and ECM
1 = ECM

3

)

and again for fixed s
we can easily derive t, for it is an invariant variable which is the same in the LAB
and CM frames:

− t = 2
(

pCM
)2 (

1 − cos θCM
)

, (A.37)
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Table A.1: Calculation of the cross section of 56Ni(p, n) for 4 MeV excitation energy

in 56Cu in normal kinematics for Ep = 200 MeV through normalization to the available

normal kinematics cross section of 90Zr(p, n) with a beam energy of Ep = 295 MeV and

an excitation energy of Ex = 10 MeV. The normalization factor at θLAB
(56Ni) = 0.1◦ was

obtained to be 4.125 for this beam energy.

qR θLAB
(90Zr)

90Zr(p, n) 56Ni(p, n) θLAB
(56Ni)

(dσ/dΩ)LAB
normal (dσ/dΩ)LAB

normal

[GeV.fm/c] [deg] [mb/sr] [mb/sr] [deg]
0.170 1.21 7.26 29.95 0.1
0.174 1.31 7.15 29.49 0.75
0.178 1.41 7.00 28.87 1.07
0.183 1.51 6.87 28.34 1.33
0.188 1.61 6.71 27.69 1.57
0.192 1.71 6.56 27.06 1.78
0.197 1.81 6.40 26.40 1.98
0.203 1.91 6.22 25.66 2.18
0.208 2.01 6.03 24.87 2.36
0.213 2.11 5.86 24.17 2.55
0.219 2.21 5.68 23.43 2.73
0.225 2.31 5.47 22.56 2.90
0.230 2.41 5.29 21.82 3.07
0.236 2.51 5.08 20.95 3.24
0.242 2.61 4.89 20.17 3.41
0.248 2.71 4.70 19.39 3.57
0.254 2.81 4.49 18.52 3.74
0.260 2.91 4.30 17.74 3.90
0.267 3.01 4.12 16.99 4.06
0.273 3.11 3.89 16.05 4.22
0.279 3.21 3.71 15.30 4.38
0.286 3.31 3.51 14.48 4.54
0.292 3.41 3.34 13.78 4.70
0.299 3.51 3.14 12.95 4.85
0.305 3.61 2.98 12.29 5.01
0.312 3.71 2.80 11.55 5.17

which has the bounds 0 ≤ −t ≤ 4
(

pCM
)2

. Clearly, pCM is the 3-vector of momentum
in the CM frame and can be calculated via

s =
(

ECM
1 + ECM

2

)2
=

(

√

m2
1 + (pCM)2 +

√

m2
2 + (pCM)2

)2

. (A.38)
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Table A.2: Continued from Table A.1.
qR θLAB

(90Zr)
90Zr(p, n) 56Ni(p, n) θLAB

(56Ni)

(dσ/dΩ)LAB
normal (dσ/dΩ)LAB

normal

[GeV.fm/c] [deg] [mb/sr] [mb/sr] [deg]
0.318 3.81 2.64 10.89 5.32
0.325 3.91 2.47 10.19 5.48
0.332 4.01 2.31 9.53 5.63
0.338 4.11 2.18 8.99 5.78
0.345 4.21 2.03 8.37 5.94
0.352 4.31 1.88 7.75 6.09
0.359 4.41 1.76 7.26 6.24
0.366 4.51 1.63 6.72 6.40
0.372 4.61 1.52 6.27 6.55
0.379 4.71 1.40 5.77 6.71
0.386 4.81 1.29 5.32 6.86
0.393 4.91 1.20 4.95 7.01
0.400 5.01 1.10 4.54 7.16
0.407 5.11 1.01 4.17 7.31
0.414 5.21 0.93 3.84 7.46
0.421 5.31 0.85 3.51 7.62
0.428 5.41 0.78 3.22 7.77
0.435 5.51 0.70 2.89 7.92
0.442 5.61 0.65 2.68 8.07
0.449 5.71 0.59 2.43 8.22
0.456 5.81 0.54 2.23 8.37
0.463 5.91 0.48 1.98 8.52
0.470 6.01 0.43 1.77 8.67
0.477 6.11 0.40 1.65 8.82
0.484 6.21 0.36 1.48 8.98
0.491 6.31 0.32 1.32 9.13
0.499 6.41 0.29 1.20 9.28
0.506 6.51 0.26 1.07 9.43
0.513 6.61 0.23 0.95 9.57
0.520 6.71 0.21 0.87 9.73
0.527 6.81 0.19 0.78 9.88
0.534 6.91 0.16 0.66 10.03
0.541 7.01 0.15 0.62 10.17



