TRABAJO DIRIGIDO

CARACTERIZACIÓN DE ESPECTROS BETA CON UN DETECTOR DE BARRERA DE SUPERFICIE

AUTOR : Joaquín López Herraiz DIRIGIDO POR: José Manuel Udías Moinelo

INTRODUCCIÓN

- 1) PROYECTO CONSTRUCCIÓN DE ESPECTROSCOPIO BETA
- 2) MEJORA DE ESPECTROSCOPIO PARA DETECTAR PICO DE C.I.
- 3) DETERMINACIÓN DE ACTIVIDADES ABSOLUTAS
- 4) CARACTERIZACION DE ESPECTROS α CON DETECTOR DE Si

 PROYECTO DE CONSTRUCCIÓN DE UN ESPECTROSCOPIO BETA

1.1) TRAYECTORIA DE ELECTRONES EMITIDOS POR UNA FUENTE BETA SOMETIDA AL CAMPO B DE UN SOLENOIDE

• CÁLCULO DE ELECTRODINÁMICA $r = \frac{P \cdot Sen\theta}{|q|.B}$ $L = V \cdot Cos(\theta) \cdot \tau \quad ,, \quad \tau = \frac{2\pi}{\omega}$ $\omega = \frac{|q|.B}{\gamma.m}$

1.2) ECUACIÓN DE LA TRAYECTORIA

$$\rho(z)[P,\theta] = \frac{2.P.Sen\theta}{e.B}.Sen\left(\frac{e.B.Z}{2.P.Cos\theta}\right)$$

Hacemos adimensional: Usando P₀, α de referencia $\rightarrow p = P/P_0$, $z = Z / Z_{0 \text{ Max}}$, $r = \rho / \rho_0$

$$r(z)[p,\theta] = p.\frac{sen(\theta)}{sen(\alpha)}sen\left(\frac{\pi.\cos(\alpha).z}{\cos(\theta).p}\right)$$

1.3) FOCALIZACIÓN

$\Delta\theta <<1 \rightarrow \Delta z$ pequeño (Focalización) $\Delta p > \text{Resolución buscada} \rightarrow \Delta z$ apreciable

1.4) SIMULACIONES DE LA FOCALIZACIÓN

Variaciones del 5% del ángulo entorno a 22.5°

Variaciones del 5% del ángulo entorno a 60°

1.5) MONTAJE Y DIAFRAGMAS

HACEMOS SIMULACIONES DE MONTECARLO PARA ESTUDIAR LAS PROPIEDADES DE ESTE ESPECTROCOPIO

1.6) SIMULACIÓN DEL ESPECTRO DEL ²⁰⁴T1

1.7) RESULTADO DE LAS SIMULACIONES

1.8) CONSIDERACIONES TÉCNICAS

Hasta ahora todo hecho de un modo adimensional, pero...

¿Cuáles pueden ser las dimensiones

de un espectroscopio de este tipo?

 $L = \frac{\pi}{150} \frac{P[keV] \cdot Cos(\alpha)}{B[mT]} \text{ [metros]}$ P = 800 keV, B = 40 mT, α = 30° \Rightarrow L = 36 cm, R=7.5 cm

¡DEMASIADO GRANDE!

MEJORA DE UN ESPECTROSCOPIO BETA PARA DETECTAR PICO DE ELECTRONES DE C.I. (¹³⁷Cs)

 ELECTRONES DE CONVERSIÓN INTERNA:

•Núcleo^{*}+ e⁻ (Atómico) \rightarrow Núcleo + e⁻ (Emitido)

2.1) ESPECTRO DEL ¹³⁷Cs

2.2) ESPECTROSCOPIO DE 60° DEL LABORATORIO

2.3) Estudio del efecto de la resolución en la forma del espectro obtenido

Función de respuesta $g(P,P_0)$ a una fuente con $P_0 = 4$ $\delta(P-P_0) \Longrightarrow g(P-P_0)$

 $f(P) = \int f(P') \delta(P - P') dP'$

 $h(P) = \int f(P')g(P-P')dP'$

<u>Convolución</u> de f(P) con la función que nos marca la resolución del aparato

2.3) Estudio del efecto de la resolución en la forma del espectro obtenido

2.4) ESPECTROSCOPIO DE 109°

2.5) ESPECTROSCOPIO DE 109° - TRAYECTORIAS

2.4) ESPECTROSCOPIO DE 109° - FOCALIZACIÓN

 π -2 ϕ =109°

1.4

2.6) SIMULACIÓN DE **MONTECARLO**

2.7) RESULTADOS EXPERIMENTALES

BLOQUE 3 DETERMINACIÓN DE ACTIVIDADES ABSOLUTAS

 $ED = \frac{D}{N}$ ED = EFICIENCIA TOTAL DEL DETECTOR D = NUMERO DE FOTONES CONTADOS N = NUMERO DE FOTONES EMITIDOS

$$ED = \mathcal{E}_G \cdot \mathcal{E}_I \cdot \mathcal{E}_M$$

 $\mathcal{E}_{G} = FACTOR GEOMETRICO$

 ε_{I} = FACTOR POR ABSORCION INTERMEDIA DE FOTONES

(AIRE Y RECUBRIMIENTO DEL CRISTAL)

 ε_{M} = FACTOR ABSORCION EN CRISTAL NaI(Tl)

