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Summary

+ Physical and biophysical properties of protons

* Proton delivery techniques: What do their physical differences mean
in terms of clinical plans?

+ Uncertainties in proton therapy: How are they accounted for with
passively scattered beams vs scanned beams?

+ General beam angle selection guidelines
+ Site-specific heam arrangement considerations
+ Clinical examples of unique proton techniques

¢+ What is the way forward in proton radiotherapy?
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COMPARISON OF PROTON AND PHOTON DEPTH
DOSE CHARACTERISTICS

There are three important differences to note in comparing these curves
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THE BRAGG PEAK

Relative Dose vs Depth for ~215 MeV Proton in Water
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THE BRAGG PEAK

Relative Dose vs Depth for ~215 MeV Proton in Water
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THE BRAGG PEAK

Relative Dose vs Depth for ~215 MeV Proton in Water
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HOW TO SPREAD THE BRAGG PEAK
LONGITUDINALY? THE SPREAD OUT BRAGG PEAK

(SOBP)

 The dimensions of a typical tumor are very much greater than the
width of the pristine Bragg peak
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CONSTRUCTING A SOBP

« Bragg peaks with a range of different penetrations (proton beam
energies) and intensities are combined
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CONSTRUCTING A SOBP

« Bragg peaks with a range of different penetrations (proton beam
energies) and intensities are combined
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CONSTRUCTING A SOBP

* The range of different penetrations span the tumor volume
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CONSTRUCTING A SOBP

* The range of different penetrations span the tumor volume

3.0

. @

2.0

Vi
Al

~——

Relative Dose

1.0

//
| ——l

0.0
0 50 100 150 50

Depth (mm)

PENN RADIATION ONCOLOGY @ Penn Medicine  u



CONSTRUCTING A SOBP

* The range of different penetrations span the tumor volume
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CONSTRUCTING A SOBP

 When all the Bragg peaks are delivered and summed the result is
the SOBP.
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CONSTRUCTING A SOBP

 When all the Bragg peaks are delivered and summed the result is
the SOBP.
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CONSTRUCTING A SOBP

* When all the Bragg peaks are delivered and summed the result is
the SOBP.
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THE SOBP

e The SOBP has flat dose distribution across the tumor volume

« Aresult of the summing process is that the peak to plateau dose
ratio is degraded compared to the pristine peaks SOBP
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ANOTHER PROBLEM

+ So we have solved the problem of how to cover the tumor volume in
depth with the narrow Bragg peak

¢ But there is another problem. The proton beam emerging from the

beamline also has small lateral dimensions, being only about 10 mm in
diameter

+ To overcome this problem we can either scatter the
beam or scan it using magnets.

Patient

A

. . . ) Tumor
+ Let’s consider the scattering solution first
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SINGLE SCATTERING
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Single scattered beam
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DOUBLE SCATTERING

* To get large field sizes two scatterers must be used
+ But there is still a field size limitation of ~ 22-25 cm

Second Scatterer

Single scattered beam
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APERTURE

+ An aperture shapes the beam in the lateral dimensions.

Aperture
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RANGE MODULATOR

+ A modulator wheel with steps of different thickness is rotated in the
beam path to spread the beam in depth across the tumor.

Aperture
Beam <—1— Modulator Wheel
—)
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RANGE MODULATOR

Pristine Bragg peak
delivered to deepest layer
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RANGE MODULATOR

2.5

A second pristine Bragg peak 2.0
is delivered to the target volume
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RANGE MODULATOR

A third pristine Bragg peak
is delivered to the target volume
with less intensity
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RANGE MODULATOR

A fourth pristine Bragg peak
is delivered to the target volume
with less intensity
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RANGE MODULATOR
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RANGE MODULATOR
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RANGE M

ODULATOR

And so on
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RANGE MODULATOR

And so on, and on ...
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RANGE MODULATOR

And so on, and on, and on ...
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RANGE MODULATOR

And so on, and on, and on, and on ...
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RANGE MODULATOR

And so on, and on, and on, and on, and on ...
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RANGE MODULATOR

Until all the peaks are delivered
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RANGE MODULATOR
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As the wheel rotates it's thickness determines which e , layer
will be delivered and the size of the segment determines_the relative

intensity of the peak delivered at that depth, provided the wheel spins at a constant
rate and the incident proton beam intensity is also constant.
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RANGE MODULATOR, APERTURE, COMPENSATOR

+ A modulator wheel, aperture and compensator must be used to
shape the beam to the treatment volume.