80 Appendix A: Relativistic kinematics for two-body interactions

Table A.3: Same as Table A.1 for 50 MeV/nucleon beam energy. The normalization

factor at θLAB
(56Ni) = 0.1◦ was obtained to be 6.976.

qR θLAB
(90Zr)

90Zr(p, n) 56Ni(p, n) θLAB
(56Ni)

(dσ/dΩ)LAB
normal (dσ/dΩ)LAB

normal

[GeV.fm/c] [deg] [mb/sr] [mb/sr] [deg]
0.341 4.15 2.1 14.65 0.1
0.345 4.21 2.03 14.16 2.41
0.352 4.31 1.88 13.11 3.95
0.359 4.41 1.76 12.28 5.06
0.365 4.51 1.63 11.37 5.99
0.372 4.61 1.52 10.60 6.81
0.379 4.71 1.40 9.77 7.56
0.386 4.81 1.29 9.00 8.25
0.393 4.91 1.20 8.37 8.91
0.400 5.01 1.10 7.67 9.53
0.407 5.11 1.01 7.05 10.12
0.414 5.21 0.93 6.49 10.70
0.421 5.31 0.85 5.93 11.26
0.428 5.41 0.78 5.44 11.79
0.435 5.51 0.70 4.88 12.32
0.442 5.61 0.65 4.53 12.83
0.449 5.71 0.59 4.12 13.33
0.456 5.81 0.54 3.77 13.82
0.463 5.91 0.48 3.35 14.31
0.470 6.01 0.43 3.00 14.78
0.477 6.11 0.40 2.79 15.25
0.484 6.21 0.36 2.51 15.71
0.491 6.31 0.32 2.23 16.17
0.499 6.41 0.29 2.02 16.63
0.506 6.51 0.26 1.81 17.07
0.513 6.61 0.23 1.60 17.52
0.520 6.71 0.21 1.46 17.95
0.527 6.81 0.19 1.32 18.39
0.534 6.91 0.16 1.12 18.82
0.541 7.01 0.15 1.05 19.25

For a frame (e.g., CM) moving along an arbitrary z-direction we have ECM =
γ(E − vpz), in which v, E, and pz are the velocity of the frame, the particle energy,
and z-component of particle momentum in LAB (target) frame; ECM is the energy
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Figure A.3: Top: Cross section of the reaction channel 56Ni(p, n) in normal kinematics

for the proton energies of 50 (triangles) and 200 MeV (squares) and an excitation energy

of 4 MeV, derived through normalization to the experimental data of Fig. A.2. Bottom:

theoretical prediction for the cross section in inverse kinematics for the reaction channel
56Ni(p, n) with beam energies of 50 (dotted curve) and 200 MeV/nucleon (solid curve) [19].

For comparison the extracted cross sections from the method of normalization to exper-

imental data is also shown for the beam energies of 50 (triangles) and 200 MeV/nucleon

(squares). For an extensive discussion on the derivation of the method, see the text.

of particle in CM frame. Alternatively, we can have the following transformations:

E = γ
(

ECM + vpCM
z

)

, pz = γ
(

pCM
z + βECM

)

, py = pCM
y , and px = pCM

x , (A.39)



82 Appendix A: Relativistic kinematics for two-body interactions

with γ =
(

1 − (v/c)2)−1/2
and c = 1 in natural units. Consequently,

tan (θLAB) =

√

p2
x + p2

y

pz

=
tan
(

θCM
)

γLAB
(

1 + v·ECM

pCM
z

) , (A.40)

in which θLAB (θCM) is the scattering angle in the laboratory (center-of-mass) frame
and v is the velocity of the CM frame relative to the LAB frame (hence substituting
γ and β with γLAB and βLAB). Therefore, for a two-body scattering we would have

tan
(

θLAB
i

)

=
tan
(

θCM
i

)

γLAB
(

1 +
v·ECM

i

pCM
i ·cos (θCM )

) , i = 1, 2 (A.41)

in which |pCM
1 | = |pCM

2 | = pCM and θCM
2 = π − θCM

1 . Therefore,

tan
(

θLAB
i

)

=
sin
(

θCM
i

)

γLAB
(

cos (θCM
i ) + βLAB ECM

i

pCM

) , i = 1, 2 (A.42)

The 4-momenta of the beam particle, moving in z-direction, and the target particle,
fixed in LAB, can be written as

p1 = (E1, 0, 0, pz) , p2 = (E2, 0, 0, 0) (A.43)