3.1) RITMO DE RECUENTO EN EL FOTOPICO

 $FP \equiv \frac{P}{D}$

FP = FRACCION DE FOTONES EN FOTOPICO / TOTAL P = NUMERO DE FOTONES DETECTADOS EN EL FOTOPICO

 $\mathbf{N} = BR \cdot A \cdot t$

BR = BRANCHING RATIO DE EMISION DE FOTONES CON E_0

- A = ACTIVIDAD DE LA FUENTE
- t = TIEMPO DE RECUENTO

 $\mathbf{P} = (\mathbf{A} \cdot \mathbf{t}) \cdot \mathbf{B} \mathbf{R} \cdot \boldsymbol{\varepsilon}_{\mathrm{G}} \cdot (\mathbf{R} \cdot \boldsymbol{\varepsilon}_{\mathrm{I}} \cdot \boldsymbol{\varepsilon}_{\mathrm{M}})$

 $\mathbf{A}_{\mathbf{P}} \equiv A \cdot BR \cdot \boldsymbol{\varepsilon}_{\mathbf{G}} \cdot \boldsymbol{\varepsilon}_{\mathbf{D}}$

 A_{p} = RITMO DE RECUENTO DE FOTONES EN EL FOTOPICO

A = ACTIVIDAD DE LA FUENTE

BR = BRANCHING RATIO DE EMISION DE FOTONES CON E_0

$$\varepsilon_{\rm D} = \left(\mathbf{R} \cdot \boldsymbol{\varepsilon}_{\rm I} \cdot \boldsymbol{\varepsilon}_{\rm M} \right)$$

= EFICIENCIA INTRINSECA DEL DETECTOR EN EL FOTOPICO

3.2) MÉTODO DE COINCIDENCIAS

$$A_{1} = A \cdot BR_{1} \cdot \varepsilon_{G1} \cdot \varepsilon_{D1}$$

$$A_{2} = A \cdot BR_{2} \cdot \varepsilon_{G2} \cdot \varepsilon_{D2} \qquad \longrightarrow \qquad A_{C} = \frac{A_{1} \cdot A_{2}}{A}$$

$$A_{C} = A \cdot BR_{1} \cdot \varepsilon_{G1} \cdot \varepsilon_{D1} \cdot BR_{2} \cdot \varepsilon_{G2} \cdot \varepsilon_{D2}$$

2

3.3) MEDIDAS ACTIVIDAD 60Co

DETECTOR 1 – PICO 1173 keV \rightarrow A₁= 45.4 ± 1.1 Bq

COINCIDENCIAS ENTRE AMBOS PICOS $A_{C} = 0.377 \pm 0.044$ Bq

DETECTOR 2 – PICO 1333 keV \rightarrow A₁= 82.7 ± 1.1 Bq

 $\Rightarrow A = 0.273 \pm 0.042 \ \mu Ci$ $t = \tau . Ln\left(\frac{A_0}{A}\right) = 15.14 a \tilde{n} os$

3.4) MEDIDAS ACTIVIDAD CALCULANDO EL FACTOR GEOMÉTRICO

$$A_{1} = \frac{\left(1094 \pm 49\right)}{d^{2}} = A \cdot BR \cdot \varepsilon_{D} \cdot \frac{R^{2}}{4d^{2}} \implies A \cdot BR \cdot \varepsilon_{D} = \frac{\left(1094 \pm 49\right)}{1.10} = 992 \pm 44$$

$$\varepsilon_{\rm D} = (R = 0.40 \pm 0.05) \cdot (\varepsilon_{\rm I} = 0.99) \cdot (\varepsilon_{\rm M} = 0.82 \pm 0.02) = 0.33 \pm 0.04$$

$$BR_1 = 0.90 \rightarrow A = 3.391 \pm 0.56 \text{ kBq}$$

A = 0.093 ± 0.016 µCi
$$t = \tau .Ln\left(\frac{A_0}{A}\right) = 11.51a$$
 ños

3.5) ANIQUILACIÓN ELECTRÓN - POSITRÓN

3.5) ANIQUILACIÓN ELECTRÓN - POSITRÓN

$$A_{\rm C} = A \cdot \varepsilon_G \cdot BR_1 \cdot \varepsilon_{D1} \cdot BR_2 \cdot \varepsilon_{D2}$$

¡SÓLO APARECE EL FACTOR GEOMÉTRICO 1 VEZ!

ES MÁS FÁCIL MEDIR COINCIDENCIAS, PERO... NO SE PUEDE OBTENER LA ACTIVIDAD ABSOLUTA COMO CON EL ⁶⁰Co

$$\frac{A_{\rm C}}{A_{\rm l}} = \varepsilon_{D2} = 0.182 \pm 0.005$$

$$\frac{A_{\rm C}}{A_2} = \varepsilon_{D1} = 0.178 \pm 0.005$$

OBTENEMOS LA EFICIENCIA INTRÍNSECA DE LOS DETECTORES EN EL FOTOPICO DE 511 keV

BLOQUE 4 DETERMINACIÓN DE LA RESOLUCIÓN α DE UN DETECTOR DE BARRERA DE SUPERFICIE

4.1) RESOLUCIÓN α DEL DETECTOR

$$T = \frac{Q}{1 + \frac{m_{\alpha}}{m_{206Pb}}} = \frac{5407.5}{1 + \frac{4.0026}{205.974}} = \frac{5407.5}{1.0194} = 5304.4 \text{ keV}$$

4.1) RESOLUCIÓN α DEL DETECTOR

CON SCASSY

	SCASSY	MCA Canberra
E₀ (canal)	917.1	1467.5
FWHM (Medida directa) (canal)	17.62	27,0
(Ajuste gaussiano) (canal)	2.35 * σ = 17.625	25,0
RESOLUCIÓN	0.0192	0.0177
Energía por canal	5.78 keV / canal	3.614 keV / canal
FWHM (Energías)	101.8 keV	93.97 keV

CON MCA Canberra

COMENTARIOS FINALES