Compensator

Aperture

Beam <—1— Modulator Wheel
—)

Vi

F
A range compensator is fabricated from a tissue like
material and is shaped in three dimensions to conform f

to the shape of the distal edge of the tumor.
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RANGE MODULATOR, APERTURE, COMPENSATOR

+ A modulator wheel, aperture and compensator must be used to
shape the beam to the treatment volume.

+ An aperture shapes the beam in the lateral dimensions.

Beam <—1— Modulator Wheel
—)

Vi
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A range compensator is fabricated from a tissue like

material and is shaped in three dimensions to conform

to the shape of the distal edge of the tumor.

Compensator

Aperture

But a consequence of this is that that the
same shape is impose on the proximal edge

of the dose distribution
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ALTERNATIVE DELIVERY: PENCIL BEAM SCANNING (PBS)

+ By using two magnets to scan the beam at orthogonal angles we
can achieve lateral tumor coverage
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PBS

+ By using two magnets to scan the beam at orthogonal angles we
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PBS

+ By using two magnets to scan the beam at orthogonal angles we
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PBS

+ By using two magnets to scan the beam at orthogonal angles we
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PBS

+ By using two magnets to scan the beam at orthogonal angles we
can achieve lateral tumor coverage
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PBS

+ By using two magnets to scan the beam at orthogonal angles we
can achieve lateral tumor coverage
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PBS

+ By using two magnets to scan the beam at orthogonal angles we
can achieve lateral tumor coverage

— —

pot 01 RT LAT of (N)PBS. O s 59|
 Raw spot st © weight

© Post-processed spot list & MU Spot MU

Fle Qucklinks Edt View Iert Planng Tods Window Hep
R AQQH®m ) E[20]

7 042506784 (PES - Unappr

& B Research P Recalculate
£ mps dose (o0 update the 523
& mps_mc Srding to

£ ()DS_C_impr

£ (ymRT

& (e

S
& ps_mc

1@ Cord() 2]
1% Couchinterior
)% CouchSurace

v

<

2z 2.5

0@ v
9 Duodenum(s)
@ 61V

O GV
v

0% mv_co

O'® Large_Bowel(r) .
09 Liver() 0
09 LT Kidney(r) —_—

0% Lungs(r) 1
0O PATEENT s Energy Layer [Fisz — wev . 5
9 PTV()

19 RT_Kidney(r) al-C e a '_J—

OO Small_Bowel()

" [)® Stomach(r) e ate he Spot st Adjust Selected Spots Close.

User Origin acCording (o machineimits
& (121 Reference Points
4% C1- INTIAL CALC
D4 C1CD1 CALC
PV

(1@ Dose
& 01 Fields 0. 5
& VRN 01 RT LAT
“# BeamLine « 5

= DR 02 RPO

= D 03LPO 0 0
# Beam Line .
= O 0 Pso

2.0

1.0

0 50 100 <150 200 250

= DN 06 LPO2
Bea Line
= DR 07 RsPO1
# Beam Line
(16N 08 RSPO?

Fields | Nasa Praccrintion | 7 Fiald Alianmenta | 1 Pian Obiactiss | 1 Ontimization Ohisctives | Nnsa Statistics | Calcutation Models | Plan Sum |

PENN RADIATION ONCOLOGY @ Penn Medicine 43



PBS

+ By using two magnets to scan the beam at orthogonal angles we
can achieve lateral tumor coverage
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PBS

+ By using two magnets to scan the beam at orthogonal angles we
can achieve lateral tumor coverage
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PBS

+ By using two magnets to scan the beam at orthogonal angles we
can achieve lateral tumor coverage and place relatively small pixels
of dose (~ 1 cm spheres) anywhere we want them in a given plane.

+ We can then reduce the beam energy and “pull back” the pixels to
deliver another layer.

+ And repeat the process until we have covered the entire
treatment volume.