Hence,
s = m1

2 + m2
2 + 2m2 (m1 + Kb) , (A.44)

in which Kb is the kinetic energy of the beam particle in LAB. Therefore, from
Eqs. A.38 and A.44 we can calculate pCM , βLAB, and γLAB. For a 136Xe beam energy
of 350 MeV/nucleon these parameters are obtained to be 0.8779 GeV, 0.6832, and
1.3695, respectively. On the other hand, from Eq. A.37, −t is given by the following
relations:

− t = 2
(

pCM
)2
(

1 − cos
(

θCM
ion

)

)

= 2
(

pCM
)2
(

1 + cos
(

θCM
p

)

)

, (A.45)

since in our case, the beam (ion) is moving in z-direction and the target (proton) is
fixed. Therefore,

tan
(

θLAB
ion

)

=

√

(−t) − (−t)2

4(pCM )2

γLAB

(

pCM − (−t)
2pCM + βLAB

√

(pCM)2 + (mion)2

) , (A.46)
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tan
(

θLAB
p

)

=

√

(−t) − (−t)2

4(pCM )2

γLAB

(

(−t)
2pCM − pCM + βLAB

√

(pCM)2 + (mp)
2

) , (A.47)

in which θLAB
ion and θLAB

p are the 136Xe and proton scattering angles in LAB, and
mion = 126.5962 GeV and mp = 0.9383 GeV are their respective rest masses.
We can also calculate −t with respect to θLAB

p from Eq. A.42, knowing that for
the elastically-scattered proton, we expect θCM

p > π/2 (in the CM frame, the z-
component of the proton momentum is negative):

tan
(

θLAB
p

)

=
sin (θCM

p )

γLAB
(

b + cos (θCM
p )

) , (A.48)

in which b = βLAB ECM
p

pCM = 1, since pCM = mCM
p βLAB and mCM

p ≡ ECM
p . Thus, from

Eqs. A.45 and A.48 we obtain

− t = 4
(

pCM
)2

(

1

1 + (γLAB)2 · tan2
(

θLAB
p

)

)

. (A.49)

It is also possible to calculate −t versus the proton kinetic energy (KLAB
p ) after

collision with the heavy ion:

ELAB
p = γLAB

(

ECM
p + βLABpCM · cos

(

θCM
p

)

)

, (A.50)

with ECM
p =

√

m2
p + (pCM)2. Thus,

KLAB
p = γLAB

(

γLABmp + βLABpCM · cos
(

θCM
p

)

)

− mp, (A.51)

since before the collision, proton is assumed to be at rest
(

ECM
p = γLABmp

)

. Thus,

2mpK
LAB
p = 2

(

pCM
)2
(

1 + cos
(

θCM
p

)

)

≡ −t, (A.52)

using the fact that mpγ
LAB ≡ mCM

p .



84 Appendix A: Relativistic kinematics for two-body interactions



B. Reaction rates

An often used quantity in storage ring experiments is the integrated luminosity
∫

Ldt. The number of reactions which can be observed in a given reaction time is
just the product of the integrated luminosity and the cross section. For a specific
reaction channel, the total reaction rate is

Ṅ = L ·
∫

whole phase space

(dσ/dΩ)∆Ω = L(2π)

∫ π

0

(dσ/dΩ)dθ · sin θ. (B.1)

Considering L = x × 1028 cm−2s−1, we will have L = 10x mb−1s−1 which results in

Ṅ = 20πx

∫

(dσ/dΩ)dθ · sin θ, (B.2)

in which dσ/dΩ should be inserted in units of mb/sr. Equivalently,

Ṅ = (20πx)
∑

i

(dσ/dΩ)i(∆θ)i sin θi, (B.3)

in which θi runs over the whole phase space of the respective cross section. Choosing
(∆θ)i = 2◦, we will end up with

Ṅ = (20πx)(2/180)π
∑

i

sin θi · (dσ/dΩ)i, (B.4)

in which (dσ/dΩ)i is, in principle, the mean value of every (dσ/dΩ)j inside the (∆θ)i

at a specific θi.
In practice, only a fraction of all the reactions is observed by detectors. Thus,

the observed reaction rate by a detector at θi would be

∆Ṅobserved = ai(2π
2/9)x · (dσ/dΩ)i · sin θi, (B.5)

in which ai (“detector acceptance”) is the ratio of the number of detected light
ejectiles generated at θi to the total number of generated light ejectiles at θi. Thus,
the total reaction rate detected by the detector is

Ṅobserved =
∑

i

(∆Ṅ)observed
i = (2π2/9)x ·

∑

i

ai(dσ/dΩ)i · sin θi. (B.6)
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