Using this method we can achieve dose conformality
on both the distal and proximal sides of the tumor
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Do we have control over the spot size?
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Biophysical advantages of proton radiotherapy

+ Protons have a clear physical advantage over photons
Proton beam direction [ > Photon
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Biophysical advantages of proton radiotherapy

* Protons have a clear physical advantage over photons
+ Do protons have any biological advantage over photons?

fluence

depth
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Biophysical advantages of proton radiotherapy

* Protons have a clear physical advantage over photons
+ Do protons have any biological advantage over photons?
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Biophysical advantages of proton radiotherapy

* Protons have a clear physical advantage over photons
+ Do protons have any biological advantage over photons?
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Biophysical advantages of proton radiotherapy

* Protons have a clear physical advantage over photons
+ Do protons have any biological advantage over photons?
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Biophysical advantages of proton radiotherapy

* Protons have a clear physical advantage over photons
+ Do protons have any biological advantage over photons?
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Biophysical advantages of proton radiotherapy

* Protons have a clear physical advantage over photons
+ Do protons have any biological advantage over photons?
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Biophysical advantages of proton radiotherapy

* Protons have a clear physical advantage over photons
+ Do protons have any biological advantage over photons?

LINEAL ENERGY
TRANSFER (LET)
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Biophysical advantages of proton radiotherapy

Phys Med Biol. 2016 Feb 21;61(4):1705-21. doi: 10.1088/0031-9155/61/4/1705. Epub 2016 Feb 3.
Analytical calculation of proton linear energy transfer in voxelized geometries including secondary

protons.

Sanchez-Parcerisa D1, Cortés-Giraldo MA, Dolney D, Kondrla M, Fager M, Carabe A.

= Author information

1Department of Radiation Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA.
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Biophysical advantages of proton radlotherapy
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Microdosimetric Measurements: 3D microdetectors

First Silicon Microdosimeters Based on Cylindrical Diodes
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Biophysical advantages of proton radiotherapy

fluence
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Biophysical advantages of proton radiotherapy
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Proton Delivery Techniques

+ The width of the SOBP for passively scattered beams is
determined by the widest part of the target in depth

N\ W
+ The width of the SOBP for PBS beams is determined by the
width of the target in depth along each line of spots

PENN RADIATION ONCOLOGY & Penn Medicine
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Proton Delivery Techniques

+ By adding multiple beams, you can achieve a similarly

conformal plans with passively scattered beams
PBS

Double scattering (DS)

+ Generally, the integral dose will be higher with DS
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Uncertainties in Proton Therapy

Systematic Range Uncertainty

+ The HU value must be correlated with the relative proton stopping
power through a calibration curve in the treatment planning system

+ Different tissue compositions which s o s
have the same HU can have different |
proton stopping powers

+ The uncertainty in conversion from
HU to sopping power introduces
~1-2% uncertainty in the range of the
beam

1.5 P e

...
(=)

(=)
o]
T

O o

]

Relative Proton Stopping Power
a

e
o

¢+ Beam hardening and image artifacts R
. . agn 500 1000 1500 2000 2500 3000
in CT scans introduce additional Scaled Hounsfield Units

uncertainty
Schneider, et al. The calibration of CT Hounsfield

units for radiotherapy treatment planning
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Uncertainties in Proton Therapy

+ Why is range uncertainty such a big deal?

GOCO

+ Dose from protons falls off steeply
at the end of the proton range

Dose mmemii=-

+ Failure to account for a higher
density structure along the proton
path may result in a near zero
dose in a distal segment of the f
target due to reduced range of the Bone
protons

Depth w3

Charged
particles

Dose  ~—— ‘
e~

+ Neglecting to account for an air

cavity upstream of the target can __/*"*'“’““
result in higher doses delivered to N

normal structures distal to the o e
target Yem

Goitein, et al., Med Phys
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Uncertainties in Proton Therapy

Reducing HU Uncertainty

+ Uncertainties introduced by image artifacts can be reduced by
overriding the artifacts with manually set HU

PENN RADIATION ONCOLOGY & Penn Medicine
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Uncertainties in Proton Therapy

+ Uncertainties perpendicular to the beam direction

« Patient setup uncertainty
« Target motion
— Same philosophy as photon margins

¢ Uncertainties in the beam direction
« Uncertainty in range due to uncertainty in HU and conversion to proton
stopping power

« Uncertainty in the path of the beam through heterogeneous tissue due
to setup uncertainty

— Margin considerations are specific to the beam direction and beam
path, so PTV concept is not relevant

PENN RADIATION ONCOLOGY & Penn Medicine
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Treatment Planning — Scattered Beams

+ Uncertainty perpendicular to the beam - apply sufficient margin to
the collimating aperture from the CTV to account for setup and
motion uncertainty

+ Range uncertainty — expand the SOBP by 3.5% of the range plus
3mm distally and proximally, smear the compensator

« 3.5% for uncertainty in HU and conversion to proton stopping power

« 3mm for beam delivery uncertainty, compensator milling uncertainty
and compensator positioning uncertainty

« Smearing ensures coverage in the presence of motion or anatomical
change along the beam path

PENN RADIATION ONCOLOGY & Penn Medicine
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Treatment Planning — Scanned Beams

¢+ Inverse planning requires either:
* Incorporating uncertainty margins into an optimization structure

« Explicit robust optimization

¢ Structures can be created with additional margin in the beam
direction in order to account for range uncertainty

PENN RADIATION ONCOLOGY & Penn Medicine
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Treatment Planning — Scanned Beams

+ PBS treatment plans are optimized using inverse planning techniques
which allow for variation in position, intensity and energy of each spot

T

&N

v 4

N

?

3D Forward planning PBS: Inverse planning
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Treatment Planning — Scanned Beams

+ PBS plans can be optimized such that each of the beams covers
the target uniformly with dose (single field optimization SFO) or
such that the sum of all beams covers the target uniformly with
dose (multi-field optimization MFO)

L RT

PENN RADIATION ONCOLOGY & Penn Medicine
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Treatment Planning — Scanned Beams

+ MFO provides more degrees of freedom to optimize a treatment
plan and can provide better normal tissue sparing

SFO MFO

* The higher degree of modulation in the spot maps causes MFO
plans to be less robust to uncertainty

PENN RADIATION ONCOLOGY & PennMedicine 7



General Beam Angle Selection Guidelines

+ Shortest beam path to the target

* Protons STOP, so their major advantage is sparing dose to tissue
distal to the target

« A shorter path to the target results in less overall range uncertainty

* Most homogeneous and reproducible path to the target
« Proton range is highly sensitive to heterogeneities along its path

+ Beams that stop just proximal to serial critical organs should
be avoided

« Systematic range uncertainty could lead to a much higher dose to an

OAR that is close distal proximity to the beam fall-off than is calculated
in the nominal plan

» Uncertainty in relative biological effectiveness in the distal fall-off

PENN RADIATION ONCOLOGY & Penn Medicine
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Site-specific Beam Angle Considerations

Brain

+ Avoid beams passing through heterogeneous
sinuses and base of skull

+ Shortest beam paths to reduce integral dose
to normal brain tissue

¢ Large angle of separation between beams
helps reduce skin dose

+ Multiple non-coplanar beams to avoid range
and RBE uncertainties pointed toward critical
structures

PENN RADIATION ONCOLOGY & PennMedicine 7



Site-specific Beam Angle Considerations

Example Brain Plan
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Site-specific Beam Angle Considerations

Head and Neck

+ Avoid anterior beams through areas of
uncertainty in the mouth

 Metal dental work

» CT artifact caused by teeth and dental work

« Tongue positioning

+ Avoid posterior beams through the neck in
the presence of loose tissue and skin folds

¢ Shoulder alignment is critical when treating
neck nodes with posterior beams

PENN RADIATION ONCOLOGY & Penn Medicine



Site-specific Beam Angle Considerations

Example H&N Plan
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Site-specific Beam Angle Considerations

Mediastinum

+ Generally anterior or posterior beams are
used depending on target geometry since
they best spare lung dose

+ Posterior beams can spare heart and breast
tissue when target is more posterior

+ Anterior beams can spare heart and cord
when target is more anterior

PENN RADIATION ONCOLOGY & Penn Medicine
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Site-specific Beam Angle Considerations

Example Hodgkin’s Plan

PENN RADIATION ONCOLOGY & PennMedicine 3



Site-specific Beam Angle Considerations

Lung

+ A posterior beam is often the most stable

¢ Generally the posterior beam is combined
with a posterior oblique beam that blocks the
spinal cord

PENN RADIATION ONCOLOGY & PennMedicine &4



Site-specific Beam Angle Considerations

Abdomen

¢ Posterior and right-sided beams are the most
stable

* Reproducible setup

Homogeneous path, avoid bowel gas

Have to manage mean liver, kidney doses

PENN RADIATION ONCOLOGY @ Penn Medicine s



Clinical Examples

¢+ Field Matching with PBS
» Overlapping fields with shallow gradients to smear the match

« Example: Craniospinal matches

Dose (%]

Dose [%]
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Clinical Examples

¢+ Field Matching with PBS
* Results in homogeneous safe matches between fields

VS R U,
” =
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Clinical Examples

¢+ Retreatment

* Protons provide the potential to treat recurrences while avoiding even
low dose to previously irradiated normal tissues

PENN RADIATION ONCOLOGY & Penn Medicine
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Clinical Examples

+ Avoidance of Metal in the target area

 MFO with PBS can allow treatment of targets containing metal without
sending protons through the metal

PENN RADIATION ONCOLOGY & PennMedicine s



Biophysical aspects of current proton treatment planning
approaches
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Standard treatment LET distributions

L
Vg,

LETq

[keV/um]

RT-

Lateral
5
Disease control
uniquely depends
on dose
0

Wasted LET effect
= on normal tissue

—@P relman o
ﬁﬁkef’glngiS%ESON ONcoLogy ~ contribution @ Penn Medicine s



planning

approaches
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BiopiPiyresh®Spects of current proton treatment planning

Can we exchange dose for LET while maintaining the
same biological effect in the target volume?

If we can, that would mean:

1we could decrease the required prescribed dose (or
even the number of fractions) of the treatment without
loosing its biological effectiveness.

2reduce the dose (by default from 1) in the normal tissue

3reduce the LET in the normal tissue

Work done by: Marcus Fager — University of Pennsylvania

Perelman —
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Biophysical aspects of current proton treatment planning
approaches

Ingcernazional Journal of

Radiation Oncology

biology e physics

www. rec ournal org

Physics Contribution

Linear Energy Transfer Painting With Proton
Therapy: A Means of Reducing Radiation Doses
With Equivalent Clinical Effectiveness

=Fager Marcus, MSc,*[oma-Dasu Iuliana, PhD,"lKirk Maura, MSc,*
Dolney Don, PhD,* Diffenderfer Erig, PhD,* Vapiwala Neha, MD,*
and Carabe Alejandro, PhD*

*Department of Radiation Oncology, School of Medicine, University of Pennsylvania, Philadelphia,
Pennsylvania; and Stockholm University and Karolinska Institutet, Stockholm, Sweden
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Split Target — 4 Field - CTV
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Split Target — 4 Field - LET, distributions
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Split Target — 7 Field - LET, distributions
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Dose Comparlson

Standard Full Target

2 Field Split Target

4 Field Split Target

7 Field Split Target
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Biophysical aspects of current proton treatment

planning approaches
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planning
approaches

Purpose: To propose a proton treatment planning method that trades fractional physical
dose (d) for dose-averaged Linear Energy Transfer (LET.) while keeping the

radiobiological weighted dose Dxge to the target the same.

Methods: The target is painted with LET. by using 2, 4 and 7 fields aimed at the
proximal segment of the target (split target planning, STP). As the LET within the target
increases with the increasing number of fields, the physical dose per fraction decreases
to maintain the Drs: the same as the conventional treatment planning method using

beams treating the full target (full target planning, FTP). 2STP: 9% (1.8GyE)
4STP:11% (1.8GyE)

7STP:12% (1.8GyE)

Results: The LET, increased inside the target by 61% for

ease of d with

Dzge= constant to FTP.

Conclusions: LET; painting offers a method to reduce prescribed dose at no cost for

the biﬂ?ﬂmﬁfgmess of the treatment.
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What dose decrease percentage can we get if we go from

discrete beams to...
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... continuous beam delivery

PROTON MODULATED ARC THERAPY
(PMAT)
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PMAT vs PBS treatment of Brain tumor
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PMAT in Brain tumor
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PMAT in Brain tumor
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PMAT-DOSE PBS DOSE
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PMAT vs PBS: DVH
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PMAT-LET PBS LET |
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Summary

+ Physics of proton therapy allows for sparing of additional
normal tissue compared with photon therapy for a number of
treatment sites

¢ Uncertainties in proton therapy must be addressed to ensure
target coverage and safe doses to normal tissue structures

¢ Careful beam selection and robust planning help to maximize
the potential benefits of proton therapy

+ There biophysical properties in proton beams different than
those present in conventional radiations

* The biophysical properties of proton beams will play an
important role in the near evolution of proton radiotherapy
delivery techniques
